

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA No 101004730.

Additive Manufacturing applied to Particle Accelerators

9th meeting of the I.FAST WP10 18/03/2022, Paris

PhD student Guntis Pikurs(RTU)

Recognized metal additive manufacturing activities within accelerator community

Materials used for accelerator parts

IFAST

Distribution among countries

Europe: CERN(CH) LAL, CNRS/IN2P3(FR) INFN(IT) University of Nottingham(UK) FAU(DE) US: SLAC NCSU LLNL RadiaBeam Asia: **JEOL**

Applied AM technologies for accelerators

Applied metal AM technologies:

- PBF-LB
- PBF-EB
- Cold spray

Most often used AM machines:

- GE Arcam
- EOS
- SLM
- Renishaw
- Trumpf
- GE Concept Laser

Collage of metal AM parts within accelerators

Reference links to each of pictures in further slides

Ultra-high vacuum chamber below 10⁻¹⁰ mbar (UK)

Material: pre-alloyed, gas atomized AlSi10Mg powder from TLS Technik GmbH; Grain size:10 μm to 100 μm; Machine: Renishaw AM250 Process: PBF-LB/M/AlSi10Mg Process parameters:

- 200W fiber laser@ 1064nm wavelength;
- 180°C bed temperature;
- layer thickness 25 μm;
- hatch spacing of 80 μm;
- point distance of 70 μm;
- exposure time of 220 μs;
- an effective scanning speed of 318mm/s;
- chequerboard pattern and 67° rotation after each layer.

Postprocessing: furnace cooling, EDM, bed blast, thermal treatment.

X-band klystron output cavity with micro-cooling channels and accelerator cavity

Material: OFE-Cu; Machine: Arcam S12 Process: PBF-EB/M/OFE-Cu;

https://www6.slac.stanford.edu/sites/www6.slac.stanford.edu/files/image1-2-side-by-side.jpg

Electron gun and UHV chambers (JEOL)

Material: Ti-6Al-4V (grade23) Machine: JEOL EBM Process: PBF-EB/M/Ti6Al4V Electron beam 1.2kW

Photos from exhibition FORMNEXT'2021, by G.Pikurs

Winding former of superconducting solenoid coil (ETH Zurich)

Material: 316L; Layer: 30 μm; Machine: Mlab Cusing R (GE Additive) Process: PBF-LB/M/316L; Yb:YAG fiber laser 1070 nm; Focal diameter of 50 μm; Max power 100W

Research is focused on manufacturing parameter optimization for different overhangs

Fork for fast Beam Wire-Scanner (CERN)

https://accelconf.web.cern.ch/medsi2018/papers/tuph36.pdf

Material: Ti6Al4V; Powder: ~30 μm; Machine: SLM 280HL Process: PBF-LB/M/Ti6Al4V; 400W IPG fiber laser@ 1070nm wavelength; Wall thickness 0.4mm

Highly efficient beam dump prototype for SPES LNL INFN

https://www.pd.infn.it/eng/infn-proposal-rankedamong-the-best-technology-transfer-projectsselected-by-the-regione-veneto/ Material: Cu OFHC; Layer: 30 μm; Machine: SISMA Mysint100 PM Process: PBF-LB/M/CuOFHC; Fiber laser, 1070nm; Spot size of ~30 μm; Max power 200W; Printed volume: 88392 mm³ Printing height Z of 32mm Print job of ~75 hours Reached relative density of 98.1 %

3D printed girder-drifttube structure including the integrated cooling channels

Material: 1.4404;

Vacuum, outgassing: 2.97 × 10⁻⁶ mbar was achieved after about 100 hrs of pumping Cavity size:221x206x261 mm Developed at:

Goethe University, Frankfurt a. M.

https://accelconf.web.cern.ch/ipac2021/papers/mopab194.pdf

Ultra high vacuum tubes(IN2P3/CNRS)

https://accelconf.web.cern.ch/ipac2017/papers/wepva043.pdf

Material: 316L;

Vacuum test: (1.2 × 10⁻⁵ mbar; 9.6 × 10⁻⁶ mbar); Size: 130 mm long DN40KF; Build time:

30h for 4piece buildjob at 40μm layer thickness(BV Proto);

60h for 4piece buildjob at 20 μ m layer thickness(AGS Fusion);

As build surface roughness:

Ra = 8.5μ m to 10μ m for BV Proto; Ra = 6μ m to 7.5μ m for AGS Fusion

Manufactured at:

BV Proto (<u>http://bvproto.eu/</u>);

Fusion AGS (https://www.ags-fusion.fr/)

Work supported by a grant from IN2P3/CNRS, program I3D metal.

Beam Position Monitor (LAL, TomX)

Material: 316L; Technology: PBF-LB/M/316L Developed at: LAL, TomX project Advantages over traditional machining method:

- 60% of original weight;
- Cost reduction by 50%;
- Manufacturing time reduced by 2/3;

I.FAST WP10.4. RF cavities (INFN DIAM)

Material: Cu OFHC; Process: PBF-LB/M/CuOFHC; Postprocessing at: Rossler Italiana S.R.L.

Additively manufactured HOM Coupler (CERN)

Process: PBF-LB/M/Ti6Al4V; **Postprocessed at: BINC Industries,** MMP average material removal 85.5 ± 23.9µm Final Ra0.02...0.03µm

Courtesy of P.Trubacova (CERN EN-MME)

https://indico.cern.ch/event/708160/contributions/2907448/attachments/1659769/2658741/MMP development RD - SRF workshop.pdf

SRF single-cell cavity (RadiaBeam)

FAST

Material: 316L; Nb Technology: PBF-EB/M Machine: Arcam AB Developed at: RadiaBeam, Vacuum:

https://accelconf.web.cern.ch/srf2015/papers/thpb042.pdf)

SPS pumping port shielding (CERN)

Courtesy of R. Gerard - CERN EN-MME - Foselev

https://indico.ijclab.in2p3.fr/event/7055/contributions/22436/attachments/16682/21653/R%20GERARD%20-%20La%20Fabrication%20Additive%20me%CC%81tal%20au%20De%CC%81partement%20d%27inge%CC%81nierie%20du.pdf

CLIC RF spiral load

https://indico.ijclab.in2p3.fr/event/7055/contributions/22436/attachments/16682/21653/R%20GERARD%20-%20La%20Fabrication%20Additive%20me%CC%81tal%20au%20De%CC%81partement%20d%27inge%CC%81nierie%20du.pdf

6GHz cavity, PBF-LB/M/Nb

https://indico.cern.ch/event/725106/contributions/2982999/attachments/1639125/2618793/additive_Manufacturing_2.pptx

Separators for 15T dipoles (Fermilab)

https://indico.ijclab.in2p3.fr/event/4990/contributions/16695/attachments/13619/16418/I3DMetal_-_AMCERN.pdf

Compact X-band RF loads

LIEBE: Heat Exchanger Lead-Bishmut/Water

https://indico.cern.ch/event/567462/contributions/2293345/attachments/1353055/204 4352/PS DUMPREVIEW Metal Additive Manufacturing RG.pdf

Linac2 solenoid housing

https://indico.ijclab.in2p3.fr/event/4990/contributions/16695/attachments/13619/16418/I3DMetal - AMCERN.pdf Guntis Pikurs – 9th meeting of the I.FAST WP10 18/03/2022, Paris

Our experience on OFE-Cu RFQ ¼ sector

Material: m4p[™] PureCu gasatomised spherical shaped powder;

Powder size: 19.5 ... 34.9 μm;

Machine: Trumpf TruPrint1000 Green Edition (500W disc laser@515nm wavelength);

Process: PBF-LB/M/OFE-Cu

Process parameters:

Layer thickness 30µm; Print job: 16h 29min Trumpf predefined scanning pattern; Manufactured at: Fraunhofer IWS Postprocessing at: Rosler Italiana S.R.L.

Lessons learned:

Successes:

• Good machining performance in terms of geometrical accuracy.

Issues to solve in future:

- STL model was not targeted and prepared for best result;
- Surface roughness is still challenge and definitely will need multi-step postprocessing;
- Circumstantial machine bed failure, due to powder bed sealing issue.

Next step: full sector RFQ

Material: OFE-Cu; Size~120x120x125mm Material volume~415.4cm³ Weight~3.714kg Layer: 30 μm; Machine: Trumpf 5000 Green eddition? Process: PBF-LB/M/OFE-Cu; Green Disc laser, wavelength 515nm?;

İFAST

Thank you for attention!

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA No 101004730.