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There is a long standing link between neural networks and 
spin systems
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We are at a convergence point for spin-based neural networks

Progress in nanotechnologies Demands of applications: ultra-low power AI

Progress in energy-based AI algorithms

Physical spin 
systems for AI

Intel: MRAM integrated into 
22nm FinFET CMOS



Neuromorphic chips can reduce the energy consumption of AI 
by several orders of magnitude

4They can solve environmental problem, speed up AI, unlock embedded AI

Electronic
neurons

Electronic
synapses

Novel
nanotechnologies 

+ CMOS

CMOS

Zhang et al, Nature 
Electronics 3, 371 (2020)



The dynamical properties of spintronic devices are an asset for 
neuromorphic computing
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J. Grollier, D. Querlioz, K. Y. Camsari, K. Everschor-Sitte, S. Fukami, M. D. Stiles, Nature Electronics 3, 360 (2020)



Pattern recognition requires separating then grouping data
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Input data

Make data 
more different

Group data 
in classes

dog

mop



We can use the complex dynamics of a spintronic nano-
oscillator to separate input spoken digits, leading to a 
recognition rate > 99.6%

7J. Torrejon, M. Riou, F. Abreu Araujo et al, Nature 547, 428 (2017)

TI-46 database, 5 female
speakers, cochlear pre-processing

Reservoir computing
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Coupled oscillators classify inputs 
patterns through synchronization

M. Romera, P. Talatchian et al, Nature 563, 
230 (2018) 8

M. Romera, P. Talatchian et al, 
Nature Com 13, 883 (2022)



Challenges for building hardware neural networks are the 
number of components and their connectivity
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Electronic
neurons

Electronic
synapses
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Image recognition: 108 neurons and synapses
Brain: 1011 neurons, 1015 synapses

→ Huge number of nanodevices on chip

Brain : 104 synapses/neurons

→ Huge connectivity

Motta et al, Science, 
366, 6469 (2019)



1 – Radio-frequency spintronic neural networks

2 – Spin-based neural network learning algorithms



Our idea is to build deep neural networks where components 
communicate through radio-frequency signals
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The spintronic oscillator operates as a neuron that converts DC to RF
→ we need a synapse that converts RF to DC

N. Leroux, A. Mizrahi et al, Radio-Frequency Multiply-and-Accumulate Operations with Spintronic Synapses, 
Phys. Rev. Applied 15, 034067 (2021)



Research performed by:
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CNRS/Thales, France INL, Portugal

Nathan Leroux, Andrew Ross, 
Danijela Marković, Dedalo Sanz 
Hernandez, Erwan Plouet, Erwann 
Martin, Teodora Petrisor, Paolo 
Bortolotti, Juan Trastoy, 
Alice Mizrahi

Leandro Martins, Alex 
Jenkins, Ricardo Ferreira



Magnetic tunnel junctions multiply input RF signals by a 
synaptic weight

13
Nathan Leroux, Alice Mizrahi et al, Physical Review Applied 15, 034067 (2021)



Weighted sum operation on RF signals is achieved
through frequency multiplexing
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Nathan Leroux, Alice Mizrahi et al Neuromorph. Comput. Eng. 1 011001 (2021)

Ideal weighted sum



Neurons-to-synapses connection
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Neuron 1

Neuron 2

Synapse 1 Synapse 2

The output of neuron 2 is tuned by synaptic weight 2



Fully spintronic hardware neural network
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97.7% 
accuracy



Comparison with other nanotechnologies
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We have built the first multilayer fully-nano neural network

Memristor nano-synapses 
connected by off-the-shelf 

neuron circuits

Memristor Nano-
synapses connected to

memristor nano-neurons

Oh et al., Nat. Nano. 16 (2021)

Nano-
Synapses

Nano-
Synapses

Not 
nano

Nano-
Neurons

Nano-
Synapses

Kiani et al., Sci. Adv., 7, 48 (2021)

Nano-
Synapses

Nano-
Neurons

Connecting nano-neurons to 
nano-synapses is a challenge

Z. Wang et al, Nature Electronics 1, 137 (2018)18



Spintronic RF-to-DC and DC-to-RF conversions enable a 
nice propagation of signals along the multilayer stack

 Same device for neurons and synapses
 Stack layers alternating DC and RF for depth

DCDC RF

SynapsesNeurons

RF

Neurons

RF

Synapses

Nano-
Synapses

Nano-
Neurons

Nano-
Neurons

Nano-
Synapses
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Connectivity



Most physical systems are naturally locally connected

D Wave squid Qubits

8 qubits connected all to all through JJs

2000 spins in total, but only ~50 spins can be
coupled all to all through embedding

21

Spin ice lattice

Each magnet is connected to 4 others

J. C. Gartside et al, Nature Nano 13, 53 (2018)



Our concept is a sneak path free alternative to crossbar arrays

- Requirement: high OFF/ON ratio devices
- sneak paths

 100 synapses per neuron

HP labs

Crossbar arrays

Input neurons Ouput
neuron 1

Ouput
neuron 2

- Requirement: good RF signal propagation
- No sneak paths

 1000 synapses per neuron

RF frequency multiplexing



Towards deep RF spintronic neural networks

• First experimental demonstration of communication between multiple layers using nano-devices
• Non-linear classification of two inputs with high accuracy

Theory weighted sum: N. Leroux, A. Mizrahi et al. Phys. Rev. Appl. 15, 034067 (2021)
Experiment weighted sum: N. Leroux, A. Mizrahi et al., Neuromorph. Comput. Eng. 1, 011001 (2021) 

Full network experiment: A. Ross, N. Leroux et al. Manuscript in Preparation
Simulations: N. Leroux et al Neuromorph. Comput. Eng. 2, 034002 (2022)

10 fJ/synapse and 100 fJ/neuron for MTJs with 20 nm diameter: 100 fold energy gain compared to GPUs



1 – Radio-frequency spintronic neural networks

2 – Spin-based neural network learning algorithms



Hopfield nets compute by minimizing an Ising energy
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J. J. Hopfield, PNAS 79, 2554 (1982)

Neuron→ Spin 
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one after the other
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Modern algorithms minimize the error at the network output
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Hebbian learning rules (1949): who fires together
wires together

Easy to implement in hardware
Low performance on complex tasks

Brain-like

Hard to implement in hardware
High performance on complex tasks



Equilibrium propagation minimizes both the energy and the 
output error of the system
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Inference : free phase Nudging toward the desired solution

The 
perturbation 
at the output 
propagates
through the 
network

𝜷
𝑭 = 𝑬 + 𝜷𝑪

Scellier & Bengio, fnins 2017
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Equilibrium propagation directly backpropagates gradients 
through neuronal dynamics
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Our recent work: bridging Equilibrium Propagation and 
hardware

C2N, FranceCNRS/Thales, France 

Thales, France Mila, Canada

Jérémie Laydevant, Erwann Martin, 
Dongshu Liu, Shuai Li, Danijela Marković,

Julie Grollier

Erwann Martin, Teodora Petrisor Benjamin Scellier, Yoshua Bengio

Maxence Ernoult, Axel Laborieux, 
Damien Querlioz



The local learning rule of Equilibrium Propagation (EP) leads 
to high recognition rates on image benchmark tasks
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∆𝑊𝑖𝑗 = −𝜌(𝑠𝑖) 𝜌 𝑠𝑗 + 𝜌𝛽(𝑠𝑖) 𝜌
𝛽(𝑠𝑗)

M. Ernoult, J. Grollier, D. Querlioz, 
Y. Bengio, B. Scellier, NeurIPS (2019) 

A. Laborieux, M. Ernoult, B. Scellier, Y. Bengio,           
J. Grollier, D. Querlioz, Frontiers Neuro. 15, 129 (2021)

EP implements
convolutions and 
scales to CIFAR-10

Equivalence of EP local 
learning rule with the 
gradients of 
Backpropagation
Through Time (maths + 
simulation results)

Modified 3-phase 
learning rule:
EP : 11.68% test error 
BPTT : 11.1 %



We have implemented a full neural network and trained it
to solve MNIST through Equilibrium propagation on the 
D’Wave quantum computer

Work of Jérémie Laydevant and Danijela Marković

Ising machine



1st challenge: design a binary version of Equilibrium
propagation compatible with Ising machines

𝐸 = −
1

2
σ𝑖≠𝑗𝑤𝑖𝑗𝑠𝑖𝑠𝑗 −σ𝑖 𝑏𝑖𝑠𝑖

𝐸 = −
1

2
σ𝑖≠𝑗𝑤𝑖𝑗𝜌 𝑠𝑖 𝜌 𝑠𝑗 − σ𝑖 𝑏𝑖𝜌 𝑠𝑖 +

1

2
σ𝑖 𝑠𝑖

2

• D-wave is an Ising machine based on 2-states qubits 𝑠𝑖

• Equilibrium Propagation uses analog neurons 𝜌 𝑠𝑖

→We have demonstrated in software that EP trains Binary Neural 
Networks by using advanced Machine Learning methods

• Binary synapses (CIFAR 10)
• Binary synapses and neurons (MNIST)
• Ternary gradients

J. Laydevant, M. Ernoult, D. Querlioz, J. Grollier, 
arxiv 2103.08953, published in the Conference 
on Computer Vision and Pattern CVPR (2021)



2nd challenge: mapping a neural network that can classify
handwritten digits from the MNIST database to the chip layout

Clusters of 4x4 coupled
superconductive qubits

1 qubit ≠ 1 neuron due to the chip layout

5000 qubits

28x28 pixels

784 (28x28) inputs

120 neurons
Hidden layer

40 neurons
output

embedding

On chip



3rd challenge: hacking the quantum annealing procedure to 
reach the two different equilibrium points needed for EP

Figure5.5: Evolution of theannealing parametersA(t) and B (t) for the forward Quantum Annealing
with which we realize the free phase of EP, and for the Reverse Quantum Annealing with which we
realize the nudge phase of EP.

reached after the free phase, according to the error signal applied through the nudging biases and

the new states of the nudged spins.

To perform the nudge phase with D’Wave, we modified a bit this RQA algorithm as follows.

After the forward QA of the first phase, we want to drive the output spins closer to the target state.

For this, we perform a reverse annealing but we change the parameters applied to the chip compared

to the first QA phase, in order to add the nudging bias to the output neurons.

To sum up, the system of coupled spins, starting from the first equilibrium state, eventually

settles to a second equilibrium state thanks to the reverse annealing procedure:

ar gmin Enudge = { { σ
z,⇤,β
i } |Ji j , bi , σ̂} (5.12)

that minimizes the augmented energy function (Eq. 3.19).

So with RQA we found a way to perform the error-backpropagation phase and thus a way to

perform training with EP.

5.2.2 . EP t raining algorit hm with IM in the loop

Now that we have described how to use the D’Wave Ising machine as a parametrizable energy-

based model to emulate an EP supervised trained neural network, we can write the algorithm

describing the full the training loop with the Ising machine in Alg. 9.

5.3 . Training a fully-connect ed archit ecture on the D’Wave Ising

M achine

We now apply the learning procedure that we have just described to train a neural network that

hasa fully-connected architectureon the Ising Machine of D’Wave. Wedescribehow one can embed

and train the network on that specific Ising Machine and then we report the results we obtained at

training the network on a subset of the MNIST dataset (MNIST/ 100).

124



First end-to-end supervised training of a neural network in an 
Ising machine (D-Wave) with software-equivalent accuracy (85%)

In the future, the accuracy can be improved by increasing:

- the number of presented images in the database
- the number of hardware spins

Figure 5.6: Train and test accuracy got with an fully-connected neural network (architecture 784−
120− 40) trained with EP on the D’Wave Ising Machine on the MNIST/ 100 dataset.

Figure 5.7: Train and test accuracy reached on the fully-connected architecture 784− N − 40 where
N is varied for different methods to emulate the dynamics: Dashed line: accuracy obtained with the
determinist ic dynamics, Straight line: accuracy obtained with Simulated Annealing, Stars: accuracy
obtained on the D’Wave IM.

to the binary activation of the IM we used the hard hyperbolic-tangent activation function which

inputs were scaled to mimic the binary threshold and still have a non-zero gradient around the step:

σ(x) = H ardTanh(5⇤x).

In Fig. 5.9 we have reconstructed the input that maximizes the activity of a specific output

neuron that encode the class "8" of MNIST. We see this reconstructed input is very similar to

an image of a handwritten "8" . It shows that this output neuron, throughout the hidden layer, is

sensit ive to pixels that globally form a 8 at the input, which validates our method.

Wealso want to visualize thepattern that activates thehidden neuronsbecause if somehierarchy

of features detected has been created during the training process, then the hidden neurons are

sensitive to specific features in the input image that are combined for feeding the output neurons.

To investigate whether the hierarchy exists after training, we clamp an image of a "8" from

129

Figure 5.8: Accuracy obtained with the fully-connected architecture 784− 120− 40, when we vary
the size of the training dataset (still with en equidistribution of the number of images per class).
Plain lines: train and test accuracy reached with Simulated Annealing. Stars: accuracies obtained
when training on theD’Wave IM. Globally the testing accuracy increaseswhen thesize if the training
dataset increases as the learnt distribution is wider and testing data are more likely to fall under the
wider distribution learnt on the training dataset. Stars: accuracy got with QA on the D’Wave IM.

MNIST as an input for the network. We then perform an inference on this image and we store

the state of the hidden neurons. We select the 10 neurons that have the highest activity during

the inference on this image of a "8" . After that, we apply the same technique as before in order

to find the inputs that individually maximize the activity of those 10 neurons. Then we plot the

corresponding input pattern in Fig. 5.9. We see that hidden neurons activate for different input

patterns that, once combined at the output layer allow the network to recognize the input.

We acknowledge that this method has limitations as we transfer the weights to a network that

does not have the same activation function. But, the reconstructed inputs that we have found

which maximize a specific output neuron correspond very much to what they should look like, hence

telling us that the correspondence between the two networks is not tight but is not large neither.

Additionally, we computed the error that this fictit ious neural network (with H ar dTanh and not

re-trained) gets on MNIST/ 100 for both the training and testing dataset. We got 75.4% accuracy

on the training dataset and 69% on the testing dataset which isnot that bad considering thechanges

that have been made compared to the network trained on D’Wave where we got 99% of training

accuracy and 87% of testing accuracy. The result we show with these methods are preliminary but

are very encouraging. We expect to extend this input reconstruction method to other physical neural

networks in order to better understand how physics computes.

Reverse annealing for the nudge phase. We now report in Fig. 5.10 the impact of the

parameters of the reverse annealing procedure on the classification accuracy.

As explained above, we can specify which amount of " superposition" we can add during the

nudging phase such as the spins evolve toward the second equilibrium state giving the error signal.

We report in Fig. 5.10 the accuracy we obtained with Simulated annealing depending on the value

of the RQA parameter we set for the nudge phase. In this plot, the more we are on the left, the

130



Spin-based learning
algorithms can solve 
standard AI tasks and 

achieve SOTA accuracy

Spintronic nanodevices
communicating through RF signals
can implement large scale and low
power hardware neural networks



Learning with high accuracy and low power is the main 
challenge of neuromorphic chips
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Output error

Neuromorphic chips today:
Limited to Handwritten digit 
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Equilibrium propagation replaces gradient computation 
by gradient measurement
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Can we train a hardware neural network through it physics,
without additional « artificial circuits », with low power, and with
high accuracy despite component variability, like in the brain ?

39

Intrinsic learning

Eqspike: E Martin, M Ernoult, J Laydevant, S Li, D Querlioz, T Petrisor, J Grollier, iScience 24, 102222 (2021)


