Electron energy resolution corrections in the ATLAS experiment & combined EW+QCD studies

Juan Tafoya

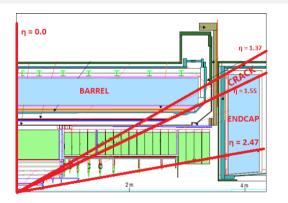
Supervisors: Louis Fayard, Zhiqing Zhang

Universite Paris-Saclay
ATLAS - LICLah

2022.05.31

Electron energy resolution corrections

The LAr Electromagnetic Calorimeter of the ATLAS experiment



$$\eta = -\ln\left[\tan\left(\frac{\theta}{2}\right)\right]$$

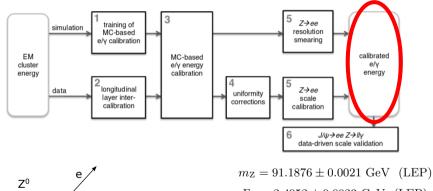
Proper calorimeter calibration (both on the Data and MC sides) is vital for precision measurements, such as:

- W-boson mass
- Higgs boson mass

⇒ continuous efforts to improve it

LAr calorimeter e/γ calibration chain: based on $Z \rightarrow ee$ sub-samples

The study shown here is done at the level of the step highlighted with the red circle.



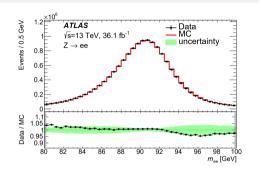
4 / 16

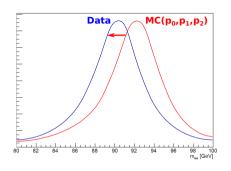
electrons are described by their $[E, \eta, \phi]$

Reminder: $m_{ee}^2 \approx 2E_1E_2(1-\cos\theta_{12}) = 2p_1^{\mathrm{T}}p_2^{\mathrm{T}} \left(\cosh(\eta_1-\eta_2)-\cos(\phi_1-\phi_2)\right)$ where $p^{\mathrm{T}} = \frac{E}{\cosh\eta}$

Juan Tafova Students' Seminars 2022 Electron energy resolution corrections

Mass line shape discrepancy (2018 $Z \rightarrow ee~ Data/MC$)





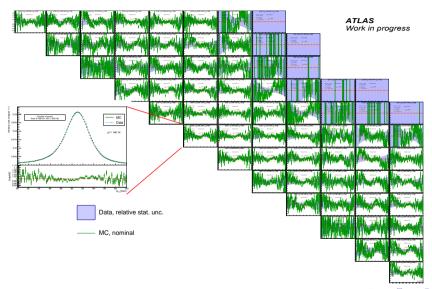
Seeking to understand better the difference between Data and MC

Using method proposed by USTC group: MC electron-by-electron energy resolution correction

$$\Delta = E_{reco} - E_{truth} \rightarrow \Delta' = f(\Delta)$$

$$E'_{reco} = E_{truth} + \Delta'$$
 with e.g. $\Delta' = p_0 \Delta + p_1 \Delta^2 + p_2$

Grid on $[\eta_1, \eta_2]$ of nominal Data/MC mass line shape ratios



Optimization approach and the problem with the χ^2 curve

Let

$$\chi^{2}(p_{0}, p_{1}, p_{2}) = \sum_{i}^{\text{bins}} \frac{\left[\text{bin}_{i}^{\text{MC}}(p_{0}, p_{1}, p_{2}) - \text{bin}_{i}^{\text{DATA}}\right]^{2}}{\left[\sigma_{i}^{\text{MC}}(p_{0}, p_{1}, p_{2})\right]^{2} + \left[\sigma_{i}^{\text{DATA}}\right]^{2}}$$

- \rightarrow the χ^2 is computed between mass histograms (i.e. finite number of bins)
- \rightarrow change in Δ' parameters = migration of events from one bin to another
- \rightarrow MC' histogram does not transform continuously as a function of p_0 , p_1 , etc.
- $\rightarrow \chi^2$ curve is not continuous!
 - 4 (opposite from traditional cases, which compare hist. v. pdf)

We had to develop a method capable of treating the χ^2 fluctuations \to in the process to become an ATLAS PubNote

- Blue: χ^2 between 2 histograms (affected by migration)
- Red: χ^2 between a (fixed) histogram and the fit of the other one (using method proposed in the PubNote)



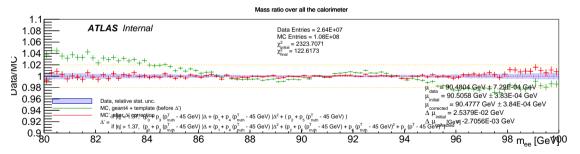
And after trying many $\Delta' = f(\Delta)$ parametrizations...

Best compromise (so far): combined first and third order E^{T} dependence

First order in the barrel, third order in the crack+endcap:

$$\Delta' = \left[p_0 + p_3 (E_{\text{truth}}^{\text{T}} - 45 \text{ GeV}) \right] \Delta + \left[p_1 + p_4 (E_{\text{truth}}^{\text{T}} - 45 \text{ GeV}) \right] \Delta^2$$

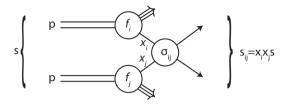
$$+ \begin{cases} \left[p_2 + p_5 (E_{\text{truth}}^{\text{T}} - 45 \text{ GeV}) \right] & \text{if } |\eta| < 1.37 \\ \left[p_2 + p_5 (E_{\text{truth}}^{\text{T}} - 45 \text{ GeV}) + p_6 (E_{\text{truth}}^{\text{T}} - 45 \text{ GeV})^2 + p_7 (E_{\text{truth}}^{\text{T}} - 45 \text{ GeV})^3 \right] \end{cases}$$



• Currently, Edison Carrera (internship student) is studying the impact of this calibration on the W-boson mass measurement

Combined EW+QCD studies

EW parameters and PDFs



$$\sigma_{pp\to X} = \sum_{i,j} \int \mathrm{d}x_1 \mathrm{d}x_2 \underbrace{f_i^p(x_1,Q^2)}_{PDF} \underbrace{f_j^p(x_2,Q^2)}_{PDF} \times \sigma_{ij}(x_1x_2s,\alpha_S(Q^2)) \quad \text{where } \sigma_{ij} \text{ is EW dependent}$$

HERAPDF style: $xf_i(x) = A_i x^{B_i} (1-x)^{C_i} (1 + D_i x + E_i x^2)$ $-A'_g x^{B'_g} (1-x)^{C'_g}$

term used exclusively for the gluon

Most studies take the EW and PDF parts as decoupled, using one to find the other:

EW SM values are assumed in order to fit PDFs

PDFs are fixed to find the value of EW parameters

AIM \rightarrow to perform combined EW+PDF fits (by modifying σ_{ij}), $+ \exists i + \exists j = 0,0,0$

Juan Tafoya Students' Seminars 2022 Combined EW+QCD studies 11/16

Combined fit motivation: W-boson mass uncertainty breakdown

	Stat.	Muon	Elec.	Recoil	Bckg.	QCD	EW	PDF	Total
	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.
m_{W^+}	8.9	6.6	8.2	3.1	5.5	8.4	5.4	14.6	23.4
m_{W^-}	9.7	7.2	7.8	3.3	6.6	8.3	5.3	13.6	23.4
m_{W^\pm}	6.8	6.6	6.4	Recoil Unc. 3.1 3.3 2.9	4.5	8.3	5.5	9.2	18.5

Uncertainty breakdown for m_W in MeV, as obtained in the study arXiv:1701.07240.

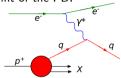
PDF is the main source of systematic uncertainties in EW measurements

Neglecting the correlation to the PDF uncertainty translates into a misestimation of the corresponding total uncertainty

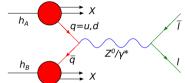
Juan Tafoya Students' Seminars 2022 Co

Data and its influence on the PDF

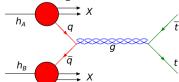
- Deep Inelastic Scatering (DIS): e^-p^+ data
- \rightarrow Main constraint of the PDF



- pp o W/Z cross-sections (e.g. Drell-Yan)
- \rightarrow sensitive to u- and d-quarks structure functions

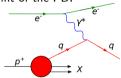


- $pp \to t \bar{t}$ cross-sections
- \rightarrow sensitive to gluon structure functions

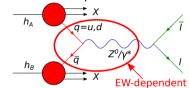


Data and its influence on the PDF

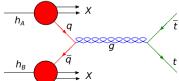
- Deep Inelastic Scatering (DIS): e^-p^+ data
- \rightarrow Main constraint of the PDF



- pp o W/Z cross-sections (e.g. Drell-Yan)
- ightarrow sensitive to $u ext{-}$ and $d ext{-}$ quarks structure functions



- pp o t ar t cross-sections
- ightarrow sensitive to gluon structure functions



Example of dependency on an EW parameter

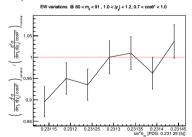
We will focus on the Z3D dataset (1710.05167):

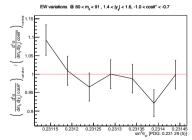
Drell-Yan $(Z/\gamma^* \to l^+ l^-)$ triple-differential cross-section in pp collisions at $\sqrt{s}=8$ TeV

Cross-section binning:

- $m_{ll}: [46, 66, 80, 91, 102, 116, 150, 200] \text{ GeV}$
- y_{ll} : [0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4]
- $\cos \theta^* : [-1.0, -0.7, -0.4, 0.0, 0.4, 0.7, 1.0]$

Relative impact on differential cross-section due to variations of $\sin^2 \theta_W$:





Lots of work still to come...

Currently:

- Understanding the dependency on the EW parameter (and extend to others, such as quark-Z couplings)
- Deciding on a (stable) way to interpolate
 - → This will be particularly important when fitting multiple EW parameters

•

Backup

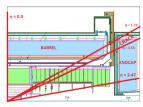
Backup

Energy resolution correction

- Best Δ' parameters sought with Minuit2.
- Minimizing the shape difference between the Data and MC mass distributions.
- The most simple form of the correction looks like $\Delta' = f(\Delta) = p_0 \Delta + p_1 \Delta^2 + p_2$
- η -binning defined as: $\{0.0, 0.6, 1.0, 1.37, 1.55, 1.82, 2.47\}$ (positive and negative)

e.g.
$$\eta$$
-bin $1 = -2.47 < \eta < -1.82$ η -bin $7 = 0.0 < \eta < 0.6$

- $Z \rightarrow ee$ gives two electrons (each with their own η and energy)
 - study done in a 2-D grid defined by $[\eta_1,\eta_2]$
- N.B. 12 regions in $\eta \to 12$ sets of parameters $\vec{p_{\eta}} = (p_0, p_1, p_2, ...)$
- The current study is done on top of the latest official calibration



2/16

Juan Tafoya Students' Seminars 2022 Backup

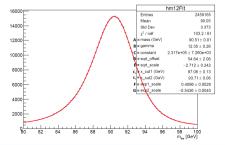
Getting rid of the migration: profiling the MC mass lineshape

TREATMENT TO MIGRATION: Fit a function (PDF) on the MC' histogram, and use it to predict the corresponding MC' value at each bin $(\int_{\text{bin}} f(x) dx/\text{bin})$. Since there is correlation between bins and propagated errors from the fit, the χ^2 looks like

$$\chi^2 = d^{\mathrm{T}} V^{-1} d.$$

 \Rightarrow Example of Breit-Wigner core with exponential tails fitted on MC:

$$f(x) = \begin{cases} 80 < x < c_1 : & e^{F(x-P)} + R \\ c_1 < x < c_2 : & \frac{C}{(x-A)^2 + B} + E(x-D)^2 \\ c_2 < x < 100 : & e^{G(x-Q)} + S \end{cases}$$



 c_1 and c_2 are the transition nodes, their values are also fitted

R and S assure continuity of the function P and Q assure continuity of the derivative

 \rightarrow in total, the function depends on 9 free parameters:

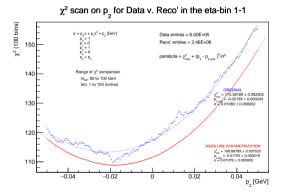
3/16

 $A, B, C, D, E, F, G, c_1, c_2$

Juan Tafoya Students' Seminars 2022 Backup

Getting rid of the χ^2 fluctuations

- Blue: χ^2 between 2 histograms
- Red: χ^2 between a (fixed) histogram and the fit of the other one (which is constantly changing)



For the following results, MINUIT "sees" only the red curve.

Juan Tafoya Students' Seminars 2022 Backup 4/16

Parametrizations of the resolution correction

Looking for the "magic" parametrization that improves all (or most) of the η -bins

As shown before, it is very likely that there is a p^{T} dependence.

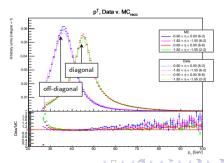
Let us concentrate on two equivalent parametrizations:

• A:
$$\Delta' = p_0 \Delta + p_1 \Delta^2 + p_2$$

• L:
$$\Delta' = (p_0 + p_3(p_{\text{truth}}^{\text{T}} - 45 \text{ GeV})) \Delta + (p_1 + p_4(p_{\text{truth}}^{\text{T}} - 45 \text{ GeV})) \Delta^2 + (p_2 + p_5(p_{\text{truth}}^{\text{T}} - 45 \text{ GeV}))$$

Why
$$-45 \text{ GeV}$$
?

If there was no width of the Z, $p_Z^{\rm T}\approx 0$ and no resolution effects, at first order, the $p^{\rm T}$ for diagonal bins (e.g. 2-2 and 6-6) would be around $\frac{m_Z}{2}\approx 45~{\rm GeV}$



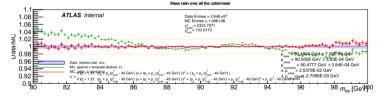
Juan Tafoya Students' Seminars 2022 Backup 5/16

Best compromise (so far): combined first and third order E^{T} dependence

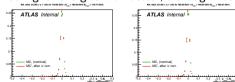
First order in the barrel, third order in the crack+endcap:

$$\Delta' = \left[p_0 + p_3 (E_{\text{truth}}^{\text{T}} - 45 \text{ GeV}) \right] \Delta + \left[p_1 + p_4 (E_{\text{truth}}^{\text{T}} - 45 \text{ GeV}) \right] \Delta^2$$

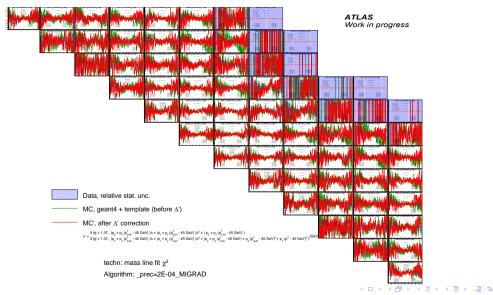
$$+ \begin{cases} \left[p_2 + p_5 (E_{\text{truth}}^{\text{T}} - 45 \text{ GeV}) \right] & \text{if } |\eta| < 1.37 \\ \left[p_2 + p_5 (E_{\text{truth}}^{\text{T}} - 45 \text{ GeV}) + p_6 (E_{\text{truth}}^{\text{T}} - 45 \text{ GeV})^2 + p_7 (E_{\text{truth}}^{\text{T}} - 45 \text{ GeV})^3 \right] \end{cases}$$



Resolution at higher energies look better, although not yet perfect:



Best compromise (so far): combined first and third order E^{T} dependence



Combined fit motivation: effective leptonic weak mixing angle uncertainty breakdown

Channel	ee_{CC}	$\mu\mu_{CC}$	ee_{CF}	$ee_{CC} + \mu\mu_{CC}$	$ee_{CC} + \mu\mu_{CC} + ee_{CF}$		
Central value	0.23148	0.23123	0.23166	0.23119	0.23140		
	Uncertainties						
Total	68	59	43	49	36		
Stat.	48	40	29	31	21		
Syst.	48	44	32	38	29		
	Uncertainties in measurements						
PDF (meas.)	8	9	7	6	4		
p_{T}^{Z} modelling	0	0	7	0	5		
Lepton scale	4	4	4	4	3		
Lepton resolution	6	1	2	2	1		
Lepton efficiency	11	3	3	2	4		
Electron charge misidentification	2	0	1	1	< 1		
Muon sagitta bias	0	5	0	1	2		
Background	1	2	1	1	2		
MC. stat.	25	22	18	16	12		
	Uncertainties in predictions						
PDF (predictions)	37	35	22	33	24		
QCD scales	6	8	9	5	6		
EW corrections	3	3	3	3	3		

Uncertainty breakdown for $\sin^2\theta_W$, as obtained in the study ATL-CONF-2018-037.

Combined fit motivation: W-boson mass uncertainty breakdown

$m_{W^+} \\ m_{W^-}$	Stat.	Muon	Elec.	Recoil	Bckg.	QCD	EW	PDF	Total
	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.
m_{W^+}	8.9	6.6	8.2	3.1	5.5	8.4	5.4	14.6	23.4
m_{W^-}	9.7	7.2	7.8	3.3	6.6	8.3	5.3	13.6	23.4
$m_{W^{\pm}}$	6.8	6.6	6.4	2.9	4.5	8.3	5.5	9.2	18.5

Uncertainty breakdown for m_W in MeV, as obtained in the study arXiv:1701.07240.

PDF is the main source of systematic uncertainties in EW measurements

Neglecting the correlation to the PDF uncertainty can translate into an important mis-estimation of the corresponding total uncertainty

Juan Tafoya Students' Seminars 2022 Backup 9 / 16

First off, how do we simulate cross-sections for some process?

- The observed cross-sections are estimated with data (given some selection), unfolded from detector resolution effects. Once unfolded, this remains constant.
- The estimation of the prediction is GREATLY dependent on the proton PDF
 - \rightarrow Very computationally expensive for proton-proton collisions (as at LHC) In order to speed it up, we use cross-section grids:
 - ullet For a fixed EW scheme, an intermediate step of the cross-section (at some QCD order) is computed, right before using information about the proton's content. This is what we call a GRID
 - ightarrow this is also expensive to compute, but it's done only once, and it is PDF-independent
 - For a given PDF, the corresponding (differential) cross-section is given by the convolution with the Grid i.e.

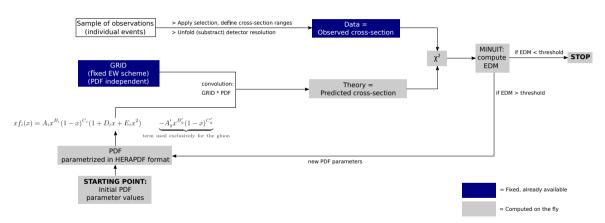
$$\frac{\mathrm{d}\sigma}{\mathrm{d}X}(\mathrm{PDF},\mathrm{EW}) = [\mathrm{GRID}_{\mathrm{NLO}} * \mathrm{PDF}]$$

• This is quick to compute, and can be performed on the fly when optimizing the PDF

◆□▶ ◆□▶ ◆臺▶ ◆臺▶ 臺灣 釣९♡

Juan Tafoya Students' Seminars 2022 Backup 10 / 16

Fitting PDFs: the standard way



Juan Tafoya Students' Seminars 2022 Backup 11/16

Fitting PDFs: the limitation for a combined EW+PDF fit

Using the previous approach, one cannot fit an EW parameter at the same time!:

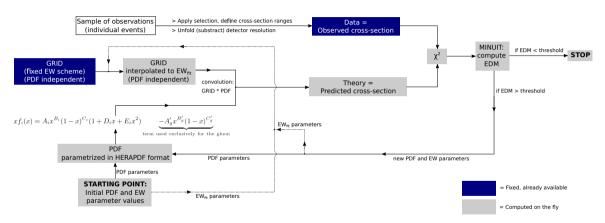
The GRID is computed for fixed EW values → insensitive to these changes (straight out of the box)

UNLESS

We modify the GRID/prediction accordingly

 Juan Tafoya
 Students' Seminars 2022
 Backup
 12/16

Fitting PDFs: the combined EW+PDF fit approach



Juan Tafoya Students' Seminars 2022 Backup 13 / 16

Strategy

We can write the prediction of a differential cross-section with respect to some variable X (called $\frac{d\sigma}{AY}$) as a function of a PDF set and EW values as follows:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}X}(\mathrm{PDF},\mathrm{EW}) = [\mathrm{GRID}_{\mathrm{NLO}} * \mathrm{PDF}] \times K_{\mathrm{NLO} \to \mathrm{NNLO}}^{\mathrm{QCD}} \times \frac{\mathrm{POWHEG}(\mathrm{EW} \; \mathrm{couplings})}{\mathrm{POWHEG}(\mathrm{NNLOJET} \; \mathrm{scheme})}$$

where

- GRID_{NLO} is an existent APPLgrid at NLO, obtained for a fixed set of EW parameters
- GRID_{NLO} * PDF is the convolution of the fixed APPLgrid and the PDF being fitted
 - \rightarrow gives the corresponding NLO cross-section prediction
- $K_{
 m NLO o NNLO}^{
 m QCD}$ are existent NNLOJET factors to scale NLO predictions to NNLO
 - \rightarrow these were obtained using a specific scheme
 - POWHEG(EW)
 POWHEG(NNLOJET scheme) allows to go from nominal EW values to the ones of interest for the fit

14 / 16

Juan Tafova Students' Seminars 2022 Backup

The POWHEG factors

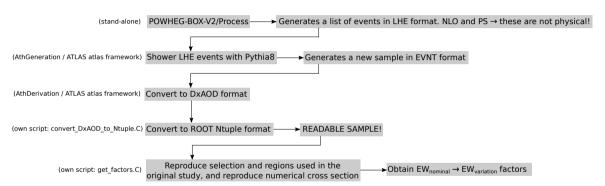
How can we compute the $K_{\text{nom} \to \text{var}}^{\text{EW}} = \frac{\text{POWHEG(EW)}}{\text{POWHEG(NNLOJET scheme)}}$ factors?

For the numerator and denominator (separately), the following procedure is performed:

- Generate a sample of events using POWHEG-BOX-2
 - This is generated under the same scheme as the NNLOJET K-factors
- Shower it with Pythia8
- Using the same cuts and regions of the cross-section study, we can build the numerical cross-section values from the sample
 - ightarrow This will correspond to the **denominator**
- Repeat by changing the EW values of interest in the configuration of POWHEG
 - → This will give the **numerator**

 Juan Tafoya
 Students' Seminars 2022
 Backup
 15/16

Obtaining the POWHEG factors



 Juan Tafoya
 Students' Seminars 2022
 Backup
 16 / 16