

^{2nd} year PhD seminar - CAT Antiprotons deceleration and transport for antihydrogen production in the GBAR experiment at CERN

Corentin Roumegou

Supervisor: David Lunney

Equivalence principle

The effect of gravitation on a body in free fall is independent from its nature and composition

- One of the bases of General Relativity
- Verified with a precision of 10^{-15} for matter (MICROSCOPE satellite [1])
- Never tested with antimatter (\bar{g})
- Beyond the standard model: antigravity, different constant ...?

[1] H. Pihan-le Bars et al., "New Test of Lorentz Invariance Using the MICROSCOPE Space Mission" Phys. Rev. Lett. 123, 231102, (2019)

GBAR experiment

Gravitational Behaviour of Antihydrogen at Rest

- Other experiments: ALPHA-g, AEgIS
- GBAR \triangleright Creation of an Antihydrogen ion \overline{H}^+

GBAR experiment

Gravitational Behaviour of Antihydrogen at Rest

- Other experiments: ALPHA-g, AEgIS
- GBAR \triangleright Creation of an Antihydrogen ion \overline{H}^+

Cooled down to μK temperatures

GBAR experiment

Gravitational Behaviour of Antihydrogen at Rest

- Other experiments: ALPHA-g, AEgIS
- GBAR \blacktriangleright Creation of an Antihydrogen ion \overline{H}^+
 - Cooled down to μK temperatures
 - Photo-detachment
 - $\blacktriangleright \overline{H}$ free-fall

\overline{H}^+ production

(1) Ps + \bar{p} --> \bar{H} + e^-

\overline{H}^+ production

(1) Ps + \bar{p} --> \bar{H} + $e^$ e^-e^+ \bar{p}^+

\overline{H}^+ production

Experimental setup

Experimental setup

Positron line

Antiproton line

Decelerator

• Deceleration ensured by a **pulsed drift tube**

Decelerator

• Deceleration ensured by a **pulsed drift tube**: switch from high voltage to 0 while particles are inside <u>ex:</u> switch from 94kV to 0kV will decelerate the beam from 100keV to 6keV

Negatively charged particles are repelled by the negative voltage

Particles are not re-accelerated when leaving the tube

Beam simulations

- Ion optics software: **SIMION**
- 3D meshing
- Laplace equation > Potentials

• Optimization of electrode voltages

Example for 2021 GBAR antiproton line:

01/06/2022

- Optimization of electrode voltages
- Import magnetic field maps from Comsol and see the effect on pbar beam (stray field from positron line → beam pushed to the top)

Magnetic field along Pbar Line

- Optimization of electrode voltages
- Import magnetic field maps from Comsol and see the effect on pbar beam (stray field from positron line)
- Optimization of decelerator switch timing

- Optimization of electrode voltages
- Import magnetic field maps from Comsol and see the effect on pbar beam (stray field from positron line)
- Optimization of decelerator switch timing
- Test optical lines designs before installing
- Provides a better comprehension of the beam and of all optical elements

From August to November, we had 3 months of pbar beam time at CERN...

• Deceleration was achieved down to 4keV

6keV beam on MCP2

Check particles energy with TOF

- Deceleration was achieved down to 4keV
- Matching with simulation expectations

01/06/2022

CAT seminar - Corentin Roumegou

- Deceleration was achieved down to 4keV
- Matching with simulation expectations
- Transport up to reaction chamber & first mixings with Ps

- Deceleration was achieved down to 4keV
- Matching with simulation expectations
- Transport up to reaction chamber & mixing with Ps
- We had to face several technical problems preventing us from operating with optimal parameters (ex: beam at 20keV instead of 6keV)
- Background measurements (from \bar{p} , Ps, AD hall environment)

• Some problems have been fixed during shutdown

- Some problems have been fixed during shutdown
- 2022 run has begun one month ago
- Looking forward to try again $\overline{\mathbf{H}}$ production with optimal parameters

- Some problems have been fixed during shutdown
- 2022 run has begun one month ago
- Looking forward to try again **H** production with optimal parameters
- Cross section measurement > Never done with antimatter, nor at such energy

Cross section measurements

Ps + p → H + e⁺ • 11.3keV

- 13.3keV
- 15.8kEV

[2] J.P.Merrison et al., «Hydrogen Formation by Proton Impact on Positronium,» Phys. Rev. Lett., 78, 14, 2728-2731, (1997)

01/06/2022

- Some problems have been fixed during shutdown
- 2022 run has begun one month ago
- Looking forward to try again **H** production with optimal parameters
- Cross section measurement Never done with antimatter, nor at such energy
- Installation of pbar trap ► Lower emittance, better focusing into target

- Some problems have been fixed during shutdown
- 2022 run has begun one month ago
- Looking forward to try again **H** production with optimal parameters
- Cross section measurement Never done with antimatter, nor at such energy
- Installation of pbar trap ► Lower emittance, better focusing into target
- Further steps: second reaction cross-section measurement > Never done

Cross sections theoretical calculations

[3] P. Comini and P-A. Hervieux, $\langle \overline{H}^+ \rangle$ ion production from collisions between antiprotons and excited positronium: cross sections calculations in the framework of the GBAR experiment» New Journal of Physics, 15, 095022 (2013).

- Some problems have been fixed during shutdown
- 2022 run has begun one month ago
- Looking forward to try again **H** production with optimal parameters
- Cross section measurement Never done with antimatter, nor at such energy
- Installation of pbar trap ► Lower emittance, better focusing into target
- Further steps: second reaction cross-section measurement > Never done

- Some problems have been fixed during shutdown
- 2022 run has begun one month ago
- Looking forward to try again $\overline{\mathbf{H}}$ production with optimal parameters
- Cross section measurement Never done with antimatter, nor at such energy
- Installation of pbar trap ► Lower emittance, better focusing into target
- Further steps: second reaction cross-section measurement > Never done

- install free-fall chamber and measure $\overline{\mathbf{g}}$!

Thank you for listening !

References

- H. Pihan-le Bars et al., "New Test of Lorentz Invariance Using the MICROSCOPE Space Mission" Phys. Rev. Lett. 123, 231102, (2019).
- J. P. Merrison et al., «Hydrogen Formation by Proton Impact on Positronium,» Phys. Rev. Lett., 78, 14, 2728-2731, (1997).
- P. Comini and P-A. Hervieux, «H
 ⁺ ion production from collisions between antiprotons and excited positronium: cross sections calculations in the framework of the GBAR experiment» New Journal of Physics, 15, 095022 (2013).

Backup slides

Free-fall Chamber scheme

01/06/2022

CAT seminar - Corentin Roumegou

ELENA Ring

Pbar line scheme – design

Pbar line scheme for 2021 run

 \overline{p}

SIMION Simulation - 'Optical' elements

Transport and focus on target in reaction chamber

Experiment vs Simulation – switch timing

 Matching experimental signal on MCP2 with expected timing distribution for different switch trigger timings

Operating with protons

CAT seminar - Corentin Roumegou

ELENA beam

• Nominal ELENA beam parameters:

Parameter at ejection ^a		Baseline four bunches
Number of bunches	4	
Bunch population	0.45×10^7 antiprotons	
Relative Momentum	$0.5 imes 10^{-3}$	R.m.s. value
spread		
Bunch length	75 ns	R.m.s. value
Horizontal emittance	1.2 μm	R.m.s., physical
Vertical emittance	0.75 μm	R.m.s., physical

- Parameters during 2021 beamtime:
 - ➢ dp/p ~ 0.5e-3, <u>ie</u> 50eV
 - Bunch length ~ 65ns σ
 - Horizontal emittance ~ 1.6 2.5 μm
 - Vertical emittance ~ 1.6 2.5 μm
 - Extraction time jitter ~ 5ns σ
- For the last 2 days of beamtime, ELENA team implemented <u>bunch rotation</u>:
 - Bunch length ~ 40ns σ
 - \succ Energy spread is higher with bunch rotation. Estimated to twice the nominal value \rightarrow still ok for Gbar

Drift tube HV switch setup **Drift Tube** 120 Ω Single switch RC ~20ns 100kV Power supply (Negative) **100 MΩ** 120 Ω

switch open \rightarrow HV on DT \rightarrow V_drop = I_leak x R **switch closed** \rightarrow DT at GND