Galaxy Clustering Beyond the Power Spectrum

Or

The slow coming-of-age of the galaxy bispectrum

Emiliano Sefusatti
Astronomical Observatory of Trieste
Paris-Saclay Astroparticle Symposium 2022
Wednesday November 9th

Cosmological constraints from the galaxy power spectrum

Geometrical probe of expansion history

Cosmological constraints from the galaxy power spectrum

Dynamical probe of expansion history

Cosmological constraints from the galaxy power spectrum

The galaxy power spectrum in Perturbation Theory

$$
\begin{aligned}
\delta_{h}^{\mathrm{G}}(\mathbf{x})= & b_{1} \delta(\mathbf{x})+b_{\nabla^{2} \delta} \nabla^{2} \delta(\mathbf{x})+\epsilon(\mathbf{x})+\frac{b_{2}}{2} \delta^{2}(\mathbf{x})+b_{\mathcal{G}_{2}} \mathcal{G}_{2}(\mathbf{x})+\epsilon_{\delta}(\mathbf{x}) \delta(\mathbf{x}) \\
& +\frac{b_{3}}{6} \delta^{3}(\mathbf{x})+b_{\mathcal{G}_{3}} \mathcal{G}_{3}(\mathbf{x})+b_{\left(\mathcal{G}_{2} \delta\right)} \mathcal{G}_{2}(\mathbf{x}) \delta(\mathbf{x})+b_{\Gamma_{3}} \Gamma_{3}(\mathbf{x})+\epsilon_{\delta^{2}}(\mathbf{x}) \delta^{2}(\mathbf{x})+\epsilon_{\mathcal{G}_{2}}(\mathbf{x}) \mathcal{G}_{2}(\mathbf{x}) \\
P_{h}^{G}(k) & =b_{1}^{2}\left[P_{0}(k)+P_{m}^{1-\text { loop }}(k)\right]+b_{1} b_{2} \mathcal{I}_{\delta^{2}}(k)+2 b_{1} b_{\mathcal{G}_{2}} \mathcal{I}_{\mathcal{G}_{2}}(k) \\
& +\frac{1}{4} b_{2}^{2} \mathcal{I}_{\delta^{2} \delta^{2}}(k)+b_{\mathcal{G}_{2}}^{2} \mathcal{I}_{\mathcal{G}_{2} \mathcal{G}_{2}}(k)+b_{2} b_{\mathcal{G}_{2}} \mathcal{I}_{\delta^{2} \mathcal{G}_{2}}(k)+2 b_{1}\left(b_{\mathcal{G}_{2}}+\frac{2}{5} b_{\Gamma_{3}}\right) \mathcal{F}_{\mathcal{G}_{2}}(k) .
\end{aligned}
$$

A glimpse ... in real space

The galaxy power spectrum in Perturbation Theory

Test of 1-loop power spectrum in EFTofLSS HOD galaxies (CMASS, LOWZ)

$$
P_{\ell}(k)=P_{\ell}^{\mathrm{tree}}(k)+P_{\ell}^{\mathrm{loop}}(k)+P_{\ell}^{\mathrm{ctr}}(k)
$$ $566 \mathrm{Gpc}^{3} h^{-3} \sim 100$ times BOSS

best fit @kmax=0.12 h/Mpc, z=0.61

Nishimichi et al. (2020)

3 bias parameters 3 counterterms

+ cosmological
parameters

Too many free parameters?

Non-Gaussianity

What can we do about it?

(An incomplete list)

The galaxy bispectrum: $\left\langle\delta\left(\mathbf{k}_{1}\right) \delta\left(\mathbf{k}_{2}\right) \delta\left(\mathbf{k}_{3}\right)\right\rangle=\delta_{D}\left(\mathbf{k}_{1}+\mathbf{k}_{2}+\mathbf{k}_{3}\right) B\left(k_{1}, k_{2}, k_{3}\right)$

Non-Gaussianity

The power spectrum cannot distinguish a cosmological simulation from a (properly designed) random walk

ES \& Scoccimarro (2005)

Outlook

Perturbation Theory model
Anisotropies
Window convolution

Covariance
State-of-the-art: recent BOSS analyses
Beyond Λ CDM
Euclid

Signal-to-noise

Bispectrum S / N is

 comparable to the power spectrumbut the signal is distributed over a large number of triangular configurations

To extract enough information we must get to small scales!

$$
\begin{aligned}
& \left(\frac{S}{N}\right)_{P}^{2}=\sum_{k}^{k_{\max }} \frac{P^{2}(k)}{\Delta P^{2}(k)} \\
& \left(\frac{S}{N}\right)_{B}^{2}=\sum_{\text {triangles }}^{k_{\max }} \frac{B^{2}\left(k_{1}, k_{2}, k_{3}\right)}{\Delta B^{2}\left(k_{1}, k_{2}, k_{3}\right)}
\end{aligned}
$$

The matter bispectrum

A non-zero bispectrum is a consequence of nonlinear evolution

$$
\begin{aligned}
& \langle\delta \delta \delta\rangle=\underset{\substack{\text { o ofor Gaussian } \\
\text { initial conditions }}}{\left\langle\delta^{(1)} \delta^{(1)} \delta^{(1)}\right\rangle+\left\langle\delta^{(1)} \delta^{(1)} \delta^{(2)}\right\rangle+\ldots} \\
& B_{G}^{\text {tree }}\left(k_{1}, k_{2}, k_{3}\right)=2 F_{2}\left(\vec{k}_{1}, \vec{k}_{2}\right) P_{0}\left(k_{1}\right) P_{0}\left(k_{2}\right)+2 \text { perm. }
\end{aligned}
$$

Fry (1984)

The matter bispectrum

$$
\text { PT: } \quad \delta_{\vec{k}}=\underset{\substack{\text { Linear } \\ \text { solution }}}{\delta_{\vec{k}}^{(1)}}+\underset{\substack{\text { nonlinear } \\ \text { correction }}}{\delta_{\vec{k}}^{(2)}+\ldots}
$$

$$
\delta_{\vec{k}}^{(2)}=\int d^{3} q F_{2}(\vec{k}-\vec{q}, \vec{q}) \delta_{\vec{k}-\vec{q}}^{(1)} \delta_{\vec{q}}^{(1)}
$$

$\begin{aligned} & \text { A non-zero bispectrum } \\ & \text { is a consequence of } \\ & \text { nonlinear evolution }\end{aligned}$$\rightarrow \begin{gathered}\langle\delta \delta \delta\rangle=\begin{array}{c}\left\langle\delta^{(1)} \delta^{(1)} \delta^{(1)}\right\rangle \\ \text { = o for Gaussian } \\ \text { initial conditions }\end{array} \\ \left.B_{G}^{\text {tree }}\left(k_{1}, k_{2}, k_{3}\right)=2 F_{2}\left(\vec{k}_{1}, \vec{k}_{2}\right) P_{0}\left(k_{1}\right) P_{0}\left(k_{2}\right)+2 \text { perm. } \delta^{(1)} \delta^{(2)}\right\rangle+\ldots \text { loop corrections }\end{gathered}$

$$
B_{G}^{\text {tree }}\left(k_{1}, k_{2}, k_{3}\right)=2 F_{2}\left(\vec{k}_{1}, \vec{k}_{2}\right) P_{0}\left(k_{1}\right) P_{0}\left(k_{2}\right)+2 \text { perm. }
$$

Fry (1984); Scoccimarro (1997)

$$
Q\left(k_{1}, k_{2}, k_{3}\right)=\frac{B\left(k_{1}, k_{2}, k_{3}\right)}{P\left(k_{1}\right) P\left(k_{2}\right)+P\left(k_{1}\right) P\left(k_{3}\right)+P\left(k_{2}\right) P\left(k_{3}\right)}
$$

ES, Crocce \& Desjacques (2010)

The matter bispectrum at one-loop

The reach of perturbative models (as a function of survey volume)

Much to gain to go to one-loop ... but numerically demanding!

Tree-level (Fry, 1984)

1-loop SPT
(Scoccimarro, 1997; 1998)
Renormalised PT
(Bernardeau, Crocce \& Scoccimarro, 2008; 2012)

Lagrangian PT

(Matsubara, 2008)

EFTofLSS

EFTofLSS (IR-res)
(Angulo et al., 2015;
Baldauf et al., 2015)
But also more phenomenological models are available:
Scoccimarro \& Couchmann (2001); Gil-Marín et al. (2012)

Alkhanishvili et al. (2019)

Galaxy bias

Non-Gaussianity from nonlinear bias

$$
\delta_{g}(\boldsymbol{k})=b_{1} \delta(\boldsymbol{k})+\underset{\text { quadratic bias, local \& nonlocal }}{\frac{b_{2}}{2} \delta^{2}(\boldsymbol{k})+b_{\mathcal{G}_{2}} \mathcal{G}_{2}(\boldsymbol{k})}
$$

$$
\begin{aligned}
& \left\langle\delta_{g} \delta_{g} \delta_{g}\right\rangle=b_{1}^{3}\langle\delta \delta \delta\rangle+b_{1}^{2} b_{2}\left\langle\delta \delta \delta^{2}\right\rangle+\ldots \\
& B_{g}\left(k_{1}, k_{2}, k_{3}\right)=b_{1}^{3} B_{m}\left(k_{1}, k_{2}, k_{3}\right)+b_{1}^{2} b_{2} P_{L}\left(k_{1}\right) P_{L}\left(k_{2}\right)+ \\
& \quad+2 b_{1}^{2} b_{\mathcal{G}_{2}} S\left(\mathbf{k}_{\mathbf{1}}, \mathbf{k}_{\mathbf{2}}\right) P_{L}\left(k_{1}\right) P_{L}\left(k_{2}\right)+\text { perm. + loop corrections }
\end{aligned}
$$

Galaxy bias

Non-Gaussianity from nonlinear bias

$$
\delta_{g}(\boldsymbol{k})=b_{1} \delta(\boldsymbol{k})+\frac{b_{2}}{2} \delta^{2}(\boldsymbol{k})+b_{\mathcal{G}_{2}} \mathcal{G}_{2}(\boldsymbol{k})
$$

$$
\begin{aligned}
& \left\langle\delta_{g} \delta_{g} \delta_{g}\right\rangle=b_{1}^{3}\langle\delta \delta \delta\rangle+b_{1}^{2} b_{2}\left\langle\delta \delta \delta^{2}\right\rangle+\ldots \\
& B_{g}\left(k_{1}, k_{2}, k_{3}\right)=b_{1}^{3} B_{m}\left(k_{1}, k_{2}, k_{3}\right)+b_{1}^{2} b_{2} P_{L}\left(k_{1}\right) P_{L}\left(k_{2}\right)+ \\
& \quad+2 b_{1}^{2} b_{\mathcal{G}_{2}} S\left(\mathbf{k}_{1}, \mathbf{k}_{\mathbf{2}}\right) P_{L}\left(k_{1}\right) P_{L}\left(k_{2}\right)+\text { perm. + loop corrections }
\end{aligned}
$$

$$
Q_{g}\left(k_{1}, k_{2}, k_{3}\right)=\frac{1}{b_{1}} Q\left(k_{1}, k_{2}, k_{3}\right)+\frac{b_{2}}{b_{1}^{2}}
$$

This allows to break the degeneracy between b_{1} and A_{s} in the power spectrum, as $P_{g}(k) \simeq b_{1}^{2} P_{L}(k) \sim b_{1}^{2} A_{s}$ but also to determine b_{2}

Galaxy bias, nonlocal

Measurements of the galaxy bispectrum in N -body simulations identify a problem in our understanding of galaxy bias:

In a local bias model, the linear b_{1} bias determined from the power spectrum was inconsistent with the one determined from the bispectrum

$$
\begin{aligned}
& P_{g}(k)=b_{1}^{2} P_{L}(k) \\
& B_{g}\left(k_{1}, k_{2}, k_{3}\right)=b_{1}^{3} B_{m}\left(k_{1}, k_{2}, k_{3}\right)+ \\
& \quad+b_{1}^{2} b_{2} P_{L}\left(k_{1}\right) P_{L}\left(k_{2}\right)+\text { perm }
\end{aligned}
$$

Nonlocal bias

Chan et al. (2012), Baldauf et al. (2012)

Galaxy bias \& tree-level bispectrum

P at 1-loop, B tree-level
Halos
test on $1000 h^{-3} \mathrm{Gpc}^{3}$ of cumulative volume

Oddo, Rizzo et al. (2021)

The bispectrum is expected to reduce degeneracies in the power spectrum loop corrections

$$
\begin{gathered}
b_{1}, b_{2}, b_{\mathscr{G}_{2}} \\
\downarrow \\
P_{\ell}(k)=P_{\ell}^{\mathrm{tree}}(k)+P_{\ell}^{\mathrm{loop}}(k)+P_{\ell}^{\mathrm{ctr}}(k)
\end{gathered}
$$

Limited reach on such a large volume: $k_{\max }^{B} \simeq 0.09 h \mathrm{Mpc}^{-1}$

Significant improvement over P, but in real space!

See also Ivanov et al. (2022)

Galaxy bias \& one-loop bispectrum

Test of 1-loop bispectrum
bias model in real space
HOD galaxies (CMASS, LOWZ)
\& halos
$6 \mathrm{Gpc}^{3} h^{-3}$
8 parameters (tree-level B)
15 parameters (one-loop B)

Eggemeier et al. (2021)

One-loop corrections greatly extend the reach of the model and its potential to constrain its parameters
(despite their larger number)
but, again, this is still real space ...

Redshift-space

Galaxy density in redshift space: more nonlinearity

$$
\begin{aligned}
& \delta_{s}(\mathbf{k})=Z_{1}(\mathbf{k}) \delta_{L}(\mathbf{k})+\int d^{3} q Z_{2}(\mathbf{q}, \mathbf{k}-\mathbf{q}) \delta_{L}(\mathbf{q}) \delta_{L}(\mathbf{k}-\mathbf{q})+\ldots \\
& Z_{1}(\mathbf{k})= b_{1}+f \mu^{2}, \\
& Z_{2}\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right)= \frac{b_{2}}{2}+b_{1} F_{2}\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right)+b_{\mathcal{G}_{2}} S\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right)+f \mu_{12}^{2} G_{2}\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right)+ \\
&+\frac{f \mu_{12} k_{12}}{2}\left[\frac{\mu_{1}}{k_{1}} Z_{1}\left(\mathbf{k}_{2}\right)+\frac{\mu_{2}}{k_{2}} Z_{1}\left(\mathbf{k}_{1}\right)\right] \quad \begin{array}{l}
\text { Redshift-space } \\
\text { PT kernels }
\end{array}
\end{aligned}
$$

$$
B_{s}\left(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}\right)=2 Z_{1}\left(\mathbf{k}_{1}\right) Z_{1}\left(\mathbf{k}_{2}\right) Z_{2}\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right) P_{L}\left(k_{1}\right) P_{L}\left(k_{2}\right)+2 \text { perm }
$$

Galaxy bispectrum in redshift space

Redshift-space

Galaxy density in redshift space: more nonlinearity

$$
\begin{aligned}
& \delta_{s}(\mathbf{k})=Z_{1}(\mathbf{k}) \delta_{L}(\mathbf{k})+\int d^{3} q Z_{2}(\mathbf{q}, \mathbf{k}-\mathbf{q}) \delta_{L}(\mathbf{q}) \delta_{L}(\mathbf{k}-\mathbf{q})+\ldots \\
& Z_{1}(\mathbf{k})=b_{1}+f \mu^{2}, \\
& Z_{2}\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right)=\frac{b_{2}}{2}+b_{1} F_{2}\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right)+b_{\mathcal{G}_{2}} S\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right)+f \mu_{12}^{2} G_{2}\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right)+ \\
& +\frac{f \mu_{12} k_{12}}{2}\left[\frac{\mu_{1}}{k_{1}} Z_{1}\left(\mathbf{k}_{2}\right)+\frac{\mu_{2}}{k_{2}} Z_{1}\left(\mathbf{k}_{1}\right)\right] \quad \begin{array}{l}
\text { Redshift-space } \\
\text { PT kernels }
\end{array} \\
& B_{s}\left(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}\right)=B_{s}^{(\text {det })}\left(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}\right)+B_{s}^{(\text {stoch })}\left(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}\right) \\
& B_{s}^{(\mathrm{det})}\left(\mathbf{k}_{1}, \mathbf{k}_{2}, \hat{n}\right)=2 Z_{1}\left(\mathbf{k}_{1}\right) Z_{1}\left(\mathbf{k}_{2}\right) Z_{2}\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right) P_{L}\left(k_{1}\right) P_{L}\left(k_{2}\right)+2 \text { perm. } \\
& B_{s}^{(\text {stoch })}\left(\mathbf{k}_{1}, \mathbf{k}_{2}, \hat{n}\right)=\frac{1}{\bar{n}}\left[\left(1+\alpha_{1}\right) b_{1}+\left(1+\alpha_{3}\right) f \mu^{2}\right] Z_{1}\left(\mathbf{k}_{1}\right) P_{L}\left(k_{1}\right)+2 \text { perm. }+\frac{1+\alpha_{2}}{\bar{n}^{2}}
\end{aligned}
$$

Redshift-space: bispectrum multipoles

$$
B_{s}\left(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}\right)=B_{s}\left(k_{1}, k_{2}, k_{3}, \theta_{1}, \phi_{12}\right)
$$

The orientation of the triangle w.r.t. the line-of-sight now matters

Different choices are possible (see e.g. Hashimoto et al., 2017, Gualdi \& Verde, 2020)

We follow Scoccimarro et al. (1999), with the FFT-based estimator of Scoccimarro (2015).

$B_{s}\left(k_{1}, k_{2}, k_{3}, \theta_{1}, \phi_{12}\right)=\sum_{\ell, m} B_{\ell, m}\left(k_{1}, k_{2}, k_{3}\right) Y_{\ell, m}\left(\theta_{1}, \phi_{12}\right)$
$\mu_{1} \equiv \mu \equiv \cos \theta_{1}$

$$
\mu_{1} \equiv \mu \equiv \cos \theta_{1}
$$

Redshift-space: bispectrum monopole

Test of tree-level bispectrum in redshift space EFTofLSS

BOSS-like HOD

Some (10\%) improvement on amplitude parameters (A_{s}, σ_{8}) on BOSS-like volume

On full volume, $566 h^{-3} \mathrm{Gpc}^{3}$:

$$
\begin{aligned}
& \frac{\sigma_{\mathrm{P}+\mathrm{B}}}{\sigma_{\mathrm{P}}}\left\{\omega_{\mathrm{cdm}}, h, n_{s}, A_{s}, \Omega_{m}, \sigma_{8}\right\} \\
& \quad=\{0.88,0.94,0.86,0.95,0.89,0.96\}, \\
& \frac{\sigma_{\mathrm{P}+\mathrm{B}}}{\sigma_{\mathrm{P}}}\left\{b_{1}, b_{2}, b_{\mathcal{G}_{2}}, P_{\mathrm{shot}}\right\} \\
& \quad=\{0.84,0.18,0.09,0.65\} .
\end{aligned}
$$

Redshift-space: bispectrum monopole \& quadrupole

Test of bispectrum multipoles: halos on $1000 h^{-3} \mathrm{Gpc}^{3}$ of cumulative volume
bias parameters $+f$

Significant (but not surprising)

 improvement on the growth rate:

Rizzo, Moretti,
Pardede et al. (2021)

See also Gualdi \& Verde (2020), Gualdi et al. (2021), D’Amico et al. (2022)

Redshift-space: bispectrum monopole \& quadrupole

Test of the bispectrum model:
B_{0} at 1-loop
B_{2} tree-level
CMASS HOD mocks + window
Significant improvement adding B_{0} at one-loop, much less adding B_{2} tree-level (but very limited number triangles in this case ...)

D'Amico et al. (2022)

Window convolution

The convolution of the bispectrum prediction with the window function is a problem ..

$$
\tilde{B}\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right)=\int \frac{d^{3} p_{1}}{(2 \pi)^{3}} \int \frac{d^{3} p_{2}}{(2 \pi)^{3}} B_{W}\left(\mathbf{k}_{1}-\mathbf{p}_{1}, \mathbf{k}_{2}-\mathbf{p}_{2}\right) B\left(\mathbf{p}_{1}, \mathbf{p}_{2}\right)
$$

Three approaches so far:

- "Tree-level" approximation (Gil-Marín et al., 2015)

$$
\tilde{B} \simeq 2 Z_{1}\left(\mathbf{k}_{1}\right) Z_{1}\left(\mathbf{k}_{2}\right) Z_{2}\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right) \tilde{P}\left(k_{1}\right) \tilde{P}\left(k_{2}\right)+\text { perm } .
$$

- Windowless estimator (Philcox, 2021)
- Exact convolution (Pardede et al., 2022)

Pardede, Rizzo et al. (2022)

Covariance

The bispectrum signal is distributed over a large number of configurations

A robust, numerical estimates of such a large covariance matrix requires a large number of mocks

Covariance

As an alternative, a theoretical covariance should be considered ...

Gaussian covariance of bispectrum multipoles in a box (no window) Rizzo, Moretti, Pardede et al. (2022)

See also Sugiyama et al. (2022)

Or compression methods Gualdi et al. (2018; 2019)

- The model tree-level vs one-loop vs phenomenological
- Anisotropy
monopole vs monopole + quadrupole
- Window function convolution approximated vs exact $v s$ windowless
- Covariance numerical vs theoretical (?)

BOSS

Analysis of BOSS data: Gil-Marin et al. (2017)

- data: monopole (825 triangles, $\Delta k=0.01 h \mathrm{Mpc}^{-1}$)
- model: fit to N-body
+ tree-level bias \& RSD (+AP)
$0.03 h \mathrm{Mpc}^{-1} \leq k \leq 0.18 h \mathrm{Mpc}^{-1}$
$0.03 h \mathrm{Mpc}^{-1} \leq k \leq 0.22 h \mathrm{Mpc}^{-1}$
- window: approximation

$$
\widetilde{B} \simeq Z_{1}\left(\mathbf{k}_{1}\right) Z_{1}\left(\mathbf{k}_{2}\right) Z_{2}\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right) \widetilde{P}\left(k_{1}\right) \widetilde{P}\left(k_{2}\right)
$$

- covariance: numerical (2048 Patchy mocks)
- analysis: template fitting

$$
\left\{b_{1}, b_{2}, A_{\text {noise }}, \sigma_{\mathrm{FoG}}^{P}, \sigma_{\mathrm{FoG}}^{B}, f, \sigma_{8}, \alpha_{\|}, \alpha_{\perp}\right\} .
$$

Significant improvement, up to 50\% (for CMASS) on RSD parameters

Analysis of BOSS data: Philcox \& Ivanov (2022)

- data: monopole (62 triangles, $\Delta k=0.01 h \mathrm{Mpc}^{-1}$, $0.01 \leq k \leq 0.08 h \mathrm{Mpc}^{-1}$)
- model: tree-level
- window: windowless estimator
- covariance: numerical (2048 Patchy mocks)
- analysis: full-shape $3 / 4$ cosmo +13 bias/noise parameters

13\% improvement on σ_{8}

Analysis of BOSS data: D'Amico et al. (2022)

- data: monopole \& quadrupole (150 triangles for $B_{0}, 9$ for B_{2}, $\Delta k=0.02 h \mathrm{Mpc}^{-1}$, $0.02 \leq k \leq 0.21 h \mathrm{Mpc}^{-1}$ for CMASS)
- model: 1-loop for B_{0}, tree-level for B_{2}
- window: approximation
- covariance: numerical (2048 Patchy mocks)
- analysis: full-shape 3 cosmo + 12 bias/noise parameters

Significant improvement (30% for σ_{8}) from one-loop B_{0}, rather than B_{2}

Beyond Λ CDM: Tests with Primordial non-Gaussainity

Test of the power spectrum \& bispectrum model in real space

Eos simulations, $80 h^{-3} \mathrm{Gpc}^{3}$ Halo catalogs

Significant improvement

 (factor of 5) over power spectrum onlyAlso from the reduction of the $f_{\mathrm{NL}}-b_{\phi}$ degeneracy

Moradinezhad et al. (2021)

BOSS analysis beyond Λ CDM: Primordial non-Gaussainity

1. The bispectrum greatly improves constraints on local PNG and ...
2. ... it allows those on single-field inflation models

D'Amico et al. (2022)
Cabass et al. (2022A, 2022B)

Local PNG

Orthogonal PNG

Equilateral PNG

BOSS analysis beyond Λ CDM: Interacting Dark Energy

Extensions to Λ CDM are beginning to be explored ...

Other directions include, for instance, a bispectrum dipole from GR effects See e.g. Clarkson et al. (2019)

Euclid

Fully anisotropic bispectrum: $B_{s}\left(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}\right)$

$$
k_{\max }=0.15 h \mathrm{Mpc}^{-1}
$$

Significant improvement on dark energy equation of state parameter

The Euclid to do list

- The model
tree-level PT vs one-loop PT us phenomenological
we probably need to go beyond tree-level, but loop + AP integrations are challenging
- Anisotropy
monopole vs monopole + quadrupole
we already have multipoles estimators, so ...
- Window function
approximated vs exact $v s$ windowless
it would be very nice to test both exact convolution and windowless
- Covariance
numerical vs theoretical
probably a theoretical approach or a compression method are inevitable
- Alternative estimators

Skew-spectra (Schmittfull et al., 2015; Moradinezhad et al. 2020; ...)
Tri-polar Spherical Harmonic Decomposition (Sugiyama et al., 2017) Modal estimator (Fergusson et al., 2012; Byun et al., 2021) ... and more ...

