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Cosmological constraints from the galaxy power spectrum

Baryonic Acoustic Oscillations

Pg(k) = Ptemplate(k /α)
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with F = α‖/α⊥ (Ballinger, Peacock & Heavens 1996). The multi-
pole power spectrum, including the BAO radial dilation and warp-
ing, can be written as
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accounts for the difference in the cosmic volume

in different cosmologies. The ratio of sound horizons is needed to
compensate for the sound horizons included in the definitions of
the α values. However, since this term degenerates with our free
amplitude parameters, it has no effect on our BAO analysis.

7.3 The isotropic case

We also constrain the angle average BAO dilation scale using
only the monopole power spectrum, which ignores the Alcock–
Paczynski effect by holding the Alcock–Paczynski shape DAH fixed
at the fiducial shape, while spherically averaging the clustering in-
formation (i.e. we are assuming the radial and transverse distance
scales to be same). In that case we cannot separately constrain DA

and H, but only the radial BAO dilation in a spherically averaged
clustering, which is traditionally defined as

DV (z) =
[

(1 + z)2D2
A(z)

cz

H (z)

]1/3

. (48)

Our model for the isotropic (monopole only) analysis is a simplified
version of the model used in the anisotropic case. Since β and B are
degenerate when fitting only the monopole power spectrum before
reconstruction, we remove the (1 + βµ2)2 term. The oscillation

damping term simplifies to $nl ∼
√

($2
‖ + 2$2

⊥)/3, and we remove
the µ dependence in equation (36). We therefore have
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and
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with Psm, lin as given in equation (35). The velocity damping term is
given by
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The effect of the radial dilation of the BAO is included as
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In total, we have 10 free parameters in the isotropic case (BNGC,
BSGC, a0, 1–5, α, $nl, $s).

We expect the constraint on α in the isotropic case to be tighter
than the constraint on α in the anisotropic case, since in the latter, α

Figure 7. The window function and discreteness effects for the lowest
redshift bin in the SGC. The three lines show the raw power spectrum
model (black solid line), the same model including the convolution with the
window function (black dashed line) and including the discreteness effect
of Section 7.4 (red solid line). The SGC in the lowest redshift bin has the
smallest volume and therefore both window function and discreteness effects
are expected to be the largest in this case.

(in equation 43) is marginalized over the warping effect while in the
former analysis it is not. We will consider the anisotropic constraints
as our main result, since the anisotropic analysis depends on fewer
assumptions. We will show constraints on DV from the isotropic
analysis only for comparison.

7.4 Correction for the irregular µ distribution

Because the survey volume is not infinite, the power spectra are
estimated on a finite and discrete k-space grid. Performing FFTs
in a Cartesian lattice makes the angular distribution of the Fourier
modes irregular and causes deviation from the isotropic distribution,
more so at smaller k. As a result, we see small fluctuation-like
deviations in the measured power spectrum multipoles that are not
caught by the window function, as shown in Fig. 7. The effect is
larger for the quadrupole than the monopole since the quadrupole
is more sensitive to an anisotropy of the mode distribution. Given
that the SGC in the lowest redshift bin has the smallest volume,
we expect this effect to be greatest for this case. In this paper, we
include this effect in our power spectrum monopole and quadrupole
model. When calculating multipoles, we weight each µ bin by the
normalized number of modes N(k, µ) counted on a k-space grid that
is same as the grid used to estimate the measured power spectrum.
More details of the correction method are given in B16. This effect,
being apparent only at small k, does not influence the result of our
analysis.

7.5 Fitting preparation

Using the covariance matrix we perform a χ2 minimization to find
the best-fitting parameters. In addition to the scaling of the inverse
covariance matrix of equation (26), we must propagate the error in
the covariance matrix to the error on the estimated parameters; this
is done by scaling the variance for each parameter by (Percival et al.
2014)

M1 =
√

1 + B(nb − np)
1 + A + B(np + 1)

, (54)
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Pg(k, μ) ≃ (b + fμ2)2 PL(k) = ∑
ℓ=0,2,4
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Cosmological constraints from the galaxy power spectrum

This can be contrasted with the previous full-shape studies, which kept the shape
totally fixed.

In principle, the priors on !b, ns, and
P

m⌫ are not necessary for our analysis.
However, given that the BOSS data are not very sensitive to these parameters, we
prefer to fix, or nearly fix them by priors, which are ultimately CMB-motivated.
This is reasonable keeping in mind an eventual combination of BOSS with other
cosmological probes in order to pin down one correct model that would explain all
the observed phenomena in the Universe.
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Figure 1: Left panel : The posterior distribution for the late-Universe parameters
H0,⌦m and �8 obtained with priors on !b from Planck (gray contours) and BBN (blue
contours). For comparison we also show the Planck 2018 posterior (red contours) for
the same model (flat ⇤CDM with massive neutrinos). Right panel : The monopole
(black dots) and quadrupole (blue dots) power spectra moments of the BOSS data for
high-z (upper panel) and low-z (lower panel) north galactic cap (NGC) samples, along
with the best-fit theoretical model curves. The corresponding best-fit theoretical
spectra are plotted in solid black and blue. H0 is quoted in units [km/s/Mpc].

The outcome of our analyses is shown in Fig. 1, where we display the final
triangle plot (left panel) and best-fit spectra for two BOSS data samples with the
biggest volume7 (right panel). The inferred cosmological parameters are given in
Table 1. We have chosen to present the parameters H0, ⌦m and �8 as our main
results because they are more common in the LSS literature and because they are
close to the actual principal components of the BOSS data.

7These are high-z and low-z north galactic cap (NGC) samples.
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Full-shape analysis
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Gravity



The galaxy power spectrum in Perturbation Theory

2.1 Perturbative bias expansion

We start from the perturbative bias expansion in Eulerian space (see, e.g., [111] for a summary).

In the presence of primordial non-Gaussianity, this is comprised of two parts,

�h(x) = �
G

h (x) + �
PNG

h (x), (2.1)

where x is the comoving Eulerian coordinate. We shall omit the explicit time-dependence of

this perturbative expansion for short hand convenience. Here, �
G
h (x) denotes the contributions

arising from the (nonlinear) gravitational evolution for Gaussian initial conditions, whereas

�
PNG

h (x) takes into account the terms induced by primordial non-Gaussianity. Since we are

interested in primordial non-Gaussianity of the local type (hereafter local PNG), we will restrict

�
PNG

h (x) to that particular PNG model.

2.1.1 Gaussian initial conditions

Symmetry considerations determine the perturbative expansion of the halo density field in terms

of the underlying matter distribution. This expansion includes three sets of operators at each

perturbative order [50, 55, 65, 112–119]: (a) a deterministic local expansion where each operator

has exactly two spatial derivatives acting on each occurrence of the gravitational potential �

and velocity potential �v, (b) stochastic contributions, which among others account for the dis-

creteness of the tracers, and the scatter in the deterministic bias relations, (c) higher-derivative

terms modelling departures from locality in galaxy formation.

The halo bias expansion up to third order, thus, takes the form

�
G

h (x) = b1�(x) + br2�r
2
�(x) + ✏(x) +

b2

2
�
2(x) + bG2G2(x) + ✏�(x)�(x)

+
b3

6
�
3(x) + bG3G3(x) + b(G2�)G2(x)�(x) + b�3�3(x) + ✏�2(x)�2(x) + ✏G2(x)G2(x) (2.2)

where G2 and G3 are the second and third order Galileon operators

G2(�) ⌘ (@i@j�)2 � (@2�)2, (2.3)

G3(�) ⌘ �@i@j�@j@k�@k@i� �
1

2
(@2�)3 +

3

2
(@i@j�)2@2� , (2.4)

while �3 is the di↵erence between density and velocity tidal tensors [119],

�3 ⌘ G2(�) � G2(�v). (2.5)

The series expansion Eq. (2.2) includes all the possible operators (up to third order) con-

sistent with rotational symmetry and the equivalence principle. Higher-derivative operators like

br2� have units of length to some integer power. For halos, the characteristic length R is the

“non-locality” scale of halo formation, which is of order the halo Lagrangian radius. These

operators become relevant when kR & 1. The tidal fields, described by the Galileon operators,

only contribute at second and higher order since the contraction of indices requires at least two

powers of density field. The operator �3 cannot be expressed locally in terms of the density and

tidal fields. It is related to the local di↵erence of the tidal and velocity shear and, moreover,

only appears at third and higher orders since, at linear order, the density and velocity potentials

are equal, �(1)

v = �(1).

The specific value of the halo bias parameters depend on various halo properties such

as the mass, assembly history, etc. and they are usually treated as independent parameters.

– 4 –

2.2.1 Gaussian initial conditions

At 1-loop order with Gaussian initial conditions, following the notation of [55], the halo power

spectrum is given by

P
G
h (k) = b

2

1

h
P0(k) + P

1�loop

m (k)
i

+ b1b2I�2(k) + 2b1bG2IG2(k)

+
1

4
b
2

2I�2�2(k) + b
2

G2
IG2G2(k) + b2bG2I�2G2

(k) + 2b1(bG2 +
2

5
b�3)FG2(k). (2.24)

In the first line of Eq. (2.24), P0 is the linear matter power spectrum and P
1�loop
m is the matter

power spectrum up to 1-loop, which in Standard Perturbation Theory (SPT) is given by [48] 1

P
1�loop

m (k) = P
(22)

m (k) + P
(13)

m (k) , (2.25)

with

P
(22)

m (k) = 2

Z

q
[F2(q,k � q)]2 P0(q)P0(|k � q|) , (2.26)

P
(13)

m (k) = 6P0(k)

Z

q
F3(q, �q,k)P0(q) . (2.27)

Here,
R
q ⌘ d

3
q. The symmetrized second-order kernel is given by

F2(q,k � q) =
k
2(7k.q + 3q

2) � 10(k.q)2

14q2|k � q|2
, (2.28)

while the symmetrized third-order kernel is given by

F3(q, �q,k) =
1

|k � q|2


5k

2

63
�

11k.q

54
�

k
2(k.q)2

6q4
+

19(k.q)3

63q4

�
23k

2
k.q

378q2
�

23(k.q)2

378q2
+

(k.q)3

9k2q2

�
. (2.29)

The other loop contributions in Eq. (2.24), all vanishing in the limit k ! 0, are given by:

I�2(k) = 2

Z

q
F2(q,k � q)P0(|k � q|)P0(q), (2.30)

IG2(k) = 2

Z

q
S
2(q,k � q)F2(q,k � q)P0(|k � q|)P0(q), (2.31)

I�2�2(k) = 2

Z

q

⇥
P0(|k � q|)P0(q) � P

2

0 (q)
⇤
, (2.32)

IG2G2(k) = 2

Z

q

⇥
S
2(q,k � q)

⇤2
P0(|k � q|)P0(q), (2.33)

I�2G2
(k) = 2

Z

q
S
2(q,k � q)P0(|k � q|)P0(q), (2.34)

FG2(k) = 4P0(k)

Z

q
S
2(q,k � q)F2(q, �k)P0(q), (2.35)

where the kernel S
2 is the Fourier transform of the Galileon operator and can be written as:

S
2(k1,k2) =

✓
k1.k2

k1k2

◆2

� 1 . (2.36)

1The non-linear kernels appearing in the loop integrals are the symmetrized ones, obtained by summing over

all permutations of the momenta.
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Figure 1: Contributions to the halo power spectrum: the left and right panels show individual terms
in Eqs. (2.24) and (2.37). The dashed (solid) lines represent negative (positive) values. The data
points are the measured power spectrum of halos in mass bin I (see Eq. (3.6)) of Eos simulations with
Gaussian (left) and non-Gaussian (right) initial conditions at redshift z = 1. The values of the model
parameters correspond to the best-fit model in our MCMC analysis of Eos power spectra, fitting up to
kmax = 0.4 h/Mpc (shown in vertical dashed line).

with A(q,k�q) = q.(k�q)/|k�q|
2. Here, Ĩ� arises from the loop correction to the matter power

spectrum induced by PNG [16, 35, 92, 138, 139], while I�, I
PNG

�2 , I
PNG

G2
arise from the second-

order term in the transformation of � from Lagrangian to Eulerian space. Like the Gaussian

case in which F�2 = 0, here F
PNG

�2 = 0 as it is absorbed in the definition of renormalized linear

non-Gaussian bias b�. Note that, in the k ! 0, the following one-loop contributions are non-

vanishing: F
PNG

G2
(which is proportional to P0), M

�1
P13 (which converges to a constant), and

Ĩ� (which converges to a constant for linear-in-fNL term and scales as 1/k
2 for quadratic-in-fNL

term). While the latter appears to enhance the power on large scales, it is never appreciably

large. Therefore, the large-scale behavior of the power spectrum is fully determined by the

tree-level contributions, shown as light grey and plum curves in the right panel of Figure 1.

In the same panel, we also display the other individual loop corrections of Eq. (2.37). Like

their Gaussian counterparts shown in the left panel of Figure 1, we assign the best-fit values

obtained from the same MCMC analysis (i.e. halos from the mass bin I extracted from Eos

simulations with non-Gaussian initial conditions with fNL = 250 (NG250L) at z = 1) to get

insight into their relative amplitude. These remaining loops are, again, small compared to the

tree-level contributions. Finally, notice that the 1-loop contribution P13 (shown in light gray),

which has a negative sign, approximately cancels the tree-level local PNG e↵ect at small scales.

2.2.3 Stochastic contributions

The stochastic terms are uncorrelated with density fluctuations, but they do correlate with one

another and lead to noise power spectra, e.g.

h✏�(k)✏�(�k)i0 = P✏�✏�(k), (2.46)

h✏�(k)✏�(�k)i0 = P✏�✏�(k). (2.47)

where a prime indicates that the momentum conserving factor has been dropped. In addition,

they give rise to loop contributions of the form

– 10 –

A glimpse …  
in real space



The galaxy power spectrum in Perturbation Theory

In Fig. 6 the team shows that the data are well fitted by
the theoretical model with the best-fit parameters, with
−2 logL=dof ¼ 16=ð24 − 6Þ, corresponding to a very
good p-value.8 In the lower panel, different contributions
to the best-fit power spectra are shown to check the
self-consistency of the perturbative expansion. It is apparent
that the one-loop term is safely less than 10%of the linear one
at all k’s. In addition to the one-loop term, an estimate of the
two-loop contribution, i.e., P2

1−loop=Plin, is shown: clearly, at
least for the quadrupole, this estimate is of the order of the
error on the data at the highest k. This is an additional
indication that, for roughly kmax ≳ 0.12 − 0.14 hMpc−1, the
one-loop model will not be an accurate description of the
data, and parameter estimation will suffer from theory
systematics.
After unblinding, the West Coast team submitted addi-

tional results at kmax ¼ 0.14; 0.16; 0.18; 0.20 hMpc−1

because it was subsequently decided that it was interesting
to explore the kmax dependence of the theory-systematic
error. In fact, though this was already analyzed by the team
in both their original papers [28,30], the challenge simu-
lation is different and its volume is larger. At the higher

FIG. 4. Upper panel: comparison of the data for the monopole and the quadrupole (with error bars, albeit they are barely visible) with
the best-fit model (left panel) obtained by the East Coast team. The residuals for the monopole and the quadrupole for the best-fit model
with χ2=dof ¼ 12=ð24 − 9Þ are shown in the right panel. Note that the quadrupole data points are slightly shifted for better visibility.
Lower panel: different contributions to the monopole (left panel) and quadrupole (right panel) power spectra. The data errors and the
two-loop estimate are also displayed. We plot the absolute values; some terms are negative.

TABLE I. Baseline results obtained by the East Coast team for
kmax ¼ 0.12 hMpc−1 at z ¼ 0.61. Only the cosmological param-
eters and b1 are shown. Note that Ωm, lnð1010AsÞ, and σ8 in the
lower disjoint table show the results for the derived parameters.

kmax ¼ 0.12 hMpc−1 Best fit Mean $1σ

ΔA1=2=A1=2 × 102 −0.15 −0.16$ 1.0
Δh=h × 102 −0.55 −0.59$ 0.46
Δωm=ωm × 102 0.2 0.15$ 1.4
Δb1=b1 × 102 0.20 0.22$ 1.2
ΔΩm=Ωm × 102 1.3 1.2$ 0.9
Δ lnð1010AsÞ= lnð1010AsÞ × 102 −0.098 −0.11$ 0.69
Δσ8=σ8 × 102 −0.094 −0.022$ 0.928Notice that the likelihood of this team is not Gaussian.

TAKAHIRO NISHIMICHI et al. PHYS. REV. D 102, 123541 (2020)

123541-12

Nishimichi et al. (2020)

as above as biased tracers of the density and baryonic
fields [20].
Because of what we just discussed, the range over which

different implementations of the EFTofLSS can differ is
extremely limited: one may choose a different basis for the
EFT parameters; they may add an incomplete, and therefore
different, set of higher-order counterterms to partially
include the effect of some higher-order calculation that
was not performed; or they may have different implemen-
tations or approximations for the IR resummation. We list
these differences in detail next.

B. Group-dependent implementation

Although both teams use the same theoretical model,
there are several important methodological differences.
Moreover, the two groups have made very different choices
in the model implementation and numerical algorithms.
This section describes in detail the pipelines used by the
two teams.

1. East Coast team

The East Coast team used only the monopole and the
quadrupole in the analysis. The East Coast team analyzed
the challenge data with and without the hexadecapole
moment and found identical constraints.3 Thus, the East
Coast team refrained from using the hexadecapole moment
in the baseline analysis.
The theoretical model used by the East Coast team for

these two multipoles can be written schematically as

PlðkÞ ¼ Ptree
l ðkÞ þ Ploop

l ðkÞ þ Pctr
l ðkÞ þ P∇4

zδ
l ðkÞ: ð13Þ

The tree-level contribution is given by the Kaiser formula
[43]. The loop corrections are calculated using the standard
one-loop power spectra for dark matter and biased tracers
(see, e.g., [23,69,70] and references therein). The bias
model consists of the following bias operators [17,19,71],

δgðkÞ ¼ b1δðkÞ þ
b2
2
δ2ðkÞ þ bG2

G2ðkÞ; ð14Þ

where the momentum-space representation of the G2

operator is given by

G2ðkÞ ¼
Z

d3p
ð2πÞ3

!
ðp · ðk − pÞÞ2

p2jk − pj2
− 1

"
δðpÞδðk − pÞ: ð15Þ

The one-loop power spectrum has one extra bias operator
multiplied by an additional parameter bΓ3

. However, this
contribution is almost fully degenerate with the counter-
terms and the G2 operator on the scales of interest. Given
this strong degeneracy, the East Coast team set bΓ3

¼ 0 in
the baseline analysis. Running the Markov chain
Monte Carlo (MCMC) chains with and without bΓ3

, it
was checked that this choice does not affect constraints on
cosmological parameters.
The standard one-loop counterterms for the monopole

and the quadrupole are [20]

Pctr
0 ðkÞ¼−2c20k2P11ðkÞ; Pctr

2 ðkÞ¼−
4f
3
c22k

2P11ðkÞ; ð16Þ

where f ¼ d lnDþ=d ln a is the logarithmic growth rate,
Dþ denotes the linear growth factor, and P11ðkÞ is the linear
power spectrum. The purpose of these counterterms is to fix
the UV dependence of the loops and to partly take into
account the effects of the fingers of God [42]. The East
Coast team also added an extra k4 term shared between the
multipoles,

P∇4
zδðk; μÞ ¼ −cðμkfÞ4ðb1 þ fμÞ2P11ðkÞ: ð17Þ

This new counterterm takes into account the next-to-
leading order of the fingers of God. Note that on general
grounds, one also expects the presence of the stochastic
contribution of the form [20,72]

PRSD;stoch ¼ −cϵk2μ2: ð18Þ

This contribution is very degenerate with the counterterm
(17) on the scales of interest for the analysis, and it was not
included in the model by the East Coast team.
The East Coast team implemented IR resummation and

the Alcock-Paczynski effect as explained in detail in
Refs. [73,74]. Importantly, the East Coast team used the
IR-resummation algorithm based on the wiggly smooth
decomposition directly in Fourier space [64,67,75], which
allowed for a significant boost of computational speed. This
scheme is efficient and numerically stable. Moreover, it is
based on solid systematic parametric expansion that guar-
antees that the error is under control at every order of IR
resummation. It was explicitly checked that the residuals
introduced by our procedure are much smaller than the two-
loop contributions which are not included in the model, in
full agreement with theoretical expectations [67,75]. The
labels that indicate IR resummation and the AP effect were
omitted in all equations in this section to avoid clutter.
However, the reader should keep in mind that they are
always included in the model.

3On the scales of interest, the hexadecapole signal is domi-
nated by leakage contributions from the monopole and quadru-
pole. These contributions appear due to discreteness effects, i.e.,
because the monopole and quadrupole are not exactly orthogonal
to the hexadecapole on a finite grid. Even with the gigantic
volume of the challenge simulation and the wide binning, the
hexadecapole moment is dominated by the systematic leakage
from lower multipole moments.
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Because of what we just discussed, the range over which
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one-loop power spectra for dark matter and biased tracers
(see, e.g., [23,69,70] and references therein). The bias
model consists of the following bias operators [17,19,71],
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The one-loop power spectrum has one extra bias operator
multiplied by an additional parameter bΓ3

. However, this
contribution is almost fully degenerate with the counter-
terms and the G2 operator on the scales of interest. Given
this strong degeneracy, the East Coast team set bΓ3

¼ 0 in
the baseline analysis. Running the Markov chain
Monte Carlo (MCMC) chains with and without bΓ3

, it
was checked that this choice does not affect constraints on
cosmological parameters.
The standard one-loop counterterms for the monopole

and the quadrupole are [20]

Pctr
0 ðkÞ¼−2c20k2P11ðkÞ; Pctr

2 ðkÞ¼−
4f
3
c22k

2P11ðkÞ; ð16Þ

where f ¼ d lnDþ=d ln a is the logarithmic growth rate,
Dþ denotes the linear growth factor, and P11ðkÞ is the linear
power spectrum. The purpose of these counterterms is to fix
the UV dependence of the loops and to partly take into
account the effects of the fingers of God [42]. The East
Coast team also added an extra k4 term shared between the
multipoles,

P∇4
zδðk; μÞ ¼ −cðμkfÞ4ðb1 þ fμÞ2P11ðkÞ: ð17Þ

This new counterterm takes into account the next-to-
leading order of the fingers of God. Note that on general
grounds, one also expects the presence of the stochastic
contribution of the form [20,72]

PRSD;stoch ¼ −cϵk2μ2: ð18Þ

This contribution is very degenerate with the counterterm
(17) on the scales of interest for the analysis, and it was not
included in the model by the East Coast team.
The East Coast team implemented IR resummation and

the Alcock-Paczynski effect as explained in detail in
Refs. [73,74]. Importantly, the East Coast team used the
IR-resummation algorithm based on the wiggly smooth
decomposition directly in Fourier space [64,67,75], which
allowed for a significant boost of computational speed. This
scheme is efficient and numerically stable. Moreover, it is
based on solid systematic parametric expansion that guar-
antees that the error is under control at every order of IR
resummation. It was explicitly checked that the residuals
introduced by our procedure are much smaller than the two-
loop contributions which are not included in the model, in
full agreement with theoretical expectations [67,75]. The
labels that indicate IR resummation and the AP effect were
omitted in all equations in this section to avoid clutter.
However, the reader should keep in mind that they are
always included in the model.

3On the scales of interest, the hexadecapole signal is domi-
nated by leakage contributions from the monopole and quadru-
pole. These contributions appear due to discreteness effects, i.e.,
because the monopole and quadrupole are not exactly orthogonal
to the hexadecapole on a finite grid. Even with the gigantic
volume of the challenge simulation and the wide binning, the
hexadecapole moment is dominated by the systematic leakage
from lower multipole moments.
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The galaxy bispectrum:   ⟨δ(k1)δ(k2)δ(k3)⟩ = δD(k1 + k2 + k3) B(k1, k2, k3)
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Non-Gaussianity

bispectrum and trispectrum on configuration of the points
allows to disentangle the relative probabilities of elongated
versus compact shapes (bispectrum) and planar versus
three-dimensional character of large-scale structures
(trispectrum).

That higher-order statistics can help to break degener-
acies otherwise present should be of no surprise, although a
visual example may illustrate the power in this method
more clearly. Figure 1 shows two distributions that clearly
look ‘‘very different’’ to the eye. The left panel shows a
mock galaxy distribution obtained from an HOD fit to the
M<!20 galaxy two-point function in Sloan Digital Sky
Survey (SDSS) [38] assuming a !CDM halo population.
The right panel shows instead a Rayleigh-Lèvy flight [45–
47] with parameters chosen to match the power spectrum
of the previous distribution.1

The left panel in Fig. 2 shows that indeed the power
spectra at all scales are very similar, and thus degenerate.
That this can happen should not be too surprising, after all
the two-point function (or power spectrum) only measures
the average number of neighbors from a given object as a
function of separation, a rather crude statistic. The right
panel in Fig. 2 shows that the two distributions are easily
distinguished by their bispectrum (top) and trispectrum
(bottom) for essentially all configurations of points. The
Rayleigh-Lèvy flight predicts QB " 0:5 and QT ’ 0:75
independent (approximately for QT) of configuration and
scale [46,47].2 It is interesting to note that this model was
proposed in the 70’s in response to the observational results
from the Lick catalog that showed QB, QT being consistent

with constants at small scales; this ruled out the previous
incarnation of the halo model [48,49], where galaxies
populate identical halos with power-law profiles chosen
to match two-point statistics.

This paper is organized as follows. In the next section we
briefly review the bispectrum and trispectrum generated by
gravitational instability at large scales, the effects on it of
galaxy biasing and the estimators of the bispectrum and
trispectrum. In section III we discuss the determination of
bias parameters from galaxy surveys and compare the
signal to noise in higher-order statistics to that in the power
spectrum. Finally, in section IV we show how one can turn
the constraints on bias parameters into constraints on the
mean HOD.

II. THE BISPECTRUM AND TRISPECTRUM

A. Bispectrum and Trispectrum generated by Gravity
at Large Scales

In this paper we will assume the dark matter primordial
fluctuations to be Gaussian. The three-point function and
the connected four-point function observed in galaxy sur-
veys will then be a consequence of gravitational instability
and galaxy biasing. At the scales relevant for this study, we
can work in Eulerian Perturbation Theory (EPT) taking
into account corrections to linear evolution !L of second
order for the bispectrum and up to third-order corrections
for the trispectrum,

h!k1
!k2

i # !D$k12%P$k1%; (1)

h!k1
!k2

!k3
i # !D$k123%B$k1; k2; k3%; (2)

h!k1
!k2

!k3
!k4

ic # !D$k1234%T$k1;k2;k3;k4%; (3)

where h. . .ic implies that only connected terms are included
in the average,

B$k1; k2; k3% " 2F2$k1;k2%P1P2 & cyc:; (4)

FIG. 1. Slices 50 Mpc=h thick of a mock galaxy distribution obtained from an HOD fit in a !CDM model to the Mr <!20 galaxy
two-point function in SDSS (left) and a Rayleigh-Lèvy flight (right). Despite their obvious differences, these two distributions have the
same two-point statistics, the differences seen are entirely due to those in higher-order correlations, see Fig. 2.

1In this model there are three parameters, the number of
‘‘clusters,’’ how many objects (random walks) constitute a
cluster, and a spectral index characterizing the power-law decay
of the distance of each step of the walk, see [46].

2Note that our definition of QT in Eq. (8) is not standard, since
we do not include all possible combinations in the denominator.
Doing that leads to QN " 21!NN!=NN!2 for the N-point case
[47].
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is the bispectrum, and the trispectrum can be split into two
different contributions, T ! Ta " Tb with

Ta ! 4P1P2#P13F2$k1;%k13&F2$k2;k13&
" P14F2$k1;%k14&F2$k2;k14&' " cyc:; (5)

Tb ! #F3$k1;k2;k3& " perm:'P1P2P3 " cyc:; (6)

where Pi ! P$ki&, Pij ! P$jki " kjj&. It is useful to in-
troduce the reduced bispectrum QB and trispectrum QT ,

QB$k1; k2; k3& (
B$k1; k2; k3&

P1P2 " P1P3 " P2P3
; (7)

QT$k1;k2;k3;k4& (
T$k1;k2;k3;k4&
P1P2P3 " cyc:

; (8)

which have the advantage of being almost independent of
scale and cosmological parameters such as !m and !8.

The F2 and F3 kernels describe the second and third-
order solutions in EPT, and can be written in terms of two
fundamental mode-coupling functions,

"$k1;k2& !
k12 ) k1

k21
; (9)

#$k1;k2& !
k212$k1 ) k2&

2k21k
2
2

; (10)

which represent the nonlinearities involved in mass and
momentum conservation, respectively. The relationship
between them and the kernels read,

F2 !
5

7
"$k1;k2& "

2

7
#$k1;k2&

! 5

7
" x

2

!
k1
k2

" k2
k1

"
" 2

7
x2; (11)

where (x ( k̂1 ) k̂2) and

F3 !
7

18
"$k1;k23&F2$k2;k3& "

1

9
#$k1;k23&G2$k2;k3&

" 1

18
G2$k1;k2&#7"$k12;k3& " 2#$k12;k3&'; (12)

where the kernel G2 is obtained from F2 in Eq. (11) by
replacing 5 by 3 and 2 by 4. We thus see that in a sense, the
bispectrum and trispectrum have a rather ‘‘complete’’ in-
formation of large-scale clustering, in principle one could
try to deduce " and # from B and T. We shall explore this
possibility in future work [50].

B. Galaxy Biasing at Large Scales

Since gravity is the only long-range force in the prob-
lem, at large scales we can assume the bias to be local,
therefore when smoothed over large enough scales (com-
pared to dark matter halo sizes) the galaxy number density
contrast and dark matter density contrast are related by [4]

$g ’ b1$" b2
2
$2 " b3

6
$3 (13)

where b1, b2, and b3 are constants, the bias parameters.
The galaxy power spectrum at large scales is then given by
P$g&$k& ’ b21P$k&, while the bispectrum of the galaxy dis-
tribution can be expressed in terms of the dark matter
bispectrum as

FIG. 2 (color online). The distributions in Fig. 1 have the same power spectrum (left) but can be easily distinguished by their
bispectrum and trispectrum (right). Square symbols correspond to the HOD galaxies, triangles to the Rayleigh-Lèvy flight. The
bispectrum (QB) and trispectrum (QT) are for all shapes of triangles and quads (see section II C) in the range 0:04hMpc%1 * k *
0:4hMpc%1, here binned into NT ! 170 and NQ ! 203 configurations, respectively. The variations seen in QB and QT in the HOD
galaxies are due to the dependence of higher-order correlations on the shape of the configuration, a reflection of the filamentary
structure seen in the left panel in Fig. 1.
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Figure  11.  As  in  Fig.  10  but  for  the  bispectrum  models  and  using  !k  =  3  k  F  .  In  the  bottom-left  panel,  systematic  errors  were  added  in  quadrature  to  the  

statistical  errors  of  the  measurements  following  the  ansatz  of  Baldauf  et  al.  (  2015c  ).  

is  the  case  of  the  EFT  bispectrum  for  which  the  reach  turns  out  

to  be  independent  of  the  simulation  volume  and  corresponds  to  

approximately  0  .  17  h  Mpc  −1  .  The  ranking  of  the  models  is  pretty  

much  independent  of  V  ,  with  SPT  al  w  ays  being  the  first  to  break  

down  and  EFT  the  last.  Howev  er,  Re  gPT  does  better  than  RLPT  for  

small  V  while  the  order  is  reversed  for  large  V  .  It  is  also  worth  

noticing  that,  while  RegPT  quite  significantly  extends  the  reach  

of  SPT  for  the  power  spectrum  for  V  "  8  h  −3  Gpc  3  ,  it  gives  much  

smaller  impro  v  ements  for  the  bispectrum.  

The  nominal  range  of  accuracy  of  EFT  al  w  ays  extends  beyond  

k  fit  (indicated  with  horizontal  grey  lines  in  the  figures).  This  is  not  

surprising  because,  when  the  χ2  
m  statistic  suggests  a  good  fit  at  k  fit  ,  our  

definition  of  the  reach  will  automatically  pick  a  larger  wavenumber.  

Essentially,  what  this  means  is  that  the  EFT  fits  at  k  fit  are  good  (or  

even  too  good)  in  terms  of  χ2  
m  .  We  remind  the  reader  that  the  values  

for  k  fit  we  use  are  chosen  in  Section  5.1  based  on  two  criteria:  (i)  

a  v  oiding  that  the  best-fitting  EFT  parameters  run  with  k  fit  and  (ii)  

requiring  consistency  between  the  results  obtained  from  P  and  B  .  

Ho  we  ver,  since  Section  5.1  takes  into  consideration  the  full  MINERVA  

set,  our  selected  values  might  be  considered  ‘conserv  ati  ve’  when  V  

is  reduced  (although  we  believe  we  should  al  w  ays  perform  the  most  

challenging  test  for  the  theory,  i.e.  use  the  largest  possible  volume  

to  test  its  basic  assumptions  like  the  scale-independence  of  the  free  

parameters).  For  comparison,  in  the  top-left  panels  of  Figs  10  and  

11  ,  we  also  show  the  range  of  accuracy  one  would  obtain  by  fitting  

the  EFT  parameters  up  to  k  fit  =  0  .  22  h  Mpc  −1  (yellow  and  green  

dashed  lines).  This  vastly  increases  the  reach  at  small  V  (for  both  

P  and  B  )  but  reduces  it  at  large  V  .  In  particular,  for  large  enough  

volumes,  the  estimated  reach  becomes  smaller  than  k  fit  meaning  that  

it  is  impossible  to  get  a  good  fit  to  the  numerical  data.  

So  far  we  have  concentrated  on  the  median  range  of  accuracy  

of  each  model.  For  this  reason,  in  the  top-right  panels  of  Figs  10  

and  11  ,  we  plot  the  statistical  uncertainty  of  the  estimated  reach  

as  a  function  of  V  .  In  this  case,  we  only  consider  SPT  and  IR-  

resummed  EFT  to  impro  v  e  readability.  The  shaded  areas  indicate  the  

central  68  per  cent  region  5  among  the  200  sets  of  simulations  with  

volume  V  .  It  turns  out  that  the  error  on  the  reach  is  by  no  means  

negligible,  particularly  for  EFT  which  contains  free  parameters.  It  

is  therefore  important  to  take  this  into  account  when  comparing  

studies  based  on  different  simulations.  In  Fig.  12  ,  we  show  how  

the  distribution  of  the  best-fitting  amplitudes  for  the  counterterms  

varies  with  V  .  We  consider  the  IR-resummed  EFT  model  for  the  

bispectrum,  fit  c  0  from  P  and  the  other  counterterms  from  B  ,  and  

5  Obviously,  this  statistic  underestimates  the  actual  scatter  when  V  approaches  

the  total  volume  of  the  MINERVA  simulations  as  the  different  samples  mostly  

o  v  erlap.  
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as above as biased tracers of the density and baryonic
fields [20].
Because of what we just discussed, the range over which

different implementations of the EFTofLSS can differ is
extremely limited: one may choose a different basis for the
EFT parameters; they may add an incomplete, and therefore
different, set of higher-order counterterms to partially
include the effect of some higher-order calculation that
was not performed; or they may have different implemen-
tations or approximations for the IR resummation. We list
these differences in detail next.

B. Group-dependent implementation

Although both teams use the same theoretical model,
there are several important methodological differences.
Moreover, the two groups have made very different choices
in the model implementation and numerical algorithms.
This section describes in detail the pipelines used by the
two teams.

1. East Coast team

The East Coast team used only the monopole and the
quadrupole in the analysis. The East Coast team analyzed
the challenge data with and without the hexadecapole
moment and found identical constraints.3 Thus, the East
Coast team refrained from using the hexadecapole moment
in the baseline analysis.
The theoretical model used by the East Coast team for

these two multipoles can be written schematically as

PlðkÞ ¼ Ptree
l ðkÞ þ Ploop

l ðkÞ þ Pctr
l ðkÞ þ P∇4

zδ
l ðkÞ: ð13Þ

The tree-level contribution is given by the Kaiser formula
[43]. The loop corrections are calculated using the standard
one-loop power spectra for dark matter and biased tracers
(see, e.g., [23,69,70] and references therein). The bias
model consists of the following bias operators [17,19,71],

δgðkÞ ¼ b1δðkÞ þ
b2
2
δ2ðkÞ þ bG2

G2ðkÞ; ð14Þ

where the momentum-space representation of the G2

operator is given by

G2ðkÞ ¼
Z

d3p
ð2πÞ3

!
ðp · ðk − pÞÞ2

p2jk − pj2
− 1

"
δðpÞδðk − pÞ: ð15Þ

The one-loop power spectrum has one extra bias operator
multiplied by an additional parameter bΓ3

. However, this
contribution is almost fully degenerate with the counter-
terms and the G2 operator on the scales of interest. Given
this strong degeneracy, the East Coast team set bΓ3

¼ 0 in
the baseline analysis. Running the Markov chain
Monte Carlo (MCMC) chains with and without bΓ3

, it
was checked that this choice does not affect constraints on
cosmological parameters.
The standard one-loop counterterms for the monopole

and the quadrupole are [20]

Pctr
0 ðkÞ¼−2c20k2P11ðkÞ; Pctr

2 ðkÞ¼−
4f
3
c22k

2P11ðkÞ; ð16Þ

where f ¼ d lnDþ=d ln a is the logarithmic growth rate,
Dþ denotes the linear growth factor, and P11ðkÞ is the linear
power spectrum. The purpose of these counterterms is to fix
the UV dependence of the loops and to partly take into
account the effects of the fingers of God [42]. The East
Coast team also added an extra k4 term shared between the
multipoles,

P∇4
zδðk; μÞ ¼ −cðμkfÞ4ðb1 þ fμÞ2P11ðkÞ: ð17Þ

This new counterterm takes into account the next-to-
leading order of the fingers of God. Note that on general
grounds, one also expects the presence of the stochastic
contribution of the form [20,72]

PRSD;stoch ¼ −cϵk2μ2: ð18Þ

This contribution is very degenerate with the counterterm
(17) on the scales of interest for the analysis, and it was not
included in the model by the East Coast team.
The East Coast team implemented IR resummation and

the Alcock-Paczynski effect as explained in detail in
Refs. [73,74]. Importantly, the East Coast team used the
IR-resummation algorithm based on the wiggly smooth
decomposition directly in Fourier space [64,67,75], which
allowed for a significant boost of computational speed. This
scheme is efficient and numerically stable. Moreover, it is
based on solid systematic parametric expansion that guar-
antees that the error is under control at every order of IR
resummation. It was explicitly checked that the residuals
introduced by our procedure are much smaller than the two-
loop contributions which are not included in the model, in
full agreement with theoretical expectations [67,75]. The
labels that indicate IR resummation and the AP effect were
omitted in all equations in this section to avoid clutter.
However, the reader should keep in mind that they are
always included in the model.

3On the scales of interest, the hexadecapole signal is domi-
nated by leakage contributions from the monopole and quadru-
pole. These contributions appear due to discreteness effects, i.e.,
because the monopole and quadrupole are not exactly orthogonal
to the hexadecapole on a finite grid. Even with the gigantic
volume of the challenge simulation and the wide binning, the
hexadecapole moment is dominated by the systematic leakage
from lower multipole moments.
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Qg(k1, k2, k3) =
1
b1

Q(k1, k2, k3) +
b2

b2
1

The galaxy bispectrum
Determining the bias parameters

A simple assumption: local galaxy bias,

�g (x) = f [�(x)] ⇥ b1�(x) + b2�
2(x)/2

with b1 and b2 constant parameters.

⇤ ⌅�g �g �g ⇧ ⇥ b3
1⌅���⇧ + b2

1b2⌅���2⇧+ ...

⇤ Bg (k1, k2, k3) ⇥ b3
1B(k1, k2, k3) + b2

1b2[P(k1)P(k2) + perm.] + ...

The power spectrum can only measure a
combination of ⇥8 and b1

Pg (k) ⇥ b2
1P(k) ⇤ ⇥g

8 � b1⇥8

For the reduced galaxy bispectrum we have

Qg (k1, k2, k3) =
1

b1
Q(k1, k2, k3) +

b2

b2
1

The dependence on the triangle shape breaks
the degeneracy between galaxy bias and the am-
plitude of dark matter fluctuations

Emiliano Sefusatti Non-Gaussianity in the Large-Scale Structure

This allows to break the degeneracy 
between  and  in the power spectrum, 
as  
but also to determine  

b1 As
Pg(k) ≃ b2

1 PL(k) ∼ b2
1 As

b2

Galaxy bias

Non-Gaussianity 
from nonlinear bias

as above as biased tracers of the density and baryonic
fields [20].
Because of what we just discussed, the range over which

different implementations of the EFTofLSS can differ is
extremely limited: one may choose a different basis for the
EFT parameters; they may add an incomplete, and therefore
different, set of higher-order counterterms to partially
include the effect of some higher-order calculation that
was not performed; or they may have different implemen-
tations or approximations for the IR resummation. We list
these differences in detail next.

B. Group-dependent implementation

Although both teams use the same theoretical model,
there are several important methodological differences.
Moreover, the two groups have made very different choices
in the model implementation and numerical algorithms.
This section describes in detail the pipelines used by the
two teams.

1. East Coast team

The East Coast team used only the monopole and the
quadrupole in the analysis. The East Coast team analyzed
the challenge data with and without the hexadecapole
moment and found identical constraints.3 Thus, the East
Coast team refrained from using the hexadecapole moment
in the baseline analysis.
The theoretical model used by the East Coast team for

these two multipoles can be written schematically as

PlðkÞ ¼ Ptree
l ðkÞ þ Ploop

l ðkÞ þ Pctr
l ðkÞ þ P∇4

zδ
l ðkÞ: ð13Þ

The tree-level contribution is given by the Kaiser formula
[43]. The loop corrections are calculated using the standard
one-loop power spectra for dark matter and biased tracers
(see, e.g., [23,69,70] and references therein). The bias
model consists of the following bias operators [17,19,71],

δgðkÞ ¼ b1δðkÞ þ
b2
2
δ2ðkÞ þ bG2

G2ðkÞ; ð14Þ

where the momentum-space representation of the G2

operator is given by

G2ðkÞ ¼
Z

d3p
ð2πÞ3

!
ðp · ðk − pÞÞ2

p2jk − pj2
− 1

"
δðpÞδðk − pÞ: ð15Þ

The one-loop power spectrum has one extra bias operator
multiplied by an additional parameter bΓ3

. However, this
contribution is almost fully degenerate with the counter-
terms and the G2 operator on the scales of interest. Given
this strong degeneracy, the East Coast team set bΓ3

¼ 0 in
the baseline analysis. Running the Markov chain
Monte Carlo (MCMC) chains with and without bΓ3

, it
was checked that this choice does not affect constraints on
cosmological parameters.
The standard one-loop counterterms for the monopole

and the quadrupole are [20]

Pctr
0 ðkÞ¼−2c20k2P11ðkÞ; Pctr

2 ðkÞ¼−
4f
3
c22k

2P11ðkÞ; ð16Þ

where f ¼ d lnDþ=d ln a is the logarithmic growth rate,
Dþ denotes the linear growth factor, and P11ðkÞ is the linear
power spectrum. The purpose of these counterterms is to fix
the UV dependence of the loops and to partly take into
account the effects of the fingers of God [42]. The East
Coast team also added an extra k4 term shared between the
multipoles,

P∇4
zδðk; μÞ ¼ −cðμkfÞ4ðb1 þ fμÞ2P11ðkÞ: ð17Þ

This new counterterm takes into account the next-to-
leading order of the fingers of God. Note that on general
grounds, one also expects the presence of the stochastic
contribution of the form [20,72]

PRSD;stoch ¼ −cϵk2μ2: ð18Þ

This contribution is very degenerate with the counterterm
(17) on the scales of interest for the analysis, and it was not
included in the model by the East Coast team.
The East Coast team implemented IR resummation and

the Alcock-Paczynski effect as explained in detail in
Refs. [73,74]. Importantly, the East Coast team used the
IR-resummation algorithm based on the wiggly smooth
decomposition directly in Fourier space [64,67,75], which
allowed for a significant boost of computational speed. This
scheme is efficient and numerically stable. Moreover, it is
based on solid systematic parametric expansion that guar-
antees that the error is under control at every order of IR
resummation. It was explicitly checked that the residuals
introduced by our procedure are much smaller than the two-
loop contributions which are not included in the model, in
full agreement with theoretical expectations [67,75]. The
labels that indicate IR resummation and the AP effect were
omitted in all equations in this section to avoid clutter.
However, the reader should keep in mind that they are
always included in the model.

3On the scales of interest, the hexadecapole signal is domi-
nated by leakage contributions from the monopole and quadru-
pole. These contributions appear due to discreteness effects, i.e.,
because the monopole and quadrupole are not exactly orthogonal
to the hexadecapole on a finite grid. Even with the gigantic
volume of the challenge simulation and the wide binning, the
hexadecapole moment is dominated by the systematic leakage
from lower multipole moments.
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two teams.

1. East Coast team

The East Coast team used only the monopole and the
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The tree-level contribution is given by the Kaiser formula
[43]. The loop corrections are calculated using the standard
one-loop power spectra for dark matter and biased tracers
(see, e.g., [23,69,70] and references therein). The bias
model consists of the following bias operators [17,19,71],
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where the momentum-space representation of the G2
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The one-loop power spectrum has one extra bias operator
multiplied by an additional parameter bΓ3

. However, this
contribution is almost fully degenerate with the counter-
terms and the G2 operator on the scales of interest. Given
this strong degeneracy, the East Coast team set bΓ3

¼ 0 in
the baseline analysis. Running the Markov chain
Monte Carlo (MCMC) chains with and without bΓ3

, it
was checked that this choice does not affect constraints on
cosmological parameters.
The standard one-loop counterterms for the monopole

and the quadrupole are [20]

Pctr
0 ðkÞ¼−2c20k2P11ðkÞ; Pctr

2 ðkÞ¼−
4f
3
c22k

2P11ðkÞ; ð16Þ

where f ¼ d lnDþ=d ln a is the logarithmic growth rate,
Dþ denotes the linear growth factor, and P11ðkÞ is the linear
power spectrum. The purpose of these counterterms is to fix
the UV dependence of the loops and to partly take into
account the effects of the fingers of God [42]. The East
Coast team also added an extra k4 term shared between the
multipoles,

P∇4
zδðk; μÞ ¼ −cðμkfÞ4ðb1 þ fμÞ2P11ðkÞ: ð17Þ

This new counterterm takes into account the next-to-
leading order of the fingers of God. Note that on general
grounds, one also expects the presence of the stochastic
contribution of the form [20,72]

PRSD;stoch ¼ −cϵk2μ2: ð18Þ

This contribution is very degenerate with the counterterm
(17) on the scales of interest for the analysis, and it was not
included in the model by the East Coast team.
The East Coast team implemented IR resummation and

the Alcock-Paczynski effect as explained in detail in
Refs. [73,74]. Importantly, the East Coast team used the
IR-resummation algorithm based on the wiggly smooth
decomposition directly in Fourier space [64,67,75], which
allowed for a significant boost of computational speed. This
scheme is efficient and numerically stable. Moreover, it is
based on solid systematic parametric expansion that guar-
antees that the error is under control at every order of IR
resummation. It was explicitly checked that the residuals
introduced by our procedure are much smaller than the two-
loop contributions which are not included in the model, in
full agreement with theoretical expectations [67,75]. The
labels that indicate IR resummation and the AP effect were
omitted in all equations in this section to avoid clutter.
However, the reader should keep in mind that they are
always included in the model.

3On the scales of interest, the hexadecapole signal is domi-
nated by leakage contributions from the monopole and quadru-
pole. These contributions appear due to discreteness effects, i.e.,
because the monopole and quadrupole are not exactly orthogonal
to the hexadecapole on a finite grid. Even with the gigantic
volume of the challenge simulation and the wide binning, the
hexadecapole moment is dominated by the systematic leakage
from lower multipole moments.
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Nonlocal bias 
Chan et al. (2012), Baldauf et al. (2012) 

Galaxy bias, nonlocal

Measurements of the galaxy bispectrum in 
N-body simulations identify a problem in 
our understanding of galaxy bias:

 
In a local bias model, the linear  bias 
determined from the power spectrum was 
inconsistent with the one determined from 
the bispectrum

b1

3478 J. E. Pollack, R. E. Smith and C. Porciani

Figure 5. Evolution of the likelihood contours for the bias parameters b1 and b2, estimated from Bhhh and Qhhh, with scale. The solid lines denote the 68 and
95 per cent confidence intervals, obtained from a full exploration of the likelihood surface around the best-fitting values; the dashed lines denote the same, but
where the jackknife parameter covariance matrix from equation (45) has been used to determine the error contours. The top left-hand, top right-hand, bottom
left-hand and bottom right-hand panels show the results for triangle configurations with k1 = {0.03, 0.04, 0.05, 0.06} h Mpc−1, respectively. The vertical black
lines denote the effective bias parameter bNL,SC

hh , using the same wavemodes as that enter into the bispectrum estimates.

For the case of fitting B, the shot-noise correction is less impor-
tant, as we see that the estimates of b1 for all bispectrum config-
urations with and without shot-noise corrections are consistent to
within the errors, and have b1 ∼ 1.4. However, b2 shows systematic
differences, being more negative if the correction is made, and for
this we find that b2 ∼ −0.25. On the other hand, for the case of
Q, the results clearly show that the shot-noise subtraction has an
important effect on the recovered values for the bias parameters. If
the shot noise is not corrected, then we see that the estimates for b1

increase systematically as we go from triangle configurations with
k1 = 0.03 to 0.06 h Mpc−1, whereas if it is corrected, then we find
b1 ∼ 1.8 and b2 ∼ −0.3 to within the errors. On comparing the
results from B and Q, we see that, whilst the values for b1 disagree
significantly, surprisingly, the values for b2 remain consistent at the
1σ level.

The χ2 function of equation (41) may be interpreted as a Gaus-
sian likelihood if we make the transformation, L({Bhhh}|b1, b2) ∝
exp[−χ2/2]. Once suitably normalized and on assuming a set of
prior probabilities, we may then explore the shape of the confidence
regions in the posterior probability p(b1, b2|{Bhhh}).

Fig. 5 shows the 1σ likelihood confidence contours in the poste-
rior probability for the non-linear bias parameters for the four scales
considered according to our method of analysis described above.
The solid lines denote the size of the confidence regions at the 68
and 95 per cent level (i.e. #χ2 ≈ 2.3, 6.17) when we construct a
correlation matrix from the 40 realizations without regard to the
systematic uncertainty. The dashed lines demonstrate the magni-
tude at which the 68 and 95 per cent confidence regions expand
following our generation of a set of jackknife subsamples to moni-
tor the effect due to the implicit error associated with the estimated
correlation matrix. Hence, we clearly see the relevance of account-
ing for the uncertainty of the correlation matrix when obtaining the
bias parameter constraints. The discrepancy between the resulting
jackknife error ellipses for B and Q is less severe than the likeli-
hood contours obtained from the complete sample where the level
of agreement improves progressing to large scales, yet this might be
due to the fact that the statistical error is more prominent at larger
scales. Interestingly, the overlap of the two likelihood regions at 2σ
for k1=0.03, 0.04 and 0.05 h Mpc−1 occurs with the rectangular re-
gion or strip denoting the effective bias measure, bNL,SC

hh , at 1σ . This
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Figure 17. Triangle plot showing the 1D and 2D marginalized posteriors of the cosmological
parameters inferred through a likelihood analysis of power spectrum (blue) and power spectrum and
bispectrum (red) using the fiducial model. In this plot, we marginalize over all bias and stochastic
parameters in order to highlight the impact that the inclusion of the bispectrum to the analysis has
on the inference of cosmological parameters. For the power spectrum we set kmax,P = 0.30 h Mpc≠1,
while we set kmax,B = 0.09 h Mpc≠1 for the bispectrum. Gray lines show the input values of the
cosmological parameters.

models and the non-linear dynamics simulated by N-body solvers. They also provide strong
evidence that the perturbative bias treatment and the counterterms do not distort the posterior
distribution of the cosmological parameters, at least in real-space. We thus conclude that a
joint likelihood analysis of the power spectrum and the bispectrum should be able to provide
unbiased estimates for the cosmological parameters, including information on the accelerated
expansion of the Universe.

5 Conclusions

We presented a joint likelihood analysis of the real-space halo power spectrum and bispectrum
extracted from 298 N-body simulations covering a total volume of roughly 1000 h≠3 Gpc3.
We compared the data to a perturbative model at one-loop for the power spectrum and
at tree-level for the bispectrum. The model implementation, limited here to real space, is
essentially the same that has been recently applied to the analysis of the BOSS data in [88].
In order to estimate the full non-linear covariance matrix for both observables along with
their cross-covariance, we used measurements from 10 000 mock halo catalogs generated with

– 32 –

Oddo, Rizzo et al. (2021)

P at 1-loop, B tree-level

Halos 
test on  of cumulative volume1000 h−3Gpc3

See also Ivanov et al. (2022)

Limited reach on such a large 
volume:  
 
Significant improvement 
over P, but in real space! 

kB
max ≃ 0.09 hMpc−1

as above as biased tracers of the density and baryonic
fields [20].
Because of what we just discussed, the range over which

different implementations of the EFTofLSS can differ is
extremely limited: one may choose a different basis for the
EFT parameters; they may add an incomplete, and therefore
different, set of higher-order counterterms to partially
include the effect of some higher-order calculation that
was not performed; or they may have different implemen-
tations or approximations for the IR resummation. We list
these differences in detail next.

B. Group-dependent implementation

Although both teams use the same theoretical model,
there are several important methodological differences.
Moreover, the two groups have made very different choices
in the model implementation and numerical algorithms.
This section describes in detail the pipelines used by the
two teams.

1. East Coast team

The East Coast team used only the monopole and the
quadrupole in the analysis. The East Coast team analyzed
the challenge data with and without the hexadecapole
moment and found identical constraints.3 Thus, the East
Coast team refrained from using the hexadecapole moment
in the baseline analysis.
The theoretical model used by the East Coast team for

these two multipoles can be written schematically as

PlðkÞ ¼ Ptree
l ðkÞ þ Ploop

l ðkÞ þ Pctr
l ðkÞ þ P∇4

zδ
l ðkÞ: ð13Þ

The tree-level contribution is given by the Kaiser formula
[43]. The loop corrections are calculated using the standard
one-loop power spectra for dark matter and biased tracers
(see, e.g., [23,69,70] and references therein). The bias
model consists of the following bias operators [17,19,71],

δgðkÞ ¼ b1δðkÞ þ
b2
2
δ2ðkÞ þ bG2

G2ðkÞ; ð14Þ

where the momentum-space representation of the G2

operator is given by

G2ðkÞ ¼
Z

d3p
ð2πÞ3
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ðp · ðk − pÞÞ2

p2jk − pj2
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δðpÞδðk − pÞ: ð15Þ

The one-loop power spectrum has one extra bias operator
multiplied by an additional parameter bΓ3

. However, this
contribution is almost fully degenerate with the counter-
terms and the G2 operator on the scales of interest. Given
this strong degeneracy, the East Coast team set bΓ3

¼ 0 in
the baseline analysis. Running the Markov chain
Monte Carlo (MCMC) chains with and without bΓ3

, it
was checked that this choice does not affect constraints on
cosmological parameters.
The standard one-loop counterterms for the monopole

and the quadrupole are [20]

Pctr
0 ðkÞ¼−2c20k2P11ðkÞ; Pctr

2 ðkÞ¼−
4f
3
c22k

2P11ðkÞ; ð16Þ

where f ¼ d lnDþ=d ln a is the logarithmic growth rate,
Dþ denotes the linear growth factor, and P11ðkÞ is the linear
power spectrum. The purpose of these counterterms is to fix
the UV dependence of the loops and to partly take into
account the effects of the fingers of God [42]. The East
Coast team also added an extra k4 term shared between the
multipoles,

P∇4
zδðk; μÞ ¼ −cðμkfÞ4ðb1 þ fμÞ2P11ðkÞ: ð17Þ

This new counterterm takes into account the next-to-
leading order of the fingers of God. Note that on general
grounds, one also expects the presence of the stochastic
contribution of the form [20,72]

PRSD;stoch ¼ −cϵk2μ2: ð18Þ

This contribution is very degenerate with the counterterm
(17) on the scales of interest for the analysis, and it was not
included in the model by the East Coast team.
The East Coast team implemented IR resummation and

the Alcock-Paczynski effect as explained in detail in
Refs. [73,74]. Importantly, the East Coast team used the
IR-resummation algorithm based on the wiggly smooth
decomposition directly in Fourier space [64,67,75], which
allowed for a significant boost of computational speed. This
scheme is efficient and numerically stable. Moreover, it is
based on solid systematic parametric expansion that guar-
antees that the error is under control at every order of IR
resummation. It was explicitly checked that the residuals
introduced by our procedure are much smaller than the two-
loop contributions which are not included in the model, in
full agreement with theoretical expectations [67,75]. The
labels that indicate IR resummation and the AP effect were
omitted in all equations in this section to avoid clutter.
However, the reader should keep in mind that they are
always included in the model.

3On the scales of interest, the hexadecapole signal is domi-
nated by leakage contributions from the monopole and quadru-
pole. These contributions appear due to discreteness effects, i.e.,
because the monopole and quadrupole are not exactly orthogonal
to the hexadecapole on a finite grid. Even with the gigantic
volume of the challenge simulation and the wide binning, the
hexadecapole moment is dominated by the systematic leakage
from lower multipole moments.
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different modeling configurations for the bispectrum: tree-
level bias terms only (red lines), and the full one-loop
model presented in Sec. II B (blue lines). In both cases we
further consider the same fiducial setup from Sec. IVA
without higher-derivative terms and scale-dependent sto-
chasticity but now also allow separately for either of these
effects, depicted by the dashed and dotted lines. Note that
when including the higher-derivative terms in the bispec-
trum model, we also include the corresponding term in the
power spectrum, although it does not enter with a free
parameter since we have eliminated the stress-tensor

corrections (see Sec. II E). The varying number of fitting
parameters in each of these cases is given by the last two
columns of Table II. For easier visual comparison between
the models we have evaluated k† according to Eq. (55) and
stopped plotting the FOM at that scale, which is indicated
by an arrowhead symbol.

2. Fiducial case

Starting with the fiducial case we observe that ignoring
the bias loop corrections generally diminishes the

FIG. 5. FOB, goodness of fit, and FOM for joint fits of the galaxy or halo power spectrum and bispectrum as a function of the
maximum k mode allowed to participate in the fit. Differently colored lines indicate whether bias loop corrections in the bispectrum
model have been included (blue) or not (red). Solid lines correspond to a bispectrum model that includes neither higher-derivative terms,
nor scale-dependent stochasticity, while dashed lines account for the former and dotted lines for the latter (see Table II for the number of
fitting parameters in these cases and note that the power spectrum model always includes the scale-dependent stochastic term). The
FOM is truncated at the estimated validity scale of the respective model, indicated by an arrowhead symbol. Grey shaded areas depict the
68% and 95% confidence limits.
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Galaxy density in redshift space: more nonlinearity
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Redshift-space

2 Theoretical background

2.1 Model

Given the halo number density contrast �h(x) ⌘ [nh(x) � n̄h]/n̄h defined in terms of the number
density nh(x) and its expectation value n̄ = hnh(x)i, and its Fourier transform1

�h(k) we can define
the halo power spectrum Ph and bispectrum Bh respectively as

h�h(k1)�h(k2)i ⌘ (2⇡)3�D(k12) Ph(k1) (2.3)

h�h(k1)�h(k2)�h(k3)i ⌘ (2⇡)3�D(k123) Bh(k1, k2, k3) , (2.4)

where k12 = k1 +k2, k123 = k1 +k2 +k3, and the Dirac deltas �D result from the assumed statistical
homogeneity and isotropy. For the same reason Ph(k1) is a function of one variable, k1 = |k1| and
Bh(k1, k2, k3) is a function of the three sides of the triangle formed by k1, k2 and k3 and independent
of its orientation.

In redshift-space, peculiar velocities v induce distortions in the galaxy distribution along the
line-of-sight (LOS) n̂. The observed position s will then be related to real position x by

s = x +
v · n̂

a H(a)
n̂ . (2.5)

As a result, clustering properties, and in particular galaxy correlation functions estimated in a given
region of the sky, will depend on the local LOS. Since our focus is to test the modelling of the bispec-
trum based on measurements in simulation boxes with periodic boundary conditions, we will assume
throughout this work the plane-parallel approximation for redshift-space distortions and therefore a
global, constant LOS. The halo bispectrum will then be a function of the wavenumbers defining the
triangular configuration k1, k2 and k3 plus the LOS n̂, that is Bs = Bs(k1,k2, n̂).

Our model for the redshift-space halo bispectrum is the sum of a deterministic and stochastic
contribution, as

Bs(k1,k2,k3) = B
(det)
s (k1,k2,k3) + B

(stoch)
s (k1,k2,k3) , (2.6)

corresponding to the tree-level expression in Perturbation Theory (PT) resulting from the halo density
given, in turn, by the sum of a deterministic and a stochastic component

�s = �
(det)
s + �

(stoch)
s . (2.7)

In Fourier space and up to the relevant order the deterministic contributions are given by

�
(det)
s (k) = Z1(k) �L(k) +

Z
d
3
q1d

3
q2�D(k � q12)Z2(q1,q2) �L(q1) �L(q1) , (2.8)

where �L is the linear matter overdensity and the redshift-space kernels are given in terms of the local
(b1, b2) and tidal (bG2) bias parameters and the linear growth rate f by [24, 26, 27, 39–42]

Z1(k) = b1 + fµ
2
, (2.9)

Z2(k1,k2) =
b2

2
+ b1F2(k1,k2) + bG2S(k1,k2) + fµ

2
12G2(k1,k2) +

+
fµ12k12

2


µ1

k1
Z1(k2) +

µ2

k2
Z1(k1)

�
(2.10)

1We adopt the convention for the Fourier transform

�(k) ⌘
Z

d3x e�ik·x �(x) , (2.1)

with the inverse given by

�(x) ⌘
Z

d3k

(2⇡)3
eik·x �(k) . (2.2)
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with F2 and G2 representing the usual matter density and velocity quadratic kernels and

S(k1,k2) =
⇣
k̂1 · k̂2

⌘2
� 1 (2.11)

while µi ⌘ ki · n̂/ki is the cosine of the angle formed by the wavenumber ki with the LOS, specifically,

µ12 =
k12 · n̂

k12
= �k3 · n̂

k3
= �µ3 , (2.12)

for a closed triangle with k123 = 0. The expansion of eq. (2.8) leads to the tree-level prediction for
the bispectrum

B
(det)
s (k1,k2, n̂) = 2Z1(k1) Z1(k2)Z2(k1,k2)PL(k1)PL(k2) + 2 perm. (2.13)

where PL(k) is the linear matter power spectrum.
The stochastic contribution to �s is given instead, following [42] and their notation, by

�
(stoch)
s (x) = ✏(x) + ✏�(x) �(x) + ✏⌘(x)⌘(x) , (2.14)

where ✏, ✏� and ✏⌘ are stochastic fields uncorrelated to the density perturbations. The composite terms
are limited to those linear in the matter density � and in the l.o.s. derivative of the velocity component
projected on the n̂-axis ⌘ ⌘ @n̂(v · n̂), as these are responsible for the leading order contributions to
the bispectrum. We neglect any higher-derivative operator in the stochastic contribution and we note
that the last term should appear only due to selection e↵ects [42]. In the large k limit, we expect to
recover the Poisson predictions for the power spectrum and bispectrum of the stochastic fields, that
is [43]

h✏(k1)✏(k2)i ! �D(k12)
1

n̄
, (2.15)

h✏(k1)✏(k2)✏(k3)i ! �D(k123)
1

n̄2
, (2.16)

h✏(k1)✏�(k2)i ! �D(k123)
b1

2n̄
, (2.17)

h✏(k1)✏⌘(k2)i ! �D(k123)
1

2n̄
, (2.18)

where the first term only appears in the halo power spectrum, while the last three all contribute to the
halo bispectrum. In principle we can expect independent departures from the Poisson prediction for
all three terms, which in the large-scale limit can be described in terms of three constant parameters2.

The corresponding stochastic contribution to the bispectrum at tree-level will then read

B
(stoch)
s (k1,k2, n̂) =

1

n̄

⇥
(1 + ↵1) b1 + (1 + ↵3) f µ

2
⇤

Z1(k1) PL(k1) + 2 perm. +
1 + ↵2

n̄2
, (2.20)

where the parameters ↵i vanish in the Poisson limit3.
In this work we do not consider any modelling of Finger-of-God e↵ects as we expect them to be

negligible at large scales and for a halo distribution.

2In [23] the authors follow [44] in the modelling of the stochastic contribution assuming

�
(stoch)
s = d1 ✏P + d2 b1 ✏P � + d1 ✏P ⌘ , (2.19)

where the coe�cients d1 and d2 parameterize the corrections to the Poisson prediction represented by field ✏P (for
which the limits (2.15) and (2.16) hold as equalities). The Poisson case is recovered for d1 = 2 d2 = 1. This implies that
h✏✏i = h✏✏⌘i and their corrections to Poisson are therefore described by a single degree of freedom. They also relate h✏✏i
and h✏✏✏i but it does not seem justified. Such relation also appears inconsistent with the expansion above and it does
not seem to be supported by the halo model description of [45].

3The notation for the ↵i parameters is chosen in order to be consistent with Paper I and Paper II, where ↵2 already
appeared as correction to the 1/n̄2 term, while ↵3 was not present.
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2 Theoretical background

2.1 Model

Given the halo number density contrast �h(x) ⌘ [nh(x) � n̄h]/n̄h defined in terms of the number
density nh(x) and its expectation value n̄ = hnh(x)i, and its Fourier transform1

�h(k) we can define
the halo power spectrum Ph and bispectrum Bh respectively as
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where k12 = k1 +k2, k123 = k1 +k2 +k3, and the Dirac deltas �D result from the assumed statistical
homogeneity and isotropy. For the same reason Ph(k1) is a function of one variable, k1 = |k1| and
Bh(k1, k2, k3) is a function of the three sides of the triangle formed by k1, k2 and k3 and independent
of its orientation.

In redshift-space, peculiar velocities v induce distortions in the galaxy distribution along the
line-of-sight (LOS) n̂. The observed position s will then be related to real position x by

s = x +
v · n̂

a H(a)
n̂ . (2.5)

As a result, clustering properties, and in particular galaxy correlation functions estimated in a given
region of the sky, will depend on the local LOS. Since our focus is to test the modelling of the bispec-
trum based on measurements in simulation boxes with periodic boundary conditions, we will assume
throughout this work the plane-parallel approximation for redshift-space distortions and therefore a
global, constant LOS. The halo bispectrum will then be a function of the wavenumbers defining the
triangular configuration k1, k2 and k3 plus the LOS n̂, that is Bs = Bs(k1,k2, n̂).

Our model for the redshift-space halo bispectrum is the sum of a deterministic and stochastic
contribution, as

Bs(k1,k2,k3) = B
(det)
s (k1,k2,k3) + B

(stoch)
s (k1,k2,k3) , (2.6)

corresponding to the tree-level expression in Perturbation Theory (PT) resulting from the halo density
given, in turn, by the sum of a deterministic and a stochastic component

�s = �
(det)
s + �

(stoch)
s . (2.7)

In Fourier space and up to the relevant order the deterministic contributions are given by
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(det)
s (k) = Z1(k) �L(k) +
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q1d

3
q2�D(k � q12)Z2(q1,q2) �L(q1) �L(q1) , (2.8)

where �L is the linear matter overdensity and the redshift-space kernels are given in terms of the local
(b1, b2) and tidal (bG2) bias parameters and the linear growth rate f by [24, 26, 27, 39–42]

Z1(k) = b1 + fµ
2
, (2.9)

Z2(k1,k2) =
b2

2
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2 Theoretical background

2.1 Model

Given the halo number density contrast �h(x) ⌘ [nh(x) � n̄h]/n̄h defined in terms of the number
density nh(x) and its expectation value n̄ = hnh(x)i, and its Fourier transform1

�h(k) we can define
the halo power spectrum Ph and bispectrum Bh respectively as
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homogeneity and isotropy. For the same reason Ph(k1) is a function of one variable, k1 = |k1| and
Bh(k1, k2, k3) is a function of the three sides of the triangle formed by k1, k2 and k3 and independent
of its orientation.

In redshift-space, peculiar velocities v induce distortions in the galaxy distribution along the
line-of-sight (LOS) n̂. The observed position s will then be related to real position x by

s = x +
v · n̂

a H(a)
n̂ . (2.5)

As a result, clustering properties, and in particular galaxy correlation functions estimated in a given
region of the sky, will depend on the local LOS. Since our focus is to test the modelling of the bispec-
trum based on measurements in simulation boxes with periodic boundary conditions, we will assume
throughout this work the plane-parallel approximation for redshift-space distortions and therefore a
global, constant LOS. The halo bispectrum will then be a function of the wavenumbers defining the
triangular configuration k1, k2 and k3 plus the LOS n̂, that is Bs = Bs(k1,k2, n̂).

Our model for the redshift-space halo bispectrum is the sum of a deterministic and stochastic
contribution, as

Bs(k1,k2,k3) = B
(det)
s (k1,k2,k3) + B

(stoch)
s (k1,k2,k3) , (2.6)

corresponding to the tree-level expression in Perturbation Theory (PT) resulting from the halo density
given, in turn, by the sum of a deterministic and a stochastic component
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In Fourier space and up to the relevant order the deterministic contributions are given by
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where �L is the linear matter overdensity and the redshift-space kernels are given in terms of the local
(b1, b2) and tidal (bG2) bias parameters and the linear growth rate f by [24, 26, 27, 39–42]
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with F2 and G2 representing the usual matter density and velocity quadratic kernels and

S(k1,k2) =
⇣
k̂1 · k̂2

⌘2
� 1 (2.11)

while µi ⌘ ki · n̂/ki is the cosine of the angle formed by the wavenumber ki with the LOS, specifically,

µ12 =
k12 · n̂

k12
= �k3 · n̂

k3
= �µ3 , (2.12)

for a closed triangle with k123 = 0. The expansion of eq. (2.8) leads to the tree-level prediction for
the bispectrum

B
(det)
s (k1,k2, n̂) = 2Z1(k1) Z1(k2)Z2(k1,k2)PL(k1)PL(k2) + 2 perm. (2.13)

where PL(k) is the linear matter power spectrum.
The stochastic contribution to �s is given instead, following [42] and their notation, by

�
(stoch)
s (x) = ✏(x) + ✏�(x) �(x) + ✏⌘(x)⌘(x) , (2.14)

where ✏, ✏� and ✏⌘ are stochastic fields uncorrelated to the density perturbations. The composite terms
are limited to those linear in the matter density � and in the l.o.s. derivative of the velocity component
projected on the n̂-axis ⌘ ⌘ @n̂(v · n̂), as these are responsible for the leading order contributions to
the bispectrum. We neglect any higher-derivative operator in the stochastic contribution and we note
that the last term should appear only due to selection e↵ects [42]. In the large k limit, we expect to
recover the Poisson predictions for the power spectrum and bispectrum of the stochastic fields, that
is [43]

h✏(k1)✏(k2)i ! �D(k12)
1

n̄
, (2.15)

h✏(k1)✏(k2)✏(k3)i ! �D(k123)
1

n̄2
, (2.16)

h✏(k1)✏�(k2)i ! �D(k123)
b1

2n̄
, (2.17)

h✏(k1)✏⌘(k2)i ! �D(k123)
1

2n̄
, (2.18)

where the first term only appears in the halo power spectrum, while the last three all contribute to the
halo bispectrum. In principle we can expect independent departures from the Poisson prediction for
all three terms, which in the large-scale limit can be described in terms of three constant parameters2.

The corresponding stochastic contribution to the bispectrum at tree-level will then read

B
(stoch)
s (k1,k2, n̂) =

1

n̄

⇥
(1 + ↵1) b1 + (1 + ↵3) f µ

2
⇤

Z1(k1) PL(k1) + 2 perm. +
1 + ↵2

n̄2
, (2.20)

where the parameters ↵i vanish in the Poisson limit3.
In this work we do not consider any modelling of Finger-of-God e↵ects as we expect them to be

negligible at large scales and for a halo distribution.

2In [23] the authors follow [44] in the modelling of the stochastic contribution assuming

�
(stoch)
s = d1 ✏P + d2 b1 ✏P � + d1 ✏P ⌘ , (2.19)

where the coe�cients d1 and d2 parameterize the corrections to the Poisson prediction represented by field ✏P (for
which the limits (2.15) and (2.16) hold as equalities). The Poisson case is recovered for d1 = 2 d2 = 1. This implies that
h✏✏i = h✏✏⌘i and their corrections to Poisson are therefore described by a single degree of freedom. They also relate h✏✏i
and h✏✏✏i but it does not seem justified. Such relation also appears inconsistent with the expansion above and it does
not seem to be supported by the halo model description of [45].

3The notation for the ↵i parameters is chosen in order to be consistent with Paper I and Paper II, where ↵2 already
appeared as correction to the 1/n̄2 term, while ↵3 was not present.
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where PL(k) is the linear matter power spectrum.
The stochastic contribution to �s is given instead, following [42] and their notation, by

�
(stoch)
s (x) = ✏(x) + ✏�(x) �(x) + ✏⌘(x)⌘(x) , (2.14)

where ✏, ✏� and ✏⌘ are stochastic fields uncorrelated to the density perturbations. The composite terms
are limited to those linear in the matter density � and in the l.o.s. derivative of the velocity component
projected on the n̂-axis ⌘ ⌘ @n̂(v · n̂), as these are responsible for the leading order contributions to
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is [43]

h✏(k1)✏(k2)i ! �D(k12)
1

n̄
, (2.15)

h✏(k1)✏(k2)✏(k3)i ! �D(k123)
1

n̄2
, (2.16)

h✏(k1)✏�(k2)i ! �D(k123)
b1

2n̄
, (2.17)

h✏(k1)✏⌘(k2)i ! �D(k123)
1

2n̄
, (2.18)

where the first term only appears in the halo power spectrum, while the last three all contribute to the
halo bispectrum. In principle we can expect independent departures from the Poisson prediction for
all three terms, which in the large-scale limit can be described in terms of three constant parameters2.

The corresponding stochastic contribution to the bispectrum at tree-level will then read

B
(stoch)
s (k1,k2, n̂) =

1

n̄

⇥
(1 + ↵1) b1 + (1 + ↵3) f µ

2
⇤

Z1(k1) PL(k1) + 2 perm. +
1 + ↵2

n̄2
, (2.20)

where the parameters ↵i vanish in the Poisson limit3.
In this work we do not consider any modelling of Finger-of-God e↵ects as we expect them to be

negligible at large scales and for a halo distribution.

2In [23] the authors follow [44] in the modelling of the stochastic contribution assuming

�
(stoch)
s = d1 ✏P + d2 b1 ✏P � + d1 ✏P ⌘ , (2.19)

where the coe�cients d1 and d2 parameterize the corrections to the Poisson prediction represented by field ✏P (for
which the limits (2.15) and (2.16) hold as equalities). The Poisson case is recovered for d1 = 2 d2 = 1. This implies that
h✏✏i = h✏✏⌘i and their corrections to Poisson are therefore described by a single degree of freedom. They also relate h✏✏i
and h✏✏✏i but it does not seem justified. Such relation also appears inconsistent with the expansion above and it does
not seem to be supported by the halo model description of [45].

3The notation for the ↵i parameters is chosen in order to be consistent with Paper I and Paper II, where ↵2 already
appeared as correction to the 1/n̄2 term, while ↵3 was not present.
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2 Theoretical background

2.1 Model

Given the halo number density contrast �h(x) ⌘ [nh(x) � n̄h]/n̄h defined in terms of the number
density nh(x) and its expectation value n̄ = hnh(x)i, and its Fourier transform1

�h(k) we can define
the halo power spectrum Ph and bispectrum Bh respectively as

h�h(k1)�h(k2)i ⌘ (2⇡)3�D(k12) Ph(k1) (2.3)

h�h(k1)�h(k2)�h(k3)i ⌘ (2⇡)3�D(k123) Bh(k1, k2, k3) , (2.4)

where k12 = k1 +k2, k123 = k1 +k2 +k3, and the Dirac deltas �D result from the assumed statistical
homogeneity and isotropy. For the same reason Ph(k1) is a function of one variable, k1 = |k1| and
Bh(k1, k2, k3) is a function of the three sides of the triangle formed by k1, k2 and k3 and independent
of its orientation.

In redshift-space, peculiar velocities v induce distortions in the galaxy distribution along the
line-of-sight (LOS) n̂. The observed position s will then be related to real position x by

s = x +
v · n̂

a H(a)
n̂ . (2.5)

As a result, clustering properties, and in particular galaxy correlation functions estimated in a given
region of the sky, will depend on the local LOS. Since our focus is to test the modelling of the bispec-
trum based on measurements in simulation boxes with periodic boundary conditions, we will assume
throughout this work the plane-parallel approximation for redshift-space distortions and therefore a
global, constant LOS. The halo bispectrum will then be a function of the wavenumbers defining the
triangular configuration k1, k2 and k3 plus the LOS n̂, that is Bs = Bs(k1,k2, n̂).

Our model for the redshift-space halo bispectrum is the sum of a deterministic and stochastic
contribution, as

Bs(k1,k2,k3) = B
(det)
s (k1,k2,k3) + B

(stoch)
s (k1,k2,k3) , (2.6)

corresponding to the tree-level expression in Perturbation Theory (PT) resulting from the halo density
given, in turn, by the sum of a deterministic and a stochastic component

�s = �
(det)
s + �

(stoch)
s . (2.7)

In Fourier space and up to the relevant order the deterministic contributions are given by

�
(det)
s (k) = Z1(k) �L(k) +

Z
d
3
q1d

3
q2�D(k � q12)Z2(q1,q2) �L(q1) �L(q1) , (2.8)

where �L is the linear matter overdensity and the redshift-space kernels are given in terms of the local
(b1, b2) and tidal (bG2) bias parameters and the linear growth rate f by [24, 26, 27, 39–42]

Z1(k) = b1 + fµ
2
, (2.9)

Z2(k1,k2) =
b2

2
+ b1F2(k1,k2) + bG2S(k1,k2) + fµ

2
12G2(k1,k2) +

+
fµ12k12

2


µ1

k1
Z1(k2) +

µ2

k2
Z1(k1)

�
(2.10)

1We adopt the convention for the Fourier transform

�(k) ⌘
Z

d3x e�ik·x �(x) , (2.1)

with the inverse given by

�(x) ⌘
Z

d3k

(2⇡)3
eik·x �(k) . (2.2)
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Lot’s of fun here! 

Redshift-space  
PT kernels



The orientation of the triangle w.r.t. the 
line-of-sight now matters 
 
Different choices are possible  
(see e.g. Hashimoto et al., 2017,  
Gualdi & Verde, 2020)


We follow Scoccimarro et al. (1999), 
with the FFT-based estimator of 
Scoccimarro (2015).

Bs(k1,k2,k3) = Bs(k1, k2, k3, ✓1,�12)

<latexit sha1_base64="fCoDZRkYMxJ4qLWWEshg4dNs7m4="></latexit>

Bs(k1, k2, k3, ✓1,�12) =
X

`,m

B`,m(k1, k2, k3)Y`,m(✓1,�12)

<latexit sha1_base64="jF0EOAHFocqWttCeULTuFYHgc/s="></latexit>

µ1 ⌘ µ ⌘ cos ✓1
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In this case the covariance is larger, and hence we can use
more aggressive data cuts provided that the bias in
cosmological parameters due to higher order loop correc-
tions is smaller than a fraction of the statistical error. In this
case the power spectrum multipole analysis can be pushed
to kmax ¼ 0.20 hMpc−1, which is noticeably larger than
our baseline PT challenge power spectrum multipole data
cut kmax ¼ 0.14 hMpc−1 [53]. Note that this kmax is lower
than kmax ¼ 0.25 hMpc−1 used in Refs. [48,116] because
here we include the hexadecapole moment, see Ref. [53] for
more detail. Consequently, the transverse power spectrum
moment Q0 is taken in the range 0.2 < k=ðhMpc−1Þ < 0.4
[77]. Unfortunately, we cannot push the bispectrum analy-
sis to kmax ¼ 0.1 hMpc−1 because the relative theory
systematic error on σ8 there is around 3%. This is a
significant fraction of the BOSS statistical error,

σσ8=σ8 ≈ 5%. We have explicitly checked that the recov-
ered value of σ8 is biased by 1σ of the BOSS error when the
bispectrum is taken at kmax ¼ 0.1 hMpc−1. Therefore, we
proceed with the same baseline cut as in the PT challenge
analysis of the previous section, kmax ¼ 0.08 hMpc−1.
We analyze the same PT challenge data but with the

covariance rescaled by a factor 100, which is the difference
between the PT challenge volume and the BOSS survey
volume VBOSS ≃ 6 h−3Gpc3. In this particular analysis, we
also impose the following Gaussian prior on c1,

c1 ∼N ð0; 52Þ; ð5:15Þ

which is motivated by the EFT expectation c1 ¼ Oð1Þ. Our
results are shown in Fig. 7 and in Table II.

FIG. 7. Same as Fig. 5 but with the covariance rescaled by 100 to match the BOSS survey volume.
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Ivanov et al. (2022)

Test of tree-level bispectrum  
in redshift space 

EFTofLSS 
 

BOSS-like HOD 

 
Some (10%) improvement  

on amplitude parameters ( )  
on BOSS-like volume 

On full volume, : 

As, σ8

566 h−3Gpc3
Addition of the bispectrum leads to following improve-

ments on cosmological and nuisance parameters

σPþB

σP
fωcdm; h; ns; As;Ωm; σ8g

¼ f0.88; 0.94; 0.86; 0.95; 0.89; 0.96g;
σPþB

σP
fb1; b2; bG2

; Pshotg

¼ f0.84; 0.18; 0.09; 0.65g: ð5:14Þ

In general, the gain here is more modest compared to what
we have obtained from the real space bispectrum. One
reason for that is the correlation between the additional
FOG counterterm c1 and other parameters. For example,
the degeneracy between c1 and b2; Bshot is quite significant,
which explains why the confidence intervals for these

nuisance parameters are noticeably larger than those of the
real space bispectrum case. Another reason for the rela-
tively small improvement in cosmological parameters is
that the BAO wiggles are more suppressed in redshift
space, cf. Eq. (3.12), and hence there is less available
distance information.
All in all, the upshot of our analysis is that for the full PT

challenge simulation volume the data cut for the tree-level
redshift-space bispectrum model is kmax ¼ 0.08 hMpc−1,
and the addition of the bispectrum likelihood yields ≲10%
improvement on cosmological parameters, but much larger
gains on bias parameters.

D. Forecast for BOSS

It is useful to rerun our analysis for the covariance that
matches the volume of the currently available BOSS data.

FIG. 6. Posterior distributions of cosmological and certain nuisance parameters from MCMC analyses of the redshift space power
spectrum, redshift space bispectrum, and their combination. We use kmax ¼ 0.08 hMpc−1 for the bispectrum here.
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Figure 5. Results for the analysis of the whole 298 Minerva simulations data-set in terms of the full,
seven-parameters model. Left panels: marginalised, 1-� posteriors for each parameter as a function of kmax.
Top-right panels: posterior-averaged, reduced chi-square, h�2

⌫i and the posterior predictive p-value (ppp) as a
function of kmax. The blue, red and green dashed lines in the h�2

⌫i panel represent the 95% confidence limits
for the three combinations of multipoles considered. Bottom-right panel: two-dimensional, marginalised 1-�
contours for kmax = 0.06 h Mpc�1 case (corresponding to the vertical line in the other panels). In all panels,
the B0-only analysis (blue) is compared to the joint B0 +B2 (red) and B0 +B2 +B4 (green). All posteriors are
compared with the results from the joint analysis of the real-space power spectrum and bispectrum derived
in Paper II, whose best-fit values are shown by the gray, dashed lines.

and implicitly assumed in some data analysis [6, 29]. We will therefore consider the two, additional
5-parameters models (both assuming ↵2 = 0):

• ↵3 = ↵1 and ↵2 = 0 (5 parameters);

• ↵3 = �1 and ↵2 = 0 (5 parameters).

The top left panel in figure 6 shows a general comparison between all the models described in
the bullet points above in terms of the di↵erence in their DIC w.r.t. the maximal model with seven
parameters, as a function of the maximum wavenumber kmax, again for the monopole and quadrupole
analysis. Di↵erences larger than 5 are usually considered relevant. The top right panel of the same
figure shows instead the e↵ective number of parameters we are able to constrain from the data also as a
function of kmax. For a value of kmax < 0.05 h Mpc�1, we do not have enough information to determine
even 5 parameters and the �DIC simply favours the simplest models. These are still favoured up to
kmax ⇠ 0.08 h Mpc�1, where the additional degrees of freedom of more complex models are probably
accounting for missing nonlinear corrections. The test does not clearly indicate a preference for the
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Figure 5. Results for the analysis of the whole 298 Minerva simulations data-set in terms of the full,
seven-parameters model. Left panels: marginalised, 1-� posteriors for each parameter as a function of kmax.
Top-right panels: posterior-averaged, reduced chi-square, h�2

⌫i and the posterior predictive p-value (ppp) as a
function of kmax. The blue, red and green dashed lines in the h�2

⌫i panel represent the 95% confidence limits
for the three combinations of multipoles considered. Bottom-right panel: two-dimensional, marginalised 1-�
contours for kmax = 0.06 h Mpc�1 case (corresponding to the vertical line in the other panels). In all panels,
the B0-only analysis (blue) is compared to the joint B0 +B2 (red) and B0 +B2 +B4 (green). All posteriors are
compared with the results from the joint analysis of the real-space power spectrum and bispectrum derived
in Paper II, whose best-fit values are shown by the gray, dashed lines.

and implicitly assumed in some data analysis [6, 29]. We will therefore consider the two, additional
5-parameters models (both assuming ↵2 = 0):

• ↵3 = ↵1 and ↵2 = 0 (5 parameters);

• ↵3 = �1 and ↵2 = 0 (5 parameters).

The top left panel in figure 6 shows a general comparison between all the models described in
the bullet points above in terms of the di↵erence in their DIC w.r.t. the maximal model with seven
parameters, as a function of the maximum wavenumber kmax, again for the monopole and quadrupole
analysis. Di↵erences larger than 5 are usually considered relevant. The top right panel of the same
figure shows instead the e↵ective number of parameters we are able to constrain from the data also as a
function of kmax. For a value of kmax < 0.05 h Mpc�1, we do not have enough information to determine
even 5 parameters and the �DIC simply favours the simplest models. These are still favoured up to
kmax ⇠ 0.08 h Mpc�1, where the additional degrees of freedom of more complex models are probably
accounting for missing nonlinear corrections. The test does not clearly indicate a preference for the
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bias parameters + f 
 
Significant (but not surprising)  
improvement on the growth rate:   

Rizzo, Moretti, 
Pardede et al. (2021)

See also Gualdi & Verde (2020), Gualdi et al. (2021), D’Amico et al. (2022)

Redshift-space: bispectrum monopole & quadrupole

Test of  bispectrum multipoles: halos on  of cumulative volume1000 h−3Gpc3



Test of  the bispectrum model: 
 at 1-loop

 tree-level


 
CMASS HOD mocks + window 
 
Significant improvement 
adding  at one-loop, much 
less adding  tree-level 
(but very limited number triangles 
in this case …)

B0
B2

B0
B2

D’Amico et al. (2022)�X/X ⌦m h �8 !cdm ln(10
10As) S8

N
s
e
r
ie

s P` �0.017± 0.048 0.003+0.022
�0.024 0.047+0.070

�0.086 �0.013+0.063
�0.071 0.035± 0.055 0.038+0.074

�0.092

P` +B0 �0.005± 0.042 0.005±0.019 �0.012± 0.052 0.004+0.052
�0.058 �0.010± 0.040 �0.015± 0.058

P`+B0+B2 �0.010± 0.041 0.006+0.018
�0.021 �0.009± 0.053 0.001± 0.053 �0.007± 0.041 �0.014± 0.059

P
a
t
c
h
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�0.059 0.005±0.028 0.034+0.076
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�0.066 0.022+0.083
�0.10

P` +B0 �0.011+0.044
�0.051 0.004±0.023 �0.011± 0.054 �0.004+0.052

�0.062 �0.006± 0.044 �0.017± 0.058

P`+B0+B2 �0.012± 0.046 0.004±0.024 �0.004± 0.053 �0.006+0.052
�0.059 �0.001± 0.043 �0.011± 0.058

Figure 4: Triangle plots and relative 68%-credible intervals of base cosmological parameters measured from
the Nseries and Patchy simulations analyzed using a covariance with CMASS NGC volume. The grey lines
in the triangle plots represent the simulation truth.

5.3 Tests of additional modeling effects

Our implementation of the IR-resummation and of the window function is approximate, with-
out a control parameter. We therefore check the accuracy of the two implementations in the
following way.

For the window function, the correctness of our approximation has been checked in [120]
for the monopole. In fact, as shown in the second line of tab. 2, the difference between the
bispectrum computed with our approximation, and the one where we apply no window is
within 1/4 of the error bars obtained on all cosmological parameters from the fit to BOSS
data. For the quadrupole, the third line of tab. 2 shows that the difference with applying
no window is about 0.5� on the posterior of ⌦m (while negligible for the other cosmological
parameters). While this might seem too large an effect to tolerate, one should keep in mind
the following. Roughly speaking, the correct window function should consist of applying 3/2

factors of W to the bispectrum (i.e. one for each field). Applying no window therefore is
a radical negligence of all these factors, much worse than the approximation we do (which

20
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volume. Consequently, the theoretical model for the bispectrum B(k1,k2) has be to convolved with
the bispectrum of the window BW (k1,k2) ⌘ W (k1)W (k2)W ⇤(k1 + k2) to obtain

B̃(k1,k2) =

Z
d3p1
(2⇡)3

Z
d3p2
(2⇡)3

BW (k1 � p1,k2 � p2)B(p1,p2) , (1.1)

that is the quantity to be compared with the measurement. A fast evaluation of this type of integral,
for example in terms of mixing matrix relating B to B̃, is required for a likelihood analyses, where
the matrix multiplication has to be done for each point sampled in the parameter space.

In the case of the power spectrum, a formulation that turns the convolution integral into a
series of one-dimensional Hankel transforms has been proposed by [33]. This was later expanded by
[34] to the case of the local plane-parallel estimator of [31, 35, 36] and to include wide-angle and
general-relativistic e↵ects [37–39]. The core technique of this method relies on the FFTLog algorithm
[40], an implementation of the Fast-Fourier Tranform algorithm on logarithmically-spaced points.
The Hankel-transform formulation speeds-up the process considerably, as it amounts to evaluating a
one-dimensional FFT, scaling as N log N for N sample points, instead of the full three-dimensional
FFT. However, the FFTLog algorithm su↵ers from the typical FFT problems such as aliasing and
ringing, which might give spurious e↵ects if not treated carefully. The formulation in terms of a matrix
multiplication, schematically written as P̃`(k) = W``0(k,p)P`0(p) [10, 41, 42] transfers the FFTLog
calculation in the matrix W``0(k,p) that can be pre-computed and tested carefully.

The bispectrum convolution received so far, understandably, less attention. References [43–45]
considered, for a galaxy bispectrum monopole measured according to [31], an approximation that
ignores the e↵ect of the convolution of the nonlinear kernel characterizing the tree-level prediction
for the bispectrum. This approach works quite well on most triangle shapes, except for squeezed
configurations where one side is comparable to the inverse of the characteristic size of the window,
1/R. This could lead to discarding potentially valuable information on large scales, as we can expect,
for instance, in models with local primordial non-Gaussianity [46].

An alternative is to consider an entirely di↵erent estimator. An example is the tri-polar spherical
harmonics (TripoSH) estimator proposed by [47], that uses the tensor product of three spherical
harmonics as a basis for a bispectrum decomposition. This estimator is the natural extension of the
real-space bispectrum estimator for the quantity B`(k1, k2), function of the two wavevectors (k1, k2)
and the multipole index ` characterizing the angle between k1 and k2. This decomposition has been
shown to be computable via two-dimensional Hankel transforms of its three point function multipoles
[48]. However, this estimator requires special care with the truncation for the multipoles expansion
of bispectrum, since in general this decomposition requires an infinite number of multipoles [49].

Another type of estimator recently proposed is the cubic estimator of [50], which bypasses the
need of the window convolution of the theoretical modelling altogether. This estimator falls under
the class of maximum-likelihood estimators [51–54] which, by construction, approach the Cramér-Rao
bound on the information content of a given bandpower. This is certainly a very promising way to
measure the bispectrum, but it still lacks an analytical understanding of why such estimators, even
for the power spectrum, are unbiased in wide field galaxy surveys.

Our approach in this work is to provide a theoretical prediction for the redshift-space bispectrum
multipoles estimator of [31], which is a natural extension of the FFT-based, variable line-of-sight
estimator of the power spectrum estimator [5, 31, 32, 36]. Our goal is to write such a convolution as a
matrix multiplication, with the mixing matrix computable via a multidimensional Hankel transform.

This work is organized as follows. A description of the bispectrum estimator that we adopt is
presented in section 2. The bispectrum-window convolution formulation in terms of Hankel transform
is laid out in section 3. We present the setup of an ideal test in terms of a spherical window in real
space in section 4 while we show the results of the test in section 5. Finally, we present our conclusions
in section 6.

2 Bispectrum multipoles estimator

We consider the definition of the redshift-space bispectrum multipoles introduced by [29] where the
orientation of the triangle formed by the wavenumbers k1, k2, k3, is parameterized in terms of the
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The convolution of the bispectrum prediction with the window function is a problem ..

Three approaches so far:


• “Tree-level” approximation (Gil-Marín et al., 2015) 
         

  

• Windowless estimator (Philcox, 2021) 

• Exact convolution (Pardede et al., 2022)


B̃ ≃ 2Z1(k1)Z1(k2)Z2(k1, k2)P̃(k1)P̃(k2) + perm .
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Figure 4. Ratio of the average of the bispectrum measurements from the 10000 Pinocchio mocks for all
configurations (up to k1  0.09 h/Mpc) to the theoretical prediction of the 2DFFTLog method (top panel)
and the 1DFFTlog approximation (bottom panel). Both predictions are the posterior-averaged bispectrum
hB̃(k1, k2, k3)ipost from the likelihood analysis of the box measurements of the 10000 Pinocchio mocks with
kmax = 0.09hMpc�1 using the same data-set to estimate the covariance. The error bar is the error on the
mean from the mocks. We mark in blue the configurations with the smallest wavenumber k3 > 10kf , in
general showing a better agreement.

determined, in both cases, from the analysis of the mocks bispectrum measured in the box according
to the likelihood of eq’s (4.28) and (4.29).

The prediction for the unconvolved bispectrum is binned using the exact expression of eq. (4.20)
(see also [58]), while the convolved prediction for both 2DFFTLog and 1DFFTLog approximation
adopts the expansion method of eq. (4.26) and eq. (4.27), respectively. We have checked on a lim-
ited subset of configurations that even in the convolved bispectrum case, the di↵erence between the
expansion and the exact binning is below 0.5%, more than an order of magnitude smaller than the
e↵ect of the window.

Figure 4 shows the ratio of the measurements to the convolved model for all configurations up to
kmax = 0.09 h Mpc�1, with the top panel corresponding to the 2DFFTlog approach and the bottom
panel to the 1DFFTlog approximation. The error bars correspond to the error on the mean of ratios of
the 10000 Pinocchio data and the prediction. The 2DFFTLog based method matches the data fairly
well with . 2 � 3% errors and a marginal, residual dependence on shape. The discrepancy becomes
slightly worse on large scales but is still within . 5% error level. Here we observe a scatter among
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Pardede, Rizzo et al. (2022)



The bispectrum signal is distributed over a large number of configurations

1762 H. Gil-Marı́n et al.

Figure 2. Bispectrum data: the top sub-panels display the measured LOWZ- (top panel) and CMASS-DR12 (bottom panel) bispectrum monopole for different
triangular shapes: equilateral triangles (red squares), isosceles triangles (blue circles) and scalene triangles (green triangles), ordered sequentially in k1, k2 and
k3 (see text for details of the ordering), and covering 0.03 ≤ ki [h Mpc−1] ≤ 0.18 for the LOWZ sample and 0.03 ≤ ki [h Mpc−1] ≤ 0.22 for the CMASS
sample. As for the power spectrum, the measurements correspond to a combination of the northern Galactic Cap and SGC, described by equation (8). The
displayed error bars correspond to the dispersion amongst 2048 realizations of the MD-Patchy mocks. The black solid line represents the best-fitting model
using the parameters of Table 3. The middle and the bottom sub-panels show the deviation of the model with respect to the data, as shown in Fig. 1 for the
power spectrum.
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triangular shapes: equilateral triangles (red squares), isosceles triangles (blue circles) and scalene triangles (green triangles), ordered sequentially in k1, k2 and
k3 (see text for details of the ordering), and covering 0.03 ≤ ki [h Mpc−1] ≤ 0.18 for the LOWZ sample and 0.03 ≤ ki [h Mpc−1] ≤ 0.22 for the CMASS
sample. As for the power spectrum, the measurements correspond to a combination of the northern Galactic Cap and SGC, described by equation (8). The
displayed error bars correspond to the dispersion amongst 2048 realizations of the MD-Patchy mocks. The black solid line represents the best-fitting model
using the parameters of Table 3. The middle and the bottom sub-panels show the deviation of the model with respect to the data, as shown in Fig. 1 for the
power spectrum.
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A robust, numerical estimates of such a large covariance matrix  
requires a large number of mocks

Gil-Marin et al. (2017)

Covariance
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Figure 4. Subset of the correlation matrix r`1`2(ti, tj), defined in eq. (4.10) for ` = 0, 2 and 4, restricted to
the first 32 triangular configurations ti. The top-right half is estimated from the full set of 10,000 Pinocchio
mocks, while the bottom-left half is the theoretical prediction in the Gaussian approximation. The bottom
panels compare the predicted (blue) and measured (red) coe�cients r`1`2(ti, ti) with `1 6= `2 as a function of
the selected triangles ti. The two estimates overlap almost exactly.

where NM is the number of mock catalogs used for the numerical estimation of the covariance matrix
(we refer the reader to Paper I for further details). In this expression �

2
↵ represents the chi-square
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As an alternative, a 
theoretical covariance 
should be considered …

Rizzo, Moretti, Pardede et al. (2022)

m
ockstheory

Gaussian covariance of 
bispectrum multipoles


in a box (no window)

Or compression methods 
Gualdi et al. (2018; 2019)

See also Sugiyama et al. (2022)

Covariance



• The model 
tree-level vs one-loop vs phenomenological 

• Anisotropy 
monopole vs monopole + quadrupole 

• Window function convolution 
approximated vs exact vs windowless 

• Covariance 
numerical vs theoretical (?) 


To sum up



BOSS



• data: monopole  
(825 triangles,  

 ) 

• model: fit to N-body  
+ tree-level bias & RSD (+AP) 

• window: approximation


• covariance: numerical  
(2048 Patchy mocks)


• analysis: template fitting


Δk = 0.01h Mpc−1

Bispectrum from the DR12 BOSS galaxies 1763

where the loops go from N0!k to the maximum value considered,
either kNy/2, a truncation scale set by our constraints k1 ≤ k2 ≤
k3 and ki < k1 + k2, or the maximum k-value considered. For the
bispectrum displayed in Fig. 2, the data points have been coloured
according to the type of triangular shape they represent. Equilateral
triangles are displayed by red squares, isosceles by blue circles and
scalene by green triangles.

The power spectrum data cover 0.02 h Mpc−1 ≤ k ≤ 0.18 h Mpc−1

for the LOWZ monopole and 0.04 h Mpc−1 ≤ k ≤ 0.18 h Mpc−1 for
the LOWZ quadrupole, and 0.02 h Mpc−1 ≤ k ≤ 0.22 h Mpc−1 for
the CMASS monopole and 0.04 h Mpc−1 ≤ k ≤ 0.22 h Mpc−1

for the CMASS quadrupole. In Section 7 we will discuss how
we select the maximum k-value used. In a similar way, the bis-
pectrum of Fig. 2 represents triangles whose k-vectors are con-
tained by 0.03 h Mpc−1 ≤ k ≤ 0.18 h Mpc−1 for LOWZ sample and
0.03 h Mpc−1 ≤ k ≤ 0.22 h Mpc−1 for the CMASS sample. In total,
for the LOWZ sample we have 160 bins, whereas for the CMASS
sample we have 707.

The black solid lines in the upper panels of Figs 1 and 2 show
the best-fitting model for the appropriate power spectrum and bis-
pectrum moments. The details about the models are presented in
Section 5; the way the fit has been performed is described in Sec-
tion 6; and the best-fitting parameters are reported in Table 3. The
middle and bottom panels demonstrate how well the best-fitting
theoretical model describes the data. In the middle panel the ratio
between the data points and the model is presented, whereas in the
bottom panel the difference between the data and the model divided
by the diagonal component of the covariance matrix is displayed. In
the bottom panel the 2σ deviation (95.4 per cent confidence level)
is shown in black dashed lines.

5 MO D E L L I N G T H E BI S P E C T RU M

In this section we introduce the model used to describe the power
spectrum and bispectrum measurements presented in Section 4.
The same model has been used in previous works (Gil-Marı́n et al.
2015a, 2016a), so here we only present a brief description. The
model is based on the following four steps: Section 5.1, the galaxy
bias model; Section 5.2, the dark matter clustering and the RSDs
model; Section 5.3, the AP effect; and Section 5.4, the modelling
of the survey window mask.

5.1 The bias model

We assume an Eulerian non-linear and non-local bias model, as pro-
posed by McDonald & Roy (2009) and used in previous analysis
of the power spectrum and bispectrum of BOSS data (Beutler et al.
2014; Gil-Marı́n et al. 2015a, 2016a). The non-local bias model
proposed in McDonald & Roy (2009) depends on four bias param-
eters: the linear bias parameter b1, the non-linear bias parameter b2

and the non-local bias parameters bs2 and b3nl. Here we constrain
the values of the non-local bias parameters by assuming that the
bias model is local in Lagrangian space. This allows us to set the
values of bs2 and b3nl as functions of b1 (Baldauf et al. 2012; Chan,
Scoccimarro & Sheth 2012; Saito et al. 2014), bs2 = −4/7(b1 − 1)
and b3nl = 32/315(b1 − 1), meaning that only two bias parameters
need to be fitted. This approach has been validated by N-body simu-
lations and has been shown to provide consistent results between the
bias parameter obtained from the power spectrum and bispectrum
(see section 5.5.1 and fig. 15 of Gil-Marı́n et al. 2015a for further
details).

5.2 Redshift space distortions

We describe the effects of RSDs on the power spectrum as
in the model presented in Taruya, Nishimichi & Saito (2010)
and Nishimichi & Taruya (2011) [Taruya, Nishimichi & Saito
(TNS) model], which has been used in previous analysis of the
power spectrum multipoles of BOSS data set (Beutler et al. 2014;
Gil-Marı́n et al. 2015a, 2016a). The TNS model provides a descrip-
tion of redshift space quantities in terms of real space quantities:
the density and velocity power spectrum components of the matter
power spectrum. For this work we assume that there is no velocity
bias on the scales of interest, so the dark matter and galaxy velocity
fields are the same. The non-linear real space components used in
this paper are as presented in Gil-Marı́n et al. (2016a). In short,
the non-linear matter quantities are obtained using resummed per-
turbation theory at two-loop level as described in Gil-Marı́n et al.
(2012b) and the necessary linear power spectrum input is computed
using CAMB (Lewis, Challinor & Lasenby 2000), corresponding to
the fiducial cosmological parameters of Section 2.3. The Fingers-of-
God (FoG) is accounted through a one-free-parameter Lorentzian
damping function as described in equation (B.19) of Gil-Marı́n et al.
(2015a), where the free parameter is referred to as σ P

FoG. Although
this factor aims to parametrize the expected non-linear damping
due to the dispersion of satellite galaxies inside the host haloes,
in practice, we treat this parameter as an effective free parameter
that encodes our poor understanding of the non-linear component
of RSD.

Modelling the bispectrum, both in real and in redshift space,
is a more challenging task than modelling the power spectrum.
In this paper we use the same phenomenological model as our
previous analysis of the DR11 BOSS CMASS data. This model
relies on 18 parameters that are calibrated using dark matter N-body
simulations which modify the SPT kernels FSPT

2 and GSPT
2 into an

effective kernels, F eff
2 (Gil-Marı́n et al. 2012a) and Geff

2 (Gil-Marı́n
et al. 2014), and extend the linear behaviour of the predictions of
SPT up to the weakly non-linear regime (for details concerning the
bispectrum model, see section 3.6 and appendix C of Gil-Marı́n
et al. 2015a). As for the power spectrum, we account for FoG in the
bispectrum, through a Lorentzian damping function, as described in
equation (C15) of Gil-Marı́n et al. (2015a), with one free parameter,
σB

FoG, which accounts for the non-linear dispersion of galaxies inside
the host haloes as well as for the poor understanding of the non-
linear components of RSD.

In this paper we describe the amplitude of the shot noise, both
in the power spectrum and in bispectrum, through a free parameter
Anoise, which parametrizes the shot noise deviation with respect to
the Poisson prediction. For the power spectrum this is P noise

0 =
(1 − Anoise)P Poisson

0 and for the bispectrum Bnoise
0 (k1, k2, k3) = (1 −

Anoise)BPoisson
0 (k1, k2, k3), where P Poisson

0 and BPoisson
0 are the Poisson

prediction for the power spectrum and bispectrum.2 For simplicity
we still assume that Anoise does not depend on the scale.

5.3 The Alcock–Paczynski effect

The AP effect (Alcock & Paczynski 1979) leads to observed distor-
tions in the clustering signal about the LOS, resulting from convert-
ing redshifts into distances using a different cosmological model
than the actual one. By measuring this signal in both isotropic

2 For the expression of the Poisson shot noise prediction see equations (A3)
and (A10) of Gil-Marı́n et al. (2015a).
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where the loops go from N0!k to the maximum value considered,
either kNy/2, a truncation scale set by our constraints k1 ≤ k2 ≤
k3 and ki < k1 + k2, or the maximum k-value considered. For the
bispectrum displayed in Fig. 2, the data points have been coloured
according to the type of triangular shape they represent. Equilateral
triangles are displayed by red squares, isosceles by blue circles and
scalene by green triangles.
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Section 5; the way the fit has been performed is described in Sec-
tion 6; and the best-fitting parameters are reported in Table 3. The
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theoretical model describes the data. In the middle panel the ratio
between the data points and the model is presented, whereas in the
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by the diagonal component of the covariance matrix is displayed. In
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the Poisson prediction. For the power spectrum this is P noise

0 =
(1 − Anoise)P Poisson

0 and for the bispectrum Bnoise
0 (k1, k2, k3) = (1 −

Anoise)BPoisson
0 (k1, k2, k3), where P Poisson

0 and BPoisson
0 are the Poisson

prediction for the power spectrum and bispectrum.2 For simplicity
we still assume that Anoise does not depend on the scale.

5.3 The Alcock–Paczynski effect

The AP effect (Alcock & Paczynski 1979) leads to observed distor-
tions in the clustering signal about the LOS, resulting from convert-
ing redshifts into distances using a different cosmological model
than the actual one. By measuring this signal in both isotropic

2 For the expression of the Poisson shot noise prediction see equations (A3)
and (A10) of Gil-Marı́n et al. (2015a).
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constrains on the angular diameter distance parameter,
DA(zeff)/rs(zd) and the Hubble parameter H(zeff)rs(zd); (iv) we per-
form our analysis on both the LOWZ and CMASS samples, and
therefore provide measurements on two redshift bins.

We have analysed the effects of the RSDs in the bispectrum
monopole, in combination with the power spectrum monopole and
quadrupole to constrain on the growth factor times the amplitude
of the linear power spectrum, fσ 8. In order to extract cosmological
information from the galaxy bispectrum measurements in combina-
tion with the power spectrum multipoles we have used a non-local
and non-linear bias model (McDonald & Roy 2009). After imposing
the condition of locality in Lagrangian space only two free param-
eters are left to marginalize over, b1 and b2. The RSD in the bispec-
trum is described through the phenomenological model presented in
(Gil-Marı́n et al. 2014), which has been used in the previous bispec-
trum analysis of DR11. The RSD model depends on the logarithmic
rate of structure growth, f, on two FoG damping parameters, σ P

FoG
and σB

FoG, one for the power spectrum and another for the bispec-
trum, respectively, and on the amplitude of the shot noise relative to
the Poisson prediction. Although f is directly related to the fiducial
cosmological model when GR is assumed as a theory of gravity,
we have kept f free in order to test possible deviations from GR.
In addition to the RSD, we have also included the geometrical AP
effect, through the dilation parameters α‖ and α⊥, which modifies
the wave modes parallel and perpendicular to the LOS, respectively.
These parameters are related to the angular diameter distance and
the Hubble parameter, which we are also able to constrain. In our
analysis we have fixed the shape of the linear power spectrum using
the fiducial cosmology !fid, but we have marginalized over the am-
plitude σ 8. In total, our galaxy redshift space power spectrum and
bispectrum model has nine free parameters we marginalize over,
" = {b1, b2, Anoise, σ

P
FoG, σB

FoG, f , σ8, α‖, α⊥}.
We have computed the full covariance matrix of the power spec-

trum monopole, quadrupole and bispectrum monopole using 2048
realizations of MD-Patchy mocks. We have observed that there is
a strong correlation amongst similar triangle shapes of the bispec-
trum, as well as between the power spectrum monopole and bispec-
trum monopole, for the triangles that share at least one k-vector. The
correlation between the power spectrum quadrupole and bispectrum
monopole has been observed to be consistent with 0.

We have tested possible systematics of our bispectrum model us-
ing the MD-Patchy mocks and dark matter halo N-body simulations.
We have found significant disagreement between the behaviour of
the model when it was applied to the mocks and to N-body, es-
pecially at small scales, where the dark matter halo bispectrum is
in better agreement with the model prediction than the MD-Patchy
mocks. Using these resources we have estimated the truncation scale
to be applied to the data, and as well the systematics of our model
that have been added in quadrature to the statistical errors in the
final measurement from the data.

When analysing the data, we find that for the DR12 LOWZ sam-
ple f(zLOWZ)σ 8(zLOWZ) = 0.460 ± 0.071, DA(zLOWZ)/rs(zd) = 6.74
± 0.22, H (zLOWZ)rs(zd) = (11.75 ± 0.55) 103 km s−1, where zLOWZ

= 0.32. For DR12 CMASS we find f(zCMASS)σ 8(zCMASS) = 0.417
± 0.036, DA(zCMASS)/rs(zd) = 0.33 ± 0.15, H (zCMASS)rs(zd) =
(13.78 ± 0.28) 103 kms−1, where zCMASS = 0.57. All the quoted
error bars include the statistic and systematic error budget, both
added in quadrature. The correlation amongst these parameters has
been also presented in the covariance matrices of equations (26)
and (27), for the LOWZ and CMASS samples, respectively. These
are the main results of this paper and are in general agreement with
previous BOSS DR11 and DR12 measurements.

Adding the bispectrum to the traditional power spectrum mul-
tipole analysis has enabled us to measure f and σ 8 separately for
the CMASS sample, along with their correlation factor. We have
found that when the AP parameters are set to their fiducial value,
f(zCMASS) = 0.649 ± 0.076 and σ 8(zCMASS) = 0.660 ± 0.067, with a
correlation factor of −0.82. When the AP parameters are also varied
we find that f(zCMASS) = 0.58 ± 0.12 and σ 8(zCMASS) = 0.668 ±
0.076 with the correlation matrix given by equation (30).

When we combine the LOWZ and CMASS BOSS data com-
ing from the RSD and BAO analyses of Gil-Marı́n et al. (2016a,b)
along with the results presented in this work we are able to sig-
nificantly improve the constrains on the cosmological parame-
ters: fσ 8(zLOWZ) = 0.427 ± 0.056, H(zLOWZ)rs(zd) = (11.55 ±
0.38)[103 km s−1] and DA(zLOWZ)/rs(zd) = 6.60 ± 0.13 for the
LOWZ sample and fσ 8(zCMASS) = 0.426 ± 0.029, H(zCMASS)rs(zd) =
(14.02 ± 0.22)[103 km s−1] and DA(zCMASS)/rs(zd) = 9.39 ± 0.10
for the CMASS sample.

We have performed a #CDM-GR consistency check using the
fσ 8 along with the AP parameters measured from BOSS data, in
combination with $m0, H0 and σ 80 constrains from CMB using
Planck15 data. We measure the growth index γ = 0.701+0.088

−0.093, us-
ing the power spectrum and bispectrum measured quantities. When
we use the combined BOSS measurements coming from RSD
and BAO analyses along with Planck15 measurements we find
γ = 0.733+0.068

−0.069. We find that this result is in 2.7σ tension with
the predictions from GR, γ GR $ 0.55. This tension could be due
to (i) a statistical fluctuation in the fσ 8 measured values; (ii) an
unaccounted systematic uncertainties in BOSS or Planck15 data;
(iii) an indication of a failure of the #CDM or the GR gravity
model. Future galaxy surveys using more redshift bins and more
accurate data may shed light on this tension revealing the origin of
this discrepancy.

The constraints on f(zeff)σ 8zeff, along with H(zeff)rd(z) and
Da(zeff)rd(zeff), will be useful in a joint analysis with other cos-
mological data sets (in particular CMB data) for setting stringent
constraints on neutrino mass, dark energy, gravity, curvature as well
as a number of neutrino species.
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The non-Gaussian behaviour of the f and σ 8 variables is mitigated
when combining them into fσ 8 as in Fig. 9, where the respec-
tive non-Gaussian behaviours are cancelled, resulting in a Gaussian
distribution.

We present correlation matrices corresponding to the parame-
ters presented in Table 4 and in Fig. 10: f(z), σ 8(z), H(z)rs(zd) (in
103 km s−1 units) and DA(z)/rs(zd), corresponding to the best-fitting
values whose truncation scale is kmax = 0.17 h Mpc−1. We define
the data-vector as

Ddata(zCMASS)=





f (z)

σ8(z)

H (z)rs(zd) [103 km s−1]

DA(z)/rs(zd)




=





0.58140

0.66778

13.377

9.2265





. (29)

The corresponding covariance matrix, which incorporates both the
statistical and systematic contributions, reads as

CCMASS =10−3





13.581 −7.7346 47.333 15.9145

6.01322 −29.7585 −5.7860

264.27 73.165

49.794




.

(30)

In case the H(z)rs(zd) and DA(z)/rs(zd) parameters are set to their
fiducial value (second column of Table 4), the data-vector only
depends on f(z) and σ 8(z),

Ddata(zCMASS) =




f (z)

σ8(z)



 =




0.64893

0.65958



. (31)

The corresponding covariance matrix reads as

CCMASS = 10−3

(
5.3533 −3.9574

4.32659

)
, (32)

where, as before, it incorporates both the statistical and systematic
contributions. As for the case of Section 8.1, the corresponding
likelihood for both cases corresponds to equation (28).

8.3 Comparison with other BOSS cosmological analyses

In this section we compare our measurements with other studies of
RSD based on DR11 and DR12 of the BOSS LOWZ and CMASS
samples. DR11 only contains about 10 per cent fewer galaxies than
the final DR12 data set so significant changes in measurements
from DR11 and DR12 data are driven by changes in the methodol-
ogy rather than statistical errors. We start by comparing the differ-
ences between the present work and the results of Gil-Marı́n et al.
(2016a), based on the power spectrum monopole and quadrupole,
which uses the same measurement technique, DR12 data and model
presented here, but with a higher truncation kmax = 0.24 h Mpc−1.
Fig. 11 compares constraints on fσ 8, Hrs and DA/rs for both the
LOWZ and CMASS samples, and shows good agreement with both
results, with shifts on the best-fitting results that are !1σ for the
CMASS sample and around between 1 and 1.5σ for the LOWZ
sample. On the LOWZ sample, the effect of adding the bispectrum
to the power spectrum monopole and quadrupole analysis (and de-
creasing the kmax truncation scale from kmax = 0.24 h Mpc−1 to
kmax = 0.17 h Mpc−1) is to increase the fσ 8 best-fitting value, along
with the other two AP parameters. On the other hand, on the CMASS
sample, the change in the fσ 8 value is significantly smaller than 1σ .
We note that there is a significant reduction on the error bars for
the CMASS sample, but not for the LOWZ sample. This is caused
by the different values of kmax used for the LOWZ sample, when
the bispectrum is added (kmax = 0.18 h Mpc−1), and when only the
power spectrum is used (kmax = 0.24 h Mpc−1).

Fig. 12 shows the role of the bispectrum in reducing the size of
the error bars of fσ 8 as a function of the truncation scale kmax for
the CMASS sample. In this case the relative error bars have been
extracted from the MCMC-chains of the data for the fσ 8 parameter
and are displayed as a function of the truncation scale, kmax, for
the case where the power spectrum monopole and quadrupole are
used (dashed line), and where the bispectrum is added to these two
statistics (solid line). At large scales we observe that adding the
bispectrum worsens the constrains on fσ 8. This effect is probably
due to noise in the data. As we explore smaller scale cuts, adding
the bispectrum signal produces a reduction on the statistical error
bars for fσ 8 as expected. The effect starts to be important for kmax

≥ 0.19 h Mpc−1, and for kmax = 0.22 h Mpc−1, the gain is a factor
of ∼1.8. This means that if we could model the bispectrum up to

Figure 11. Comparison of the 1σ (solid lines) and 2σ (dashed lines) confidence regions of fσ 8, DA/rs and Hrs, corresponding to the LOWZ and CMASS
samples. The orange contours correspond to the constrains obtained by analysing the power spectrum monopole and quadrupole up to kmax = 0.24 h Mpc−1

for LOWZ and kmax = 0.23 h Mpc−1 for CMASS, using the covariance matrix obtained from the MD-Patchy mocks (Gil-Marı́n et al. 2016a). The turquoise
contours are the 1σ and 2σ confidence levels obtained from the analysis of the power spectrum multipoles in combination with the bispectrum up to kmax =
0.18 h Mpc−1 for the LOWZ sample and kmax = 0.22 h Mpc−1 for the CMASS sample, according to the covariance matrix of equations (26)–(27).
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The non-Gaussian behaviour of the f and σ 8 variables is mitigated
when combining them into fσ 8 as in Fig. 9, where the respec-
tive non-Gaussian behaviours are cancelled, resulting in a Gaussian
distribution.

We present correlation matrices corresponding to the parame-
ters presented in Table 4 and in Fig. 10: f(z), σ 8(z), H(z)rs(zd) (in
103 km s−1 units) and DA(z)/rs(zd), corresponding to the best-fitting
values whose truncation scale is kmax = 0.17 h Mpc−1. We define
the data-vector as

Ddata(zCMASS)=





f (z)

σ8(z)

H (z)rs(zd) [103 km s−1]

DA(z)/rs(zd)




=





0.58140

0.66778

13.377

9.2265





. (29)

The corresponding covariance matrix, which incorporates both the
statistical and systematic contributions, reads as

CCMASS =10−3





13.581 −7.7346 47.333 15.9145

6.01322 −29.7585 −5.7860

264.27 73.165

49.794




.

(30)

In case the H(z)rs(zd) and DA(z)/rs(zd) parameters are set to their
fiducial value (second column of Table 4), the data-vector only
depends on f(z) and σ 8(z),

Ddata(zCMASS) =




f (z)

σ8(z)



 =




0.64893

0.65958



. (31)

The corresponding covariance matrix reads as

CCMASS = 10−3

(
5.3533 −3.9574

4.32659

)
, (32)

where, as before, it incorporates both the statistical and systematic
contributions. As for the case of Section 8.1, the corresponding
likelihood for both cases corresponds to equation (28).

8.3 Comparison with other BOSS cosmological analyses

In this section we compare our measurements with other studies of
RSD based on DR11 and DR12 of the BOSS LOWZ and CMASS
samples. DR11 only contains about 10 per cent fewer galaxies than
the final DR12 data set so significant changes in measurements
from DR11 and DR12 data are driven by changes in the methodol-
ogy rather than statistical errors. We start by comparing the differ-
ences between the present work and the results of Gil-Marı́n et al.
(2016a), based on the power spectrum monopole and quadrupole,
which uses the same measurement technique, DR12 data and model
presented here, but with a higher truncation kmax = 0.24 h Mpc−1.
Fig. 11 compares constraints on fσ 8, Hrs and DA/rs for both the
LOWZ and CMASS samples, and shows good agreement with both
results, with shifts on the best-fitting results that are !1σ for the
CMASS sample and around between 1 and 1.5σ for the LOWZ
sample. On the LOWZ sample, the effect of adding the bispectrum
to the power spectrum monopole and quadrupole analysis (and de-
creasing the kmax truncation scale from kmax = 0.24 h Mpc−1 to
kmax = 0.17 h Mpc−1) is to increase the fσ 8 best-fitting value, along
with the other two AP parameters. On the other hand, on the CMASS
sample, the change in the fσ 8 value is significantly smaller than 1σ .
We note that there is a significant reduction on the error bars for
the CMASS sample, but not for the LOWZ sample. This is caused
by the different values of kmax used for the LOWZ sample, when
the bispectrum is added (kmax = 0.18 h Mpc−1), and when only the
power spectrum is used (kmax = 0.24 h Mpc−1).

Fig. 12 shows the role of the bispectrum in reducing the size of
the error bars of fσ 8 as a function of the truncation scale kmax for
the CMASS sample. In this case the relative error bars have been
extracted from the MCMC-chains of the data for the fσ 8 parameter
and are displayed as a function of the truncation scale, kmax, for
the case where the power spectrum monopole and quadrupole are
used (dashed line), and where the bispectrum is added to these two
statistics (solid line). At large scales we observe that adding the
bispectrum worsens the constrains on fσ 8. This effect is probably
due to noise in the data. As we explore smaller scale cuts, adding
the bispectrum signal produces a reduction on the statistical error
bars for fσ 8 as expected. The effect starts to be important for kmax

≥ 0.19 h Mpc−1, and for kmax = 0.22 h Mpc−1, the gain is a factor
of ∼1.8. This means that if we could model the bispectrum up to

Figure 11. Comparison of the 1σ (solid lines) and 2σ (dashed lines) confidence regions of fσ 8, DA/rs and Hrs, corresponding to the LOWZ and CMASS
samples. The orange contours correspond to the constrains obtained by analysing the power spectrum monopole and quadrupole up to kmax = 0.24 h Mpc−1

for LOWZ and kmax = 0.23 h Mpc−1 for CMASS, using the covariance matrix obtained from the MD-Patchy mocks (Gil-Marı́n et al. 2016a). The turquoise
contours are the 1σ and 2σ confidence levels obtained from the analysis of the power spectrum multipoles in combination with the bispectrum up to kmax =
0.18 h Mpc−1 for the LOWZ sample and kmax = 0.22 h Mpc−1 for the CMASS sample, according to the covariance matrix of equations (26)–(27).
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Significant improvement, up to 50%  
(for CMASS) on RSD parameters


Analysis of BOSS data: Gil-Marin et al. (2017)



• data: monopole  
(62 triangles,  ,  

) 

• model: tree-level


• window: windowless estimator


• covariance: numerical  
(2048 Patchy mocks)


• analysis: full-shape 
3/4 cosmo + 13 bias/noise 
parameters


Δk = 0.01hMpc−1

0.01 ≤ k ≤ 0.08 hMpc−1

13% improvement on σ8choice. Although we do not expect the binning to affect the
power spectrum model, it will modify the noise properties
of the covariance, since it changes the number of data
points for a given number of mocks. A thorough inves-
tigation of this issue goes beyond the scope of this paper.

We may also compare the results of this section with
other recent full-shape analyses that include the Planck
prior on the spectral tilt. In particular, our results are in
good agreement with [20], which analyzed the (corrected)
public BOSS DR12 power spectra using a similar

FIG. 6. As Fig. 5, but with a Planck prior on the spectra slope ns. Our conclusions are broadly consistent with that of the free-ns
analysis, but feature somewhat tighter parameter constraints. The corresponding marginalized posteriors are shown in Table IV.

TABLE IV. As Table III, but including a Planck prior on ns. The corresponding corner plot is given in Fig. 6. We additionally include
the results of a windowed analysis of the public BOSS power spectrum (top line); this is described in Sec. VI B 2 and provides a useful
test of our analysis pipeline.

Dataset ωcdm h lnð1010AsÞ Ωm σ8

PlðkÞ, public 0.1233þ0.0058
−0.0065 0.685þ0.011

−0.013 2.81þ0.12
−0.12 0.312þ0.011

−0.012 0.737þ0.040
−0.044

PlðkÞ 0.1268þ0.0062
−0.0068 0.688þ0.012

−0.013 2.75þ0.12
−0.13 0.317þ0.012

−0.013 0.729þ0.040
−0.045

PlðkÞ þQ0ðkÞ 0.1232þ0.0054
−0.0058 0.686þ0.011

−0.011 2.77þ0.11
−0.12 0.311þ0.010

−0.010 0.722þ0.037
−0.042

PlðkÞ þQ0ðkÞ þ BAO 0.1227þ0.0053
−0.0059 0.6811þ0.0083

−0.0089 2.80þ0.11
−0.12 0.314þ0.010

−0.010 0.729þ0.036
−0.042

PlðkÞ þQ0ðkÞ þ BAOþ B0 0.1262þ0.0053
−0.0059 0.6831þ0.0083

−0.0086 2.741þ0.096
−0.098 0.320þ0.010

−0.010 0.722þ0.032
−0.036
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Analysis of BOSS data: Philcox & Ivanov (2022)



• data: monopole & quadrupole 
(150 triangles for , 9 for ,  

,  
 

for CMASS) 

• model: 1-loop for ,  
tree-level for 


• window: approximation


• covariance: numerical  
(2048 Patchy mocks) 

• analysis: full-shape 
3 cosmo + 12 bias/noise 
parameters


B0 B2
Δk = 0.02 hMpc−1

0.02 ≤ k ≤ 0.21 hMpc−1

B0
B2

Significant improvement (30% for ) 
from one-loop  , rather than 

σ8
B0 B2

Figure 6: Full triangle plots from the analysis of BOSS power spectrum multipoles P` at one loop, bispectrum
monopole B0 at tree level or one loop, and bispectrum quadrupole B2 at tree level.

C Additional parameter posteriors

In fig. 6, we show the full triangle plots obtained fitting BOSS 4 skies P`+B0+B2. In tab. 5,
we show the 68%-credible intervals of b1, c2, and c4 obtained on this same fit.

32

Figure 6: Full triangle plots from the analysis of BOSS power spectrum multipoles P` at one loop, bispectrum
monopole B0 at tree level or one loop, and bispectrum quadrupole B2 at tree level.

C Additional parameter posteriors

In fig. 6, we show the full triangle plots obtained fitting BOSS 4 skies P`+B0+B2. In tab. 5,
we show the 68%-credible intervals of b1, c2, and c4 obtained on this same fit.

32

Figure 6: Full triangle plots from the analysis of BOSS power spectrum multipoles P` at one loop, bispectrum
monopole B0 at tree level or one loop, and bispectrum quadrupole B2 at tree level.

C Additional parameter posteriors
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we show the 68%-credible intervals of b1, c2, and c4 obtained on this same fit.
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Analysis of BOSS data: D'Amico et al. (2022)



Beyond CDMΛ



Moradinezhad et al. (2021)
Figure 7: The posterior distribution of the model parameters for mass-bin I of NG250L at z = 1,
from the halo power spectrum (blue), bispectrum (green), and the joint statistics (red). The dotted line
indicate the input value of fNL, the values of b1 and b� measured from the cross halo-matter power spectra
of G85L and NG250L data. Note that the line showing the value of b1 does not account for additional
scale-independent corrections dependent on fNL. These are expected to be negative, in agreement with
discrepancy shown by the contours (see text).
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from the halo power spectrum (blue), bispectrum (green), and the joint statistics (red). The dotted line
indicate the input value of fNL, the values of b1 and b� measured from the cross halo-matter power spectra
of G85L and NG250L data. Note that the line showing the value of b1 does not account for additional
scale-independent corrections dependent on fNL. These are expected to be negative, in agreement with
discrepancy shown by the contours (see text).
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from the halo power spectrum (blue), bispectrum (green), and the joint statistics (red). The dotted line
indicate the input value of fNL, the values of b1 and b� measured from the cross halo-matter power spectra
of G85L and NG250L data. Note that the line showing the value of b1 does not account for additional
scale-independent corrections dependent on fNL. These are expected to be negative, in agreement with
discrepancy shown by the contours (see text).

Therefore, we shall ignore it in what follows. Notice however that, for a lower small-scale cuto↵

of k
B
max = 0.1 h/Mpc, setting b�2 = 0 noticeably improves the constraint on ↵

PNG
3
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does not a↵ect other model parameters. In the P+B analysis however, the information brought

by the bispectrum tightens the constraint on b��. Therefore, it is important to retain b�� in the

set of model parameters.

In Figure 5, we display the constraints obtained from the bispectrum-only analysis either

setting ↵
PNG
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to zero (blue) or leaving it free (orange). In addition, we also show log-likelihood
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Extensions to CDM are beginning 
to be explored …


e.g. Interacting Dark Energy

constraints from BOSS 

Tsedrik et al. (2022)
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2̃4 and hence improve significantly the constraints on 2̃2, as well as
on the other counterterms, though less significantly. However, we see
in the middle panel of Figure 3 no improvement in the constraints
of the IDE parameters, the hexadecapole only slightly decreases the
FoM and increases the FoB. This finding is in agreement with the
conclusions of Carrilho et al. (2021).

Next we include the bispectrum monopole, ⌫0. This is shown in
the right panel of Figure 3. We perform the analysis by adding it to
%0 + %2, since the power spectrum hexadecapole does not contribute
to the improvement of the constraints in the IDE parameters. The
results are denoted by the light green crosses connected by a solid line.
We observe an increase in the FoB and no improvement in the FoM
for scales up to :;=0

max, ⌫ = 0.08 ⌘Mpc�1 for %0+%2+⌫0. However, for

:;=0
max, ⌫ > 0.08 ⌘ Mpc�1 we notice a steep growth in the FoM as we

add more :-bins. Clearly, inclusion of the small-scale information
contained in the higher :-bins provides better constraining power,
especially since the number of triangles increases significantly with
each bin. The results do not show a bias in any of the parameters of the
model, at least up to the 27-th :-bin (corresponding to :;=0

max, ⌫ = 1.12

⌘ Mpc�1) from the total 29 bins of our measurements.

Additionally, we perform a joint analysis with the hexadecapole
of the power spectrum included up to 0.1 ⌘ Mpc�1, which is rather
conservative and common in the literature. This model with all power
spectrum multipoles and ⌫0 shows a mild but continuous improve-
ment of the FoM in comparison to the model with only lower or-
der power spectrum multipoles (see the dark red triangles in the
right panel). Noticeably, adding the power spectrum hexadecapole in
the joint analysis with the bispectrum monopole always results in a
smaller FoB (and thus bias) of the IDE parameters. We check whether
the same e�ect could be achieved by setting the otherwise uncon-
strained 2̃4 to zero in the model with the monopole and quadrupole
only. As expected, the constraints of the %0 + %2 + ⌫0 model are not
sensitive to this change. This is shown by the dark-green dots in the
right panel, which overlap with the light-green crosses of the base
model with 2̃4 < 0. We therefore conclude that the inclusion of the
hexadecapole of the power spectrum, in combination with the bispec-
trum monopole, can help (especially at lower scale cuts) by breaking
degeneracies between the counterterms and bias parameters.

The full posterior plot is shown in Figure A1 of section A. Addi-
tionally, we present in Figure 4 the triangle plot for the marginalized
posterior distribution of the IDE parameters. The characteristic “but-
terfly” pattern, in which the posterior distribution is present only in
two quadrants – upper-right and lower-left, is the consequence of the
priors on the IDE parameters with the condition �/(1 + F) � 0,
as described in subsection 4.3. The F � � contour shows a strong
degeneracy: as argued in section 2, a very negative value of F leads
to a later start of the dark energy dominated epoch, hence to a longer
matter domination which is associated with increased growth of
structures. A negative value of � leads to extra drag in Equation 2,
and thus to an enhancement of the growth of structures in the linear
regime (the opposite is true for the nonlinear regime, as discussed in
section 2). On large scales the drag term acts in the same direction
as the gravitational acceleration, since the velocity field is always
aligned with the spatial gradient of the gravitational potential in the
linear regime. The opposite happens for F > �1 and � > 0. This is
in line with what can already be seen in Figure 1 and its diagonal
(from upper left to lower right) pattern in the growth rate 5 , and is
particularly prominent in the upper right corner (for positive values
of � and (1 + F)). There we observe the same level of suppression
for either a larger F value with � fixed, or for a larger � value with
F fixed. It is therefore apparent how the two e�ects are strongly de-
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Figure 4. Marginal posterior distributions for the IDE parameters with the
base model and scale cuts as specified in the plot. The power spectrum
monopole and quadrupole analysis is denoted by the dotted blue line, con-
straints from all power spectrum multipoles are given by the solid orange
line, the joint analysis of the power spectrum monopole plus quadrupole and
bispectrum monopole is presented with the dotted-dashed light-green line,
and the full joint analysis is shown with the dark-red line. The fact that the
contour shows non-vanishing values for the forbidden regions �/(1+F) < 0
is an artifact of the smoothing used for plotting. Thin grey lines correspond
to the fiducial values.

generate, which results in larger uncertainties on them, especially in
biased cases. Such a conclusion is in agreement with the findings of
Carrilho et al. (2021).

In addition to the base model with 13 parameters, we run the
joint analysis adopting some assumptions that are common in the
literature: 1�3 = 0 and / or n:2 = 0. Assuming that noise is scale-
independent (as opposed to leaving the n:2 parameter free), results in
no improvement and no bias in the constraints. This is a consequence
of the rescaled error bars, since we know from the real space analysis
with the full volume of the simulations by Oddo et al. (2021) that the
scale-dependent term in shot noise is relevant at larger Fourier modes
due to accounting for additional corrections beyond the assumed
one-loop model. The assumption of 1�3 = 0 does not yield improved
constraints, but it biases the noise parameters U% , n:2 and U⌫ by
more than 2f with respect to the fiducial values. This is in line with
the joint analysis performed on the same data set in real space, which
measures 1�3 = 0 to be inconsistent with zero at more than 2f
(Oddo et al. 2021). The assumption of both conditions results in bias
in the noise parameters and 1G2 at more than 2f level, while U⌫
gets biased at more than 3f level. From this we conclude that, when
including the bispectrum monopole, 1�3 should not be set to zero.

5.2 Bias relations

Although the strong degeneracy between 1G2 and 1�3 is broken by
the inclusion of the bispectrum monopole in the analysis, we are still
interested in the impact of bias relations for two reasons: firstly, to

MNRAS 000, 1–14 (2022)

Other directions include, for instance, a bispectrum dipole from GR effects 
See e.g. Clarkson et al. (2019)
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Figure 6. As in Fig. 5 but for the wCDM model.

on b1 correlates with that on most cosmological parameters while
cosmology-bias cross-correlations are weaker for the bispectrum.

Fig. 8 shows that the combination of power spectrum and bis-
pectrum should provide rather tight constraints in the (b1, b2, bs2 )
space that could be used to derive the halo occupation properties of
the galaxies. In fact, empirically measuring deterministic relations
between b1 and b2 as well as between b1 and bs2 would shed light on
the nature of the biasing process. For instance, measuring a negative
bs2 at all redshifts in accordance with equation (43) would provide
evidence in favour of a local biasing process in Lagrangian space.

4.4 Figure of merit for dark-energy constraints

Since the report of the dark-energy task force (DETF; Albrecht et al.
2006), it is customary to compare cosmological probes in terms of
a conveniently defined figure of merit (FoM), i.e. a single number
summarizing the strength of the constraints that can be set on to
the model parameters that describe dynamic dark energy. For the

w0waCDM model, we adopt the definition (Wang 2008; Mortonson,
Huterer & Hu 2010)

FoM = 1√
det Cov(w0, wa)

, (56)

where Cov(w0, wa) denotes the 2 × 2 covariance matrix for the
errors on w0 and wa (note that our definition is a factor of 6.17π

larger than the DETF FoM that is defined as the reciprocal of the area
in the w0-wa plane that encloses the 95 per cent credible region).
Our results are reported in the last row of Table 3. We find that the
galaxy power spectrum in a Euclid-like survey gives an FoM that
is more than two times larger than for the bispectrum. However,
combining two- and three-point statistics improves the FoM by a
factor of 2.6 with respect to considering the power spectrum only.4

This promising result is, however, weakened by considering the

4The corresponding factors for other combinations of cosmological param-
eters can be directly read in the bottom left-hand panels of Figs 5–7.
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Figure 6. As in Fig. 5 but for the wCDM model.
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 kmax = 0.15 h Mpc−1



• The model 
tree-level PT vs one-loop PT vs phenomenological 
we probably need to go beyond tree-level, but loop + AP integrations are challenging 

• Anisotropy 
monopole vs monopole + quadrupole 
we already have multipoles estimators, so …


• Window function 
approximated vs exact vs windowless 
it would be very nice to test both exact convolution and windowless 

• Covariance 
numerical vs theoretical 
probably a theoretical approach or a compression method are inevitable


• Alternative estimators 
Skew-spectra (Schmittfull et al., 2015; Moradinezhad et al. 2020; …) 
Tri-polar Spherical Harmonic Decomposition (Sugiyama et al., 2017) 
Modal estimator (Fergusson et al., 2012; Byun et al., 2021) … and more … 

The Euclid to do list


