DE LA RECHERCHE À L'INDUSTRIE

Cosmology with galaxy clusters

Jean-Baptiste Melin (CEA Paris-Saclay)

Astroparticle Symposium 2022, 9 November

Content

- Galaxy clusters as cosmological probes
- Current constraints and major uncertainties
- Multi-experiment analyses / Multiwavelength analyses
- Future cluster surveys

Clusters of galaxies & cosmology

TNG simulations

300 Mpc

A galaxy cluster ID card

0.6 Mpc

- Galaxies
 - 10-1000 per cluster
 - M_{gal} ~ 0.02 M_{cluster}
- Gas
 - Hydrogen, helium
 - $T_{gas} \sim 10^{7-8} \text{ K}, 1-10 \text{ keV}$
 - M_{gas} ~ 0.1 M_{cluster}
- Dark matter
 - R_{cluster} ~ 1 Mpc
 - M_{cluster} ~ 10¹⁴ 10¹⁵ M_{\odot}

http://chandra.harvard.edu/photo/2008/a1689/ Abell 1689

Clusters are highly non linear structures but

A galaxy cluster ID card

Clusters are highly non linear structures but - they can be detected and characterized at many wavelengths

Cluster counts and cosmology

Cluster abundance and evolution are very sensitive to cosmological parameters

 $\sigma_8 \Omega_m \sum$

 $\sum m_{\nu}$

 \rightarrow independent from primary CMB, BAO, SNIa

Clusters are highly non linear structures but

- they can be detected and characterized at many wavelengths

- cluster distribution can be predicted for a given set of

cosmological parameters.

Detecting the intra cluster gas

ROSAT, eROSITA

Planck, SPT, ACT

Clusters and cosmology

Since the beginning of cosmology, galaxy clusters played an important role in shaping and strengthening the model (Λ CDM)

- Mass-to-light ratio e.g. Carlberg et al. 1996
- **Baryon fraction** e.g. White et al. 1993
- **Correlation function** Croft et al. 1997, Hong et al. 2012, ...
- **Cluster profiles** See talks by T. Richardson and P.-S. Corasaniti
- **Power spectrum** e.g. Planck Coll 2015 XXII, ...
- Cluster counts

The master equation for cluster counts

Content

- Galaxy clusters as cosmological probes
- Current constraints and major uncertainties
- Multi-experiment analyses / Multiwavelength analyses
- Future cluster surveys

0.∠ɔ 0.30 0.3ɔ 0.40 0.4ɔ 0.ɔu 0.ɔɔ $\Omega_{\rm m}$

 σ_8 from clusters lower than σ_8 from primary CMB \rightarrow Same result as galaxy clustering, cosmic shear

Degeneracy between cosmological parameters (σ_8) and cluster astrophysics (mass) **Cluster mass measurement is the key**

0.20 0.30 0.30 0.40 0.40 0.40 0.50 0.50 0.50 $\Omega_{\rm m}$

Planck cluster cosmology – scaling laws ?

Salvati et al. 2019 studied mass and redshift evolution of the cluster mass scale 1-b using cluster counts+power spectrum

Some hints of redshift dependence of 1-b but depends on the considered subsample \rightarrow Not sufficient to explain the discrepancy on σ_8 between clusters and primary CMB

South Pole Telescope cosmology (2019)

Dark Energy Survey cosmology

Dark Energy Survey cosmology

See talk by M. Costanzi

Where do we stand?

Major uncertainties

CMB lensing (millimetre wavelength)

Multiwavelength analyses

Cosmic Microwave Background halo lensing

Hu & Okamoto 2001

Cluster CMB lensing

does not take into account ability to eliminate contaminating signals

Cluster CMB lensing

does not take into account ability to eliminate contaminating signals

Content

- Galaxy clusters as cosmological probes
- Current constraints and major uncertainties
- Multi-experiment analyses / Multiwavelength analyses
- Future cluster surveys

Motivations – data public!

- **ROSAT(RASS)** data public (since 2000) all-sky 42,000 deg²
- Planck data public (since 2013) all-sky 42,000 deg²
- Ground based SPT data 2,500 deg² Chown et al. 2018
 ACT data 18,000 deg² Naess et al. 2020

ROSAT satellite

Planck satellite

South Pole Telescope (SPT)

Atacama Cosmology Telescope (ACT)

Motivations – combination!

- **Comparing** the datasets allows better understanding of the characteristics/systematics of the experiments and cluster physics
- **Combining** the datasets allows the detection of fainter clusters

- First catalogue ROSAT+Planck (Tarrío et al. 2019)
- First combination ACT+Planck by Aghanim et al. 2019
- First catalogue SPT+Planck (Melin et al. 2021)

SPT-SZ and Planck datasets Combination!

Melin J.-B., Bartlett J. G., Tarrío P., Pratt G. W., 2021, A&A, 627, A106

SPT-SZ and Planck complementarity

	SPT	Planck
Spatial resolution	(fwhm=1.75arcmin)	- (fwhm>5arcmin)
Instrumental noise	(20μKarcmin@150GHz)	(33µKarcmin@143GHz)
Filter transfer function	(scales smaller 1/2deg)	(all scales)
Frequency range	(95-220GHz)	(100-857GHz)

The thermal SZ Matched Multi-Filter (MMF)

Planck maps Filtered map **MMF** assumes • SZ frequency spectrum • cluster profile Herranz et al. 2002 Melin, Bartlett, Delabrouille 2006 Planck MMF3 Linear estimator

♦ Minimizes the variance of the noise

♦ Unbiased

Joint SPT+Planck blind SZ catalogue

SPT-SZ and **Planck** profiles

Best fit

Content

- Galaxy clusters as cosmological probes
- Current constraints and major uncertainties
- Multi-experiment analyses / Multiwavelength analyses
- Future cluster surveys

Euclid & Rubin Observatory

Rubin Observatory

Large cluster catalogues (between 50,000 to 100,000 clusters)
 Direct mass measurement with weak lensing
 (1% error on the cluster mass scale)

Current and future SZ surveys

Future SZ cluster catalogues

- many thousands at z>1 with SO
- hundreds of clusters at z>2 with CMB-S4

In the coming years, SZ surveys will:

SO Baseline ($f_{sky} = 0.4$)

2.5

3.0

SO Goal

2.0

- detect the first clusters
- increase redshift leverage (important for cosmology !)

Conclusions

- Clusters have an **important role** to play **in the measurement of** σ_8 (primary CMB vs. optical 3x2pts vs. clusters)
- Cluster constraints still **limited by our knowledge on the cluster** mass scale (~10%).
- Joint analyses of SZ data : proof of concept that ground based and space based experiments can be analysed jointly (SPT+Planck, ACT+Planck).
- Inhomogeneous datasets can also be analysed jointly (ROSAT+Planck).
- Future: on-going and planned experiments (optical, SZ, X-ray) will increase the number of detected clusters by a factor 10 to 100. Mass will be determined to percent accuracy via weak lensing and CMB lensing.
- These experiments will provide a **multiwavelength view**, which is crucial to improve our knowledge on cluster physics and deal with systematics