Cosmic neutrinos and other relics: what remains to be learnt

Astroparticle Symposium - Early and Late Universe Cosmology - 7 Nov 2022 Martina Gerbino - INFN Ferrara

Neutrinos and Cosmology

Martina Gerbino

Mature fields, yet treasure trove of discoveries At the frontiers of research Groundbreaking results expected in the next decade

		Neutrino
$T \sim 1 \mathrm{MeV}$		
	Weak int. rate = Hubble rate	Decouple and not cluster
Scale factor 'a' increases		

cosmology tivistic Non-Relativistic $T \sim m_{\nu}$

Temperature 'T' increases

$$Relation Relation Relation$$

Distorsions due to non-inst decoupling radiative corrections, flavour oscillations Dolgov, 1997, Mangano+, 2005 Bennett+2020, Froustey+2020, Akita+2020

Scale factor 'a' increases —

Martina Gerbino

Temperature 'T' increases

Neutrino imprints

Martina Gerbino

BLUE: ref model ORANGE: Neff/Sumnu varying GREEN: fixed matt-rad equality and angular sound horizon RED: fixed matt-rad equality, angular sound horizon and angular damping scale

Current limits on the mass sum

Current limits on Neff

Martina Gerbino

SPT Collaboration (Dutcher+, Balkenhol+), 2021 ACT Collaboration (Aiola+), 2020 VI 2018 Planck collaboration,

What next in neutrino cosmology

A new generation of ultimate cosmological surveys is approaching: Simons Observatory, Euclid, LiteBIRD, CMB-S4, DESI, LSST, SPHEREX, **SKA** **Does it mean that we are moving:**

Towards the first detection of the neutrino mass scale?

 $\sigma(\Sigma m_{\nu}) = 0.02 \,\mathrm{eV}$

2) Towards the first probe of the physics of neutrino decoupling, and of **BSM content at very early times?**

$$\sigma(N_{\rm eff}) = 0.03$$

Martina Gerbino

BSM neutrinos?

What if they are not what we think? (or: how sensitive are we to standard assumptions?) $T \sim m_{\nu}$

transition Non-relativistic

Decoupled and clustering at large scales?

Neutrino stability over cosmic times

Mass bounds relaxed for neutrinos decaying when non-relativistic and close to recombination Updated and improved bounds with more careful treatment (Barenboim+, 2021; Chen+, 2022)

Martina Gerbino

Neutrino non standard interactions

Neutrino self-interactions Forastieri+,2019; Kreisch+,2019; Brinckmann+,2021; Taule+,2022; Kreisch+(ACT),2022; ...

With current data, no (significant) hints for deviations from the SM.

Martina Gerbino

Neutrinos interact only via weak interactions with other particles What if new interactions are yet to be discovered?

$$\mathcal{L}_{SM} = -2\sqrt{2} G_F \left[\left(\overline{\nu}_e \gamma^\mu P_L e \right) \left(\overline{e} \gamma_\mu P_L \nu_e \right) + \sum_{X,\alpha} g_X \left(\overline{\nu}_\alpha \gamma^\mu P_L \nu_\alpha \right) \left(\overline{e} \gamma_\mu P_X e \right) \right] \right]$$
$$\mathcal{L}_{NSIe} = -2\sqrt{2} G_F \sum_{\alpha,\beta} \varepsilon^X_{\alpha\beta} \left(\overline{\nu}_\alpha \gamma^\mu P_L \nu_\beta \right) \left(\overline{e} \gamma_\mu P_X e \right) .$$

Neutrino-electron non-standard interactions de Salas+,2021; Mangano+,2006; ...

Cosmology can place complementary and competitive bounds to laboratory searches on these NS properties

See Thejs's talk on Tuesday!

Current CMB is insensitive to details of the distribution function; future CMB may be mildly sensitive; LSS surveys may be more sensitive

Astroparticle Symposium 2022

. . .

BSM particle species

Cosmology is (mostly) sensitive to the neutrino contribution to the energy density

What if there is more than neutrinos contributing to it?

Martina Gerbino

Light sterile in cosmology

Hagstotz+(incl.MG), 2020; Gariazzo+, 2020

Martina Gerbino

Challenges ahead

THEORY

- cosmology side: modelling of small scales/non-linear scales
- particle physics side: test accuracy&approximations, link theory&phenomenology (what are we really measuring?)
- computational side: can we afford required precision level?

Challenges ahead

INSTRUMENT&DATA

- know your instrument: perfect knowledge of instrumental systematic effects
- know your data: perfect knowledge of what features in the data drive constraints
- combine your data: be coherent (in modelling) and account for (cross)correlations; propagate all (theory&instrument) uncertainties

Challenges ahead

INTERPRETATION

- be statistically accurate and robust (especially if you measure something)

cosmology is not alone: key comparison&collaboration with complementary avenues (lab, astro, etc)

