02/11/22

Symposium PASCAL article UNIVERSITE PARIS-SACLAY

stroP

Primordial Black Holes from Dissipation During Inflation

Marcos A. G. García + G. Ballesteros, A. Pérez Rodríguez, M. Pierre and J. Rey arXiv:2208.14978 [astro-ph.CO]

Universidad Nacional Autónoma de México

2. Background

4. GWs

Black holes from inflation

Quantum fluctuations in ϕ , g, are strechted by expansion

$$\langle \mathcal{R}(k)\mathcal{R}^*(k')\rangle = \frac{2\pi^2}{k^3}\mathcal{P}_{\mathcal{R}}\delta(k-k') \longrightarrow \text{single field:} \mathcal{P}_{\mathcal{R}}(k_*) \simeq \frac{H_*^4}{4\pi^2\dot{\phi}_*^2}$$

2. Background

4. GWs

Black holes from inflation

Quantum fluctuations in ϕ , g, are strechted by expansion

$$\langle \mathcal{R}(k)\mathcal{R}^*(k')\rangle = \frac{2\pi^2}{k^3}\mathcal{P}_{\mathcal{R}}\delta(k-k') \longrightarrow \text{single field:} \mathcal{P}_{\mathcal{R}}(k_*) \simeq \frac{H_*^4}{4\pi^2\dot{\phi}_*^2}$$

2. Background

3. (Random) fluctuations

4. GWs

Black holes from inflation

(Y. Mambrini)

Quantum fluctuations in $\phi,\,g,$ are strechted by expansion

$$\langle \mathcal{R}(k)\mathcal{R}^*(k')\rangle = \frac{2\pi^2}{k^3}\mathcal{P}_{\mathcal{R}}\delta(k-k') \longrightarrow \text{single field:} \mathcal{P}_{\mathcal{R}}(k_*) \simeq \frac{H_*^4}{4\pi^2\dot{\phi}_*^2}$$

Given critical threshold, $\delta_c \approx 0.5$, the fraction of BHs of mass M is

$$\beta(M) = \int_{\delta_c}^{\infty} d\delta P(\delta, M)$$

Typically
$$P \propto e^{-\delta^2/2\sigma^2(M)}$$
, and

overdense

$$\sigma^2(M(k)) = \frac{16}{81} \int \frac{dq}{q} \left(\frac{q}{k}\right)^4 \mathcal{P}_{\mathcal{R}}(q) W(q/k)^2$$

W. Press, P. Schechter, Astrophys. J. 187 (1974), 425

1. PBHs from

inflation

2. Background

3. (Random) fluctuations

4. GWs

1. PBHs from inflation

.Ø.

3. (Random) fluctuations

4. GWs

5. Conclusion

Peaks in the power spectrum

A. Green, B. Kavanagh, J. Phys. G 48 (2021), 043001

Simplest mechanism: ultra slow-roll, $\,{\cal P}_{\cal R}\propto \dot{\phi}^{-2}\,$

1. PBHs from

2. Background

3. (Random) fluctuations

4. GWs

5. Conclusion

Slow roll from particle production

Non-adiabatic, non-thermalized production

$$\mathcal{L} \supset -\frac{1}{2}g^2\sum_i(\phi-\phi_i)^2\chi_i^2$$

 $\boldsymbol{\chi}$

(trapped inflation)

 ϕ

D. Green *et al.*, PRD 80 (2009), 063533 L. Pearce, M. Peloso, L. Sorbo, JCAP 11 (2016), 058

 $\boldsymbol{\chi}$

Slow roll from particle production

12.1.1.1.1 Nor

 \cap

 ϕ

3. (Random) fluctuations

4. GWs

2. Background

where

3. (Random) fluctuations

4. GWs

Dissipation during inflation

The total (inflaton+radiation) stress-energy tensor is conserved, $\nabla_{\mu} T^{\mu\nu} = 0$, but individually,

$$\nabla_{\mu} T^{\mu\nu}_{(\phi)} = Q^{\nu}$$
$$\nabla_{\mu} T^{\mu\nu}_{(r)} = -Q^{\nu}$$

(M. Gleiser, R. Ramos, PRD 50 (1994) 2441; M. Bastero-Gil et.al., JCAP 05 (2014) 004)

$$Q_{\mu} = \underbrace{-\Gamma u^{\nu} \nabla_{\nu} \phi \nabla_{\mu} \phi}_{\text{dissipation}} + \underbrace{\sqrt{\frac{2\Gamma T}{a^{3}}} \xi_{t} \nabla_{\mu} \phi}_{\text{fluctuation}}$$

 ξ_t denotes a normalized white-noise process, $\xi_t = dW_t/dt$, with dW_t a Wiener increment,

$$\langle \xi_t(\mathbf{x})\xi_{t'}(\mathbf{x}')\rangle = \delta^{(3)}(\mathbf{x}-\mathbf{x}')\delta(t-t')$$

Only dissipation affects the background

inflation 0

1. PBHs from

2. Background

3. (Random) fluctuations

4. GWs

5. Conclusion

Background dynamics

 $\ddot{\phi}$

$$\begin{aligned} + (3H+\Gamma)\dot{\phi} + V_{\phi} &= 0\\ \dot{\rho}_r + 4H\rho_r &= \Gamma\dot{\phi}^2\\ \rho_r + \frac{1}{2}\dot{\phi}^2 + V &= 3M_P^2H^2 \end{aligned}$$

2. Background

3. (Random) fluctuations

4. GWs

5. Conclusion

Localized dissipation?

Inflaton coupled to a d.o.f. χ connected or part of the thermal bath

 $V(\phi, \chi) = V(\phi) + f(\phi)g(\chi)$

Integration over χ and an ensamble averaging,

with

$$\Gamma = -i \int d^4x \left(\frac{\partial f}{\partial \phi}\right)^2 \theta(t-t') \left\langle \left[g(\chi(x)) - g(\chi(x'))\right] \right\rangle (t-t')$$

A. Hosoya, M. Sakagami, PRD 29 (1984), 2228; M. Bastero-Gil, A. Berera, R. Ramos, JCAP 09 (2011), 033

2. Background

3. (Random) fluctuations

4. GWs

5. Conclusion

Localized dissipation?

Thermal corrections to the potential can be suppressed via heavy field exchange, $\,\phi o \chi o \sigma$

$$\mathcal{L} = \frac{1}{2\mathcal{K}(\varphi)}\partial^{\mu}\varphi\partial_{\mu}\varphi + \frac{1}{2}\partial^{\mu}\chi\partial_{\mu}\chi + \frac{1}{2}\partial^{\mu}\sigma\partial_{\mu}\sigma - \frac{1}{2}g^{2}\varphi^{2}\chi^{2} - \frac{1}{2}\tilde{g}^{2}\varphi\chi\sigma^{2} - V(\varphi)$$

With ϕ the canonically normalized field,

$$\Gamma = \frac{g^4 (\partial_\phi \varphi^2)^2}{2T} \int \frac{d^4 p}{(2\pi)^4} n(\omega) [n(\omega) + 1] \rho_{\chi}^2(\omega)$$

$$\simeq \frac{40 g^4 (\partial_\phi \varphi^2)^2 \Gamma_{\chi,0}^2 T^3}{(2\pi)^3 m_{\chi}^6} \qquad (T \ll m_{\chi})$$

where

$$\rho_{\chi} = \frac{4\omega_p \Gamma_{\chi}}{(\omega^2 - \omega_p^2)^2 + 4\omega_p^2 \Gamma_{\chi}^2}$$
$$n(\omega) = \left(e^{\omega T} - 1\right)^{-1}$$
$$\Gamma_{\chi} \simeq \frac{\tilde{g}^4 \varphi^2}{8\pi \omega_p(\mathbf{p})}$$

2. Background

3. (Random) fluctuations

4. GWs

5. Conclusion

Localized dissipation?

Thermal corrections to the potential can be suppressed via heavy field exchange, $\phi \to \chi \to \sigma$ $\mathcal{L} = \frac{1}{2\mathcal{K}(\omega)}\partial^{\mu}\varphi\partial_{\mu}\varphi + \frac{1}{2}\partial^{\mu}\chi\partial_{\mu}\chi + \frac{1}{2}\partial^{\mu}\sigma\partial_{\mu}\sigma - \frac{1}{2}g^{2}\varphi^{2}\chi^{2} - \frac{1}{2}\tilde{g}^{2}\varphi\chi\sigma^{2} - V(\varphi)$ $\mathcal{K}(\varphi) = \frac{4\varphi^4}{(1+\varphi^2)^2}$ $V(\varphi) = \lambda(\varphi + \beta)^2$ 6 $/M_P^4 \ [\times 10^{-11}]$ ϕ_{end} $V(\phi) = \lambda \left(\phi - \sqrt{(\phi - \phi_\star)^2 + 1} + \sqrt{1 + \phi_\star^2} \right)^2$ $\Gamma = \frac{5}{16\pi^5} \left(\frac{\tilde{g}}{c}\right)^4 \frac{T^3}{1+(\phi-\phi_*)^2}$ -50 5 10 15 ϕ/M_P

2. Background

3. (Random) fluctuations

4. GWs

Scalar fluctuations

Introduce the set of linear fluctuations in the Newtonian gauge, $\delta\phi$, $\delta\rho_r$, $\delta q_r = \frac{4}{3}\rho_r\delta v_r$, and $ds^2 = (1+2\psi)dt^2 - a^2(1-2\psi)\delta_{ij}dx^i dx^j$

Einstein's equations lead to

r

$$\begin{aligned} 3H(\dot{\psi} + H\psi) + \frac{k^2}{a^2}\psi &= -\frac{1}{2M_p^2} \left[\delta\rho_r + \dot{\phi}(\delta\dot{\phi} - \dot{\phi}\psi) + V_{\phi}\delta\phi \right] \\ \dot{\psi} + H\psi &= -\frac{1}{2M_p^2} \left(\delta q_r - \dot{\phi}\delta\phi \right) \\ \ddot{\psi} + 4H\dot{\psi} + (2\dot{H} + 3H^2)\psi &= \frac{1}{2M_p^2} \left[\frac{1}{3}\delta\rho_r + \dot{\phi}(\delta\dot{\phi} + \dot{\phi}\psi) - V_{\phi}\delta\phi \right] \end{aligned}$$

2. Background

(

4. GWs

Scalar fluctuations

Introduce the set of linear fluctuations in the Newtonian gauge, $\delta\phi$, $\delta\rho_r$, $\delta q_r = \frac{4}{3}\rho_r\delta v_r$, and $ds^2 = (1+2\psi)dt^2 - a^2(1-2\psi)\delta_{ij}dx^i dx^j$

Continuity equations in turn give

(M. Bastero-Gil et.al., JCAP 05 (2014) 004)

$$\begin{split} \delta\ddot{\phi} + (3H+\Gamma)\delta\dot{\phi} + \left(\frac{k^2}{a^2} + V_{\phi\phi} + \dot{\phi}\Gamma_{\phi}\right)\delta\phi + \Gamma_T\frac{\dot{\phi}T}{4\rho_r}\delta\rho_r - 4\dot{\psi}\dot{\phi} + (2V_{\phi} + \Gamma\dot{\phi})\psi &= \sqrt{\frac{2\Gamma T}{a^3}}\xi_t\\ \delta\dot{\rho}_r + \left(4H - \Gamma_T\frac{\dot{\phi}^2 T}{4\rho_r}\right)\delta\rho_r - \frac{k^2}{a^2}\delta q_r + \Gamma\dot{\phi}^2\psi - 4\rho_r\dot{\psi} - (\Gamma_{\phi}\delta\phi - 2\Gamma\delta\dot{\phi})\dot{\phi} &= -\sqrt{\frac{2\Gamma T}{a^3}}\dot{\phi}\xi_t\\ \delta\dot{q}_r + \frac{4}{3}\rho_r\psi + 3H\delta q_r + \frac{1}{3}\delta\rho_r + \Gamma\dot{\phi}\delta\phi &= 0 \end{split}$$

Solutions reach an attractor, so initial conditions may be chosen as

$$\delta q_r = 0, \qquad \delta \rho_r = 0, \qquad \psi = 0, \qquad \delta \phi = -\frac{\dot{\phi} e^{-ik\tau}}{2M_p \ aH\sqrt{k\epsilon}}$$

Difficult to find their gauge-invariant versions!

5. Conclusion

(we use a stochastic RK method)

2. Background

3. (Random) fluctuations

4. GWs

Frequentist vs deterministic

ltô's lemma:

$$dX = a X dt + b dW_t$$

$$dX^2 = (2a X^2 + b^2) dt + 2b X dW_t$$

$$\Rightarrow \qquad \frac{d\langle X \rangle}{dt} = a \langle X \rangle$$

$$\frac{d\langle X^2 \rangle}{dt} = 2a \langle X^2 \rangle + b^2$$

J/V

For cosmological perturbations,

$$rac{d\langle oldsymbol{\Phi} oldsymbol{\Phi}^\dagger
angle - oldsymbol{A} \langle oldsymbol{\Phi} oldsymbol{\Phi}^\dagger
angle - \langle oldsymbol{\Phi} oldsymbol{\Phi}^\dagger
angle oldsymbol{A}^{
m T} + oldsymbol{B} oldsymbol{B}^{
m T}$$

The curvature power spectrum is

(

$$\langle \mathcal{P}_{\mathcal{R}}
angle \; = \; \left. rac{k^3}{2\pi^2} oldsymbol{C}^{\mathrm{T}} \langle oldsymbol{\Phi} oldsymbol{\Phi}^{\dagger}
angle oldsymbol{C}
ight|_{k \ll aH}$$

with $\mathcal{R} = oldsymbol{C}^T oldsymbol{\Phi}$

2. Background

3. (Random) fluctuations

4. GWs

Analytical approximation

- Decouple $\delta \phi$: $\dot{\delta \phi} + (\dot{\delta \phi}, \delta \phi, \mathsf{background}) = f_{\phi}(t) \xi_t$
- Approximate ${\cal R}~pprox~-rac{\delta\phi}{\phi'}$
- Parametrize background as piecewise constants
- Solve homogeneous equation, $\,\ddot{\delta\phi}+(\dot{\delta\phi},\delta\phi,{\sf background})\,=\,0\,,\,\,{\sf and}\,\,{\sf find}\,\,{\sf Green's}\,\,{\sf function}$

• Formally solve,
$$\delta \phi(t) = \delta \phi^{(h)}(t) + \int dt' \ G(t,t') f_{\phi}(t') \xi_{t'}$$

•
$$\mathcal{P}_{\delta\phi} = \mathcal{P}_{\delta\phi}^{(h)}(t) + \int dt' G(t,t')^2 f_{\phi}(t')^2 \longrightarrow \mathcal{P}_{\mathcal{R}}$$

2. Background

3. (Random) fluctuations

4. GWs

5. Conclusion

Induced gravitational waves

Second order induced GWs,

$$h_k^{s\prime\prime} + 2\mathcal{H}h_k^{s\prime} + k^2 h_k^s = S_k^s$$

$$S_{k}^{s} = \int \frac{3p}{(2\pi)^{3}} \mathbf{e}_{ij}^{s}(\mathbf{k}) p_{i} p_{j} \left[8\psi_{p}\psi_{k-p} + \frac{16\rho}{3(\rho+p)} \left(\psi_{p} + \frac{1}{\mathcal{H}}\psi_{p}'\right) \left(\psi_{k-p} + \frac{1}{\mathcal{H}}\psi_{k-p}'\right) \right]$$

Y. Lu et al., PRD 102 (2020), 083503

The source needs to be tracked during and after inflation,

$$S_{k(\text{pre})}^{s} = \frac{4}{3} \left(\frac{\rho}{\rho+p} \right) \left(\frac{\phi'^{2}}{\mathcal{H}^{2} M_{p}^{4}} \right) \int \frac{3p}{(2\pi)^{3}} \mathbf{e}^{s}(\mathbf{k}, \mathbf{p}) \delta \phi_{p} \delta \phi_{k-p}$$

$$S_{k(\text{post})}^{s} = \int \frac{3p}{(2\pi)^{3}} \mathbf{e}^{s}(\mathbf{k}, \mathbf{p}) \left[8\psi_{p} \psi_{k-p} + 4 \left(\psi_{p} + \frac{1}{\mathcal{H}} \psi_{p}' \right) \left(\psi_{k-p} + \frac{1}{\mathcal{H}} \psi_{k-p}' \right) \right]$$

$$(s = (+, \times))$$

2. Background

3. (Random) fluctuations

4. GWs

- Localized dissipation can be realized with non-minimal kinetic terms
- Dissipation affects the background, but does not drive the enhancement in $\mathcal{P}_\mathcal{R}$
- Thermal fluctuations are the main source for a peaked $\mathcal{P}_\mathcal{R}$
- Thermal attractor allows for analytical estimates
- First full determination of the stochastic GW signal
- Induced growth of fluctuations during reheating?

Thank you