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The action for a massive spin-1 DM spectator field X, in a background
metric g, is given by |—>X/w = 0,X, — 0, X,

1 1
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FLRW spacetime  Gravitational coupling Non-zero mass

482 = di? — 22(1)d%2 only through g, \/—g generated e.g. via
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Remarks

—ik- X'

|:> Xo does not have a kinetic term; it is an auxiliary field. | Xy = ————
k2 + 22m3,

Massless vectors with a minimal coupling to gravity, ~ Not populated
i.e, & =0=¢& are conformally coupled to gravity. by expansion

3



EoMs for DM fields

Fourier decomposition ‘ [63(8), 31(@)] = (27)°0» ;05 - ‘?)‘
XY / g€ TR a5 (. 3
A=+,L

Harmonic oscillator equation, Wronskian
|7 X+ wi(T)Xy =0, XX — XXy = —i

Time-dependent frequencies

Transverse modes
wWilr) = k? + (1) m%,

longitudinal mode* ,
wir) = k*+a2(1)m3 K [a//(T) 32°(r)m5% <3'(7')> ]
\7) = X~ -

k2+22(r)m3 | alr) K2+ a2(r)m3%

Longitudinal mode A,
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IS not XL = \/WAL
canonically normalized X




The vacuum expectation value of the total energy density od vector
DM field decomposes as,

[ v
{(px) = (0] px [0) = (pr) + (p+), Bunch-Davies
with vacuum
-Transverse modes
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-Redefined longitudinal mode
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This could change if one considers direct X, coupling
to the inflaton ¢ of the form oX,l,/)'(“”, see e.g. arxiv:1810.07208




Evolution of the longitudinal modes during inflation

comoving length scales
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Evolution of the longitudinal modes during inflation
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Evolution of the logitudinal modes during inflation

Long — wavelength case during inflation Intermediate — wavelength case during inflation
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Post-inflationary evolution

Boltzmann equations
po +3H(L+ W)py = —T4py
psm + 4Hpsm = Typg

Friedmann equations

1
H? = > (po * psm )
3MZ,

My o a8

Evolution of the energy density

| a 3(1+w)
a
Z
< .
= 7
> a 3(1+w)/2—3
= —4
20 d
Q
—
<
inflation N reheating N RD epoch IMDepoch
T T T
ae arh

ame  Log|[al



Post-inflationary evolution

Boltzmann equations

po *+ 3H(L+W)py = —Typy [ ocaB
¢

psm + 4Hpsm = Typg

Friedmann equations
1

H2= —_
3M3,

(py * psm)
Evolution of 2, H
and the Hubble radius
Reheating
a(r) = a. (7/7)7% ,  H(a) = H(a/a.)
RD epoch

a(7) = am (/7)) s

_ 3(1+w)

2

H(a) = Hen(a/am) 2

Evolution of the energy density

| a 3(1+w)
a
Z
S| e
= 7
> a 3(1+w)/2—3
\~ —4
20 d
Q
—
<
inflation N reheating N RD epoch IMDepoch
T T T
e ERY ame  Log|[al

0
<
s}
O
7 (DM o
=
)
an
c
<
on
£
>
o
IS
o
]

reheating

inflation

RD epoch MD epoch

ame Loglal



Log k7!

heavy DM vectors (hDM)
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Relic abundance
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-+ Spin-1 DM particles with mass mx < H. are abundantly produced
in the inflationary era due to the tachyonic enhancement of the
longitudinal momentum modes.

- It has been established that the spectrum of dark vectors
produced gravitationally has a peak structure. In particular, it is
centered around a characteristic comoving momentum k.

- We have demonstrated that accounting for the finite duration of
reheating has a significant impact on the production of heavy
DM vectors, i.e., with mass mx > H,.

- Finally, we have shown that the non-standard expansion history
play a crucial role in the gravitational producation of heavy DM
species.



Thank you for your attention!
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Dangerous isocurvature density perturbations

The isocurvature constraints are suppressed if
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Time-averaged Boltzmann equations

Interactions
po + 3L+ W)Hpy = —(Ty)py
pr+4Hpr = (TS)pg
W= (s} ) Time-dependent decay rate
12 - pg;ﬂgln TRy = (M) = T3 (%)f

1
constant parameter - - - - - - .



Non-instantaneous reheating
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