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Higgs Inflation



Higgs Inflation

[Bezrukov, Shaposhnikov - 0710.3755]
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 The remaining window of validity for the EFT is very narrow.

 The plateau in the inflationary potential is very sensitive to the UV physics,

making the model lose its naturalness. [Burgess, HML, Trott(2009,2010);
Barbon, Espinosa (2009);

Hertzberg(2010)]



Higgs-R"2
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The new Y field linearizes Higgs inflation

Higgs-sigma models are a of Higgs inflation [Giudice, Lee, 1010.1417]



Inflationary potential
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y drives inflation while the Higgs is frozen at a non-zero VEV



Reheating



Reheating In the Higgs‘,-R2 model

Boltzmann equations
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Our approach for reheating can be compared to the oscillation condensate with
dissipation in non-equilibrium thermodynamics 2108.00254



Background field evolution

We divide the fields into a background and an oscillating part

G(Z) = 0y, h(t) = hy(oy) + h, (D), [M. He - 2010.11717]

The Higgs is released from background value it had during inflation

From the inflationary potential V D, K‘é O h2
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Background field evolution
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The highly oscillating part becomes prominent for 5, > 0, when the Higgs background vanishes.

due to both rapid oscillations and a large Yukawa coupling.

It turns out that /___ is the
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Decay rates of 0 condensates

0 = GO(t) +,..,é€z_,,
Couplings to the SM particles are conformal — suppressed by the Planck scale
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In both cases, for £ > 1 this decay mode is kinematically blocked.

The factor | oy | Mp < 0.1 (5 + g) makes it subdominant after a few oscillations.
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Decay rates of Higgs condensates

h = hy(oy) + h. (1) + Sh

34/ 6K |
t 2 ot 6
yt _ yt _ op Mass
<D hitt = (ho(oy) + hy )it _—
\/5 \/5 m,=0 for oy >0
32 1/2
2, <3 6K (5+%) VO) 6, > 0,

For 0, < 0 the decay /.. — ?f is kinematically allowed only for £ = 5000 for y, = 0.5

For 6, > 0 h_. — 1t is always open. Thus, is the decay mode for the Higgs condensate.
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Numerical solutions
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Reheating and max temperature
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Inflationary predictions

30 ,0)1/4
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with S8reh — 106.75

Instant thermalization T = (

For100 < £ <4000, 2.6 x 10°GeV < T, <2.5x 10 GeV

T, .variesby 5.8 x10°GeV < T . <3.6x10"GeV

0.9608 — 0.9614,
0.0041 — 0.0042

n

I
N =153.2-54.0

Correction in the number of e-foldings due to delayed reheating —An, = 0.00064 — 0.0012.
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Freeze-in Dark Matter



Dark Matter Model
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Conformal couplings

i
e
1

When |77| << 1 DM couples feebly to o and h through gravity.

7
We have a vanishing Higgs portal |4,y | < 1

S §+g
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Dark Matter Production

During Reheating After Reheating
-During the matter domination era -During radia'fion domination
-Consider both thermal and non thermal scattering -Dark Matter is produced thermally from the SM bath

Y (Treh) = Ythermal(Treh) ae £ non—thermal(Treh)

Production mechanisms

-Thermal scattering = SM bath -Contact interactions
-Non-thermal scattering = Inflaton condensates -Graviton exchanges
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Production after reheating
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Thermal production from contact terms

The inflation fields are already settled around the origin
We can neglect their VEVs

The only direct interactions with the SM is through derivatives couplings of the Higgs.
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The couplings coming from g”’“Tgy vanish because fermions and gauge bosons are massless.
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Thermal production from gravitational interactions
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Production during reheating

Y (Treh) o Ythermal(Treh) T I non—thermal(Treh)



Thermal production (SM bath)

We will have contributions from both ¢ and h

SM particles interact with DM only through graviton exchanges
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Non-thermal production

(In the conformal case with vanishing Higgs portal)
We cannot neglect the VEVs of the fields.
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Dark Matter Abundance

Combining thermal and non-thermal results

o T TV e 0\ (T,
1G€V 8reh

~ 16X 108( My )(80 >|ﬁ”greh Treh pg,end i 6234/ 10 Tr:z:h

1GeV Zren ) | 2239488 k2Mj! p2ia 240n0gliz M3

I

N 2

JIo  4mb+a5M; (A,,X + 181<i7§)

+——
204807[ 4grle/§ me g

In the nearly conformal coupling Is the most effective way to produce dark matter.
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DM with conformal ¢

2.1 X 10’GeV < my < 4.6 X 10°GeV

The lower limit doesn’t reproduce all
DM content, additional mechanism

needed.
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Dark Matter with non-conformal interactions

For thermal production we have additional couplings /, - and «7)c.

These must be constrain in order to avoid over abundance |4,y | < 1071%and |77] < 107 for
Ex ~ 107,

For non thermal production:
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Smaller DM masses can be obtained.
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Summary



Goal of this work:

* Provide a UV complete model for Higgs inflation and subsequent reheating.

« Study the option of FIMP DM reproducing the observed energy density.

Reheating
* In the beginning of the oscillation stage, we have a mix of Higgs and ¢ condensates.

 The Higgs condensate is dominant for reheating due to kinematic |

« Reheating temperature varies in therange 10" eV and 10" eV depending on &

Dark Matter production

 We studied a model for scalar Dark Matter production.

* |In the nearly conformal coupling IS the most effective way to produce dark
matter.

 The mass of Dark Matter is in the range

* Including non-conformal effects leads to even lighter Dark Matter.
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Back ups
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Analytic solutions
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These simplifies Boltzmann equations
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Reheating and max temperature
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