

Dark matter and baryogenesis from freeze-in

Based on arXiv:2111.05740, arXiv:2204.13554 In collaboration with D. Karamitros, P. Papachristou, V. Spanos

Paris Astroparticle Symposium 2022

Andreas Goudelis LPC – Clermont Ferrand

FIMPy baryogenesis: general idea

arXiv:2004.00636, arXiv:2201.11502, arXiv:2111.05740, arXiv:2204.13554

· The decays and/or annihilations that are responsible for dark matter production can also violate both the baryon number B (or L) and C/CP.

 \cdot But, by construction, in freeze-in these processes are also out-of-equilibrium.

 \rightarrow All three Sakharov conditions can be satisfied.

NB: in arXiv:2004.00636 and arXiv:2201.11502 *CP* violation is rather due to DM oscillations

Naïvely, if denote the measure of *CP* violation by ε_{CP} , we would expect:

 $Y_{\Delta f} ~\sim~ \epsilon_{CP} \, Y_{DM}$

In practice, and sticking to decays, this limit cannot be achieved due to:

 \cdot Washout effects.

 \cdot CPT and Unitarity, which will force us to introduce multiple decay channels for our heavy particles.

A concrete realization: toy model

Consider the SM along with a real singlet scalar FIMP S and two charged SU(2)-singlet vector-like fermions F_i , with all exotics odd under a discrete \mathbb{Z}_2 symmetry:

arXiv:2111.05740

Remarks:

 \cdot This Lagrangian does not violate B or (total) L. This will come from sphaleron transitions later on.

· It does, however, contain an additional source of *CP* violation with respect to the SM, due to the complex nature of the $\lambda_{\alpha i}$ couplings.

A concrete realization: physics

Processes that contribute to the generation of dark matter and of a *CP* asymmetry:

 \cdot The decays are the leading process. Scattering processes essentially just tend to wash out the generated asymmetry.

- · In order to maximize *CP* violation, we will set $M_{_{F1}} \sim M_{_{F2}}$.
- · Most of the action takes place at temperatures $T \sim M_F$.
- · Non-equilibration is ensured by imposing : $\left(\sum_{\alpha i} \gamma_{F_i \to e_\alpha S} \lesssim H\right)|_{T=M_1}$

Dark matter production

Generically, the Boltzmann equation reads :

$$s \frac{\mathrm{d}Y_S}{\mathrm{d}t} = \sum_{\alpha,i} \{F_i \leftrightarrow e_\alpha S\} + \sum_{\alpha,i} \{F_i B \leftrightarrow e_\alpha S\} - \sum_{\alpha,i} \{F_i S \leftrightarrow e_\alpha B\} + \sum_{\alpha,i} \{F_i \bar{e}_\alpha \leftrightarrow SB\} + 2\sum_{i,j} \{F_i \bar{F}_j \leftrightarrow SS\} + 2\sum_{\alpha,\beta} \{\bar{e}_\alpha e_\beta \leftrightarrow SS\}$$
Largely suppressed

where:
$$\{a \ b \leftrightarrow c \ d\} \equiv (a \ b \leftrightarrow c \ d) + (\bar{a} \ \bar{b} \leftrightarrow \bar{c} \ \bar{d})$$

 $[a \ b \leftrightarrow c \ d] \equiv (a \ b \leftrightarrow c \ d) - (\bar{a} \ \bar{b} \leftrightarrow \bar{c} \ \bar{d})$
 $(a \ b \leftrightarrow c \ d) \equiv \int d\Pi_a d\Pi_b d\Pi_c d\Pi_d (2\pi)^4 \ \delta^{(4)} \Big[|\mathcal{M}|^2_{ab \to cd} \ f_a \ f_b \ (1 \pm f_c) \ (1 \pm f_d)$
 $- |\mathcal{M}|^2_{cd \to ab} \ f_c \ f_d \ (1 \pm f_a) \ (1 \pm f_b) \Big]$

In order to solve this equation :

- \cdot Assume radiation domination.
- \cdot Neglect backreactions.
- \cdot Assume MB distributions.

 \rightarrow In practice, decays dominate :

 \cdot The decay processes in our model are the leading source of CP violation

General logic:

· The F_i 's carry the same lepton number as the SM leptons. Define: $Y_L = Y_{LSM} + Y_{LF}$.

· All processes (incl. sphaleron transitions) conserve $Y_{B-L} \equiv Y_B - Y_{LSM} - Y_{LF}$.

· All processes conserve Y_L except for sphaleron transitions : the latter are insensitive to Y_{LF} (the F_i 's are SU(2)-singlets), but they can convert a non-zero lepton asymmetry stored in the SM sector into a baryon one.

 \cdot Then, if sphalerons decouple before all of the F_i 's decay away, a net baryon asymmetry can be generated and survive to the present day.

Cf also "Dirac leptogenesis", arXiv:hep-ph/9907562

The Boltzmann equations for the various asymmetries read

$$-sHz\frac{\mathrm{d}Y_{\Delta F_{i}}}{\mathrm{d}z} = \sum_{\alpha} \left[F_{i} \leftrightarrow e_{\alpha}S\right] + \sum_{\alpha} \left[F_{i}B \leftrightarrow e_{\alpha}S\right] + \sum_{\alpha} \left[F_{i}S \leftrightarrow e_{\alpha}B\right] + \sum_{\alpha} \left[F_{i}\bar{e}_{\alpha} \leftrightarrow SB\right] + \sum_{\alpha,\beta} \left[F_{i}\bar{e}_{\alpha} \leftrightarrow \bar{F}_{j}e_{\beta}\right] + \sum_{\alpha,\beta} \left[F_{i}\bar{e}_{\alpha} \leftrightarrow F_{j}\bar{e}_{\beta}\right] + \sum_{\alpha,\beta} \left[F_{i}e_{\beta} \leftrightarrow F_{j}e_{\alpha}\right] + \sum_{\alpha,\beta} \left[F_{i}\bar{F}_{j\neq i} \leftrightarrow e_{\alpha}\bar{e}_{\beta}\right] + \left[F_{i}\bar{F}_{j\neq i} \leftrightarrow SS\right] + \sum_{\alpha,\beta,j} \left[F_{i}F_{j} \leftrightarrow e_{\alpha}e_{\beta}\right] + \left[F_{i}S \leftrightarrow F_{j\neq i}S\right]$$

$$-sHz\frac{\mathrm{d}Y_{\Delta_{\alpha}}}{\mathrm{d}z} = \sum_{i} [F_{i} \leftrightarrow e_{\alpha}S] + \sum_{i} [F_{i}B \leftrightarrow e_{\alpha}S] + \sum_{i} [F_{i}S \leftrightarrow e_{\alpha}B] + \sum_{i} [F_{i}\bar{e}_{\alpha} \leftrightarrow SB] + \sum_{i,j,\beta \neq \alpha} [F_{i}\bar{e}_{\alpha} \leftrightarrow \bar{F}_{j}e_{\beta}] + \sum_{i,j,\beta \neq \alpha} [F_{i}\bar{e}_{\alpha} \leftrightarrow F_{j}e_{\alpha}] + \sum_{i,j,\beta \neq \alpha} [F_{i}\bar{F}_{j} \leftrightarrow e_{\alpha}\bar{e}_{\beta}] + \sum_{\beta \neq \alpha} [\bar{e}_{\alpha}e_{\beta} \leftrightarrow SS] + \sum_{i,j,\beta} [F_{i}F_{j} \leftrightarrow e_{\alpha}e_{\beta}] + \sum_{\beta \neq \alpha} [e_{\beta}S \leftrightarrow e_{\alpha}S]'$$

where : $Y_{\Delta F_i} \equiv Y_{F_i} - Y_{\overline{F}_i}, \ Y_{\Delta_{\alpha}} \equiv Y_B/3 - Y_{L_{SM\alpha}}$

The baryon asymmetry is simply given by : $Y_B = \frac{22}{79} \sum_{\alpha} Y_{\Delta \alpha}$

Andreas Goudelis

Results

All in all : a viable baryon asymmetry can be obtained along with the observed DM abundance in the Universe, as long as DM is quite light and the F_i 's are close in mass (resonant enhancement of *CP* violation).

Results

All in all : a viable baryon asymmetry can be obtained along with the observed DM abundance in the Universe, as long as DM is quite light and the F_i 's are close in mass (resonant enhancement of *CP* violation).

· The F_i 's cannot be too heavy, otherwise they decay before sphaleron decoupling \rightarrow the baryon asymmetry would be completely washed out.

 \rightarrow The scenario can be partly probed at the LHC!

Cf also arXiv:1811.05478

A non-renormalizable version

arXiv:2204.13554

What if DM interacts with the SM through non-renormalizable operators?

Consider a similar extension of the SM by a complex scalar field and two vectorlike fermions, described by the Lagrangian :

$$\mathcal{L}_{\text{int}} = \frac{\lambda_1}{2\Lambda} \left(\bar{e}F_1 \right) \varphi^* \varphi^* + \frac{\lambda_2}{2\Lambda} \left(\bar{e}F_2 \right) \varphi^* \varphi^* + \frac{\kappa}{\Lambda^2} \left(\bar{e}F_1 \right) \left(\bar{F}_2 e \right) + \text{h.c.}$$

which could, *e.g.*, be obtained by integrating out some heavy scalar mediator field. Additional contributions can be forbidden by imposing a Z_3 symmetry as :

Particle	Gauge	\mathbb{Z}_3
φ	$(1,1)_{0}$	ω
$arphi^*$	$(1,1)_{0}$	ω^{-1}
F_i	$(1,1)_{-1}$	ω^{-1}
\bar{F}_i	$(1,1)_1$	ω

In this case it is, rather, scattering processes that dominate both DM production and baryogenesis.

Dark matter: Ultraviolet freeze-in arXiv:1410.6157

It is known that in such scenarios :

 \cdot The bulk of dark matter production takes place at the highest considered temperature (in this framework the "reheating temperature" $T_{\rm RH}$).

 \cdot The predicted DM abundance depends on this temperature.

Indeed, if we consider a generic interaction described by an effective operator that scales as $1/\Lambda^n$, by writing down and solving the Boltzman equation for DM production we find :

$$Y_{\rm DM}(T) \approx 2A \, \frac{4^{n+1} n! (n+1)!}{2n-1} \frac{45}{1024 \times 1.66 \, \pi^7 g_{\star s} \sqrt{g_{\star \rho}}} \frac{M_{Pl} \left(T_{\rm RH}^{2n-1} - T^{2n-1}\right)}{\Lambda^{2n}} \,,$$

where A is a coefficient that depends on the underlying model. This leads to the prediction :

$$\Omega_{\rm DM} h^2 \approx \frac{2.4 \times 10^{23}}{g_{\star s} \sqrt{g_{\star \rho}}} \; \frac{A \, 4^n \, n! \, (n+1)!}{2n-1} \; \frac{T_{\rm RH}^{2n-1} \, m_{\rm DM}}{\Lambda^{2n}}$$

This general formula can be straightforwardly applied to our scenario.

Much like in the previous case, the model provides a source for CP violation whereas the final baryon asymmetry is generated through the interplay with the EW sphalerons.

In this case, the relevant processes are :

⁺ subleading 3-body decays

and there are three sources of CP asymmetry :

$$\epsilon_i \equiv \frac{\gamma_{F_i\bar{e}\to\varphi\varphi} - \gamma_{\bar{F}_i\bar{e}\to\varphi^*\varphi^*}}{\gamma_{F_i\bar{e}\to\varphi\varphi} + \gamma_{\bar{F}_i\bar{e}\to\varphi^*\varphi^*}}$$

$$\epsilon_3 \equiv \frac{\gamma_{F_1\bar{e}\to F_2\bar{e}} - \gamma_{\bar{F}_1e\to\bar{F}_2e}}{\gamma_{F_1\bar{e}\to F_2\bar{e}} + \gamma_{\bar{F}_1e\to\bar{F}_2e}}$$

out of which only the first two generate correlated asymmetries in the two sectors.

The relevant Boltzmann equations in this case read :

$$-sHT\frac{\mathrm{d}Y_{\Delta F_i}}{\mathrm{d}T} = -\left[F_i\bar{e}\leftrightarrow\varphi\varphi\right] - \left[F_i\bar{e}\leftrightarrow F_j\bar{e}\right] + (-1)^i\left[F_i\bar{F}_j\leftrightarrow e\bar{e}\right]$$

$$-sHT\frac{\mathrm{d}Y_{B-L_{\mathrm{SM}}}}{\mathrm{d}T} = -\sum_{i} \left[F_{i}\bar{e}\leftrightarrow\varphi\varphi\right]$$

with numerical solutions resembling as :

Given the temperatures that are the most relevant for our parameter space, the final baryon asymmetry in this case is found to be given by :

$$Y_B = \frac{22}{79} Y_{B-L_{\rm SM}}$$

Results

Once again, the mechanism works! Dark matter production and baryogenesis can be simultaneously achieved and, again, DM is predicted to be relatively light.

Results: scalar DM

Once again, the mechanism works! Dark matter production and baryogenesis can be simultaneously achieved and, again, DM is predicted to be relatively light.

Computing what happens if $T_{_{\rm RH}} > \Lambda$ would require knowledge of the underlying theory

 \cdot Less obvious connection with LHC physics, but possibilities do exist.

 \cdot Although our parameter space is viable, one might be troubled by such high values for $T_{\rm RH}$. Can we do better?

Results: fermion DM

One straightforward way to achieve lower values for $T_{\rm RH}$ is by considering, rather, Dirac fermion DM.

Computing what happens if $T_{_{\rm RH}} > \Lambda$ would require knowledge of the underlying theory

 \cdot In this case the relevant interaction is of mass dimension 6.

· Very similar mechanism as in the scalar case, but stronger temperature dependence \rightarrow Can live with lower $T_{\rm RH}$.

Summary and outlook

 \cdot There is no *a priori* reason why the observed dark matter abundance and the matter-antimatter asymmetry of the Universe should admit a common explanation.

• However, it *is* a possibility. And a much welcome one! This is the reason why such an option has been entertained since quite a few years and in the context of different DM generation mechanisms (asymmetric DM, WIMPy baryogenesis...).

· Freeze-in production of DM, in particular, constitutes an interesting playground for baryogenesis, since it incorporates from the start one of the three Sakharov conditions: out-of-equilibrium dynamics.

 \cdot "Freeze-in baryogenesis" can work in wildly different contexts (asymmetric dark matter, symmetric dark matter that is mostly produced in the IR, UV freeze-in) and it can give rise to interesting signals at the LHC.

• Interesting question: symmetric dark matter freeze-in baryogenesis scenarios seem to predict rather light DM. How generic is this feature ?

Thank you!