Dark Matter Beyond Freeze-in

Sabir Ramazanov (CEICO, Prague)

Astroparticle Symposium 2022 Institut Pascal, Orsay

In collaboration with E. Babichev, D. Gorbunov, A. Vikman

2 November 2022

Mechanisms of Dark Matter production

- Freeze-out: Dark Matter couplings to thermal bath are large enough to maintain early time thermal equilibrium.
- Freeze-in: feebly coupled Dark Matter.

No equilibrium at any time. Out-of-equilibrium scatterings of particles in the primordial plasma into DM particles are sufficient to populate DM phase space.

McDonald'02, Hall et al'10

Mechanisms of Dark Matter production

- Freeze-out: Dark Matter couplings to thermal bath are large enough to maintain early time thermal equilibrium.
- Freeze-in: feebly coupled Dark Matter.

No equilibrium at any time. Out-of-equilibrium scatterings of particles in the primordial plasma into DM particles are sufficient to populate DM phase space.

McDonald'02, Hall et al'10

In this talk:

Dark Matter production beyond freeze-in, or Dark Matter via Inverse Phase Transition. Couplings are so weak that out-of-equilibrium scatterings are insufficient (beyond freeze-in). Freeze-out \rightarrow freeze-in \rightarrow inverse phase transition

Scalar Portal Dark Matter

• Freeze-out: $10^{-8} \ll |g^2| \ll 1$

WIMPS: 1 MeV $\lesssim M \lesssim 100$ TeV

Initially in thermal equilibrium by sufficiently large couplings \Longrightarrow good prospects for testing.

Freeze-out \rightarrow freeze-in \rightarrow inverse phase transition

Scalar Portal Dark Matter

• Freeze-out: $10^{-8} \ll |g^2| \ll 1$

WIMPS: 1 MeV $\lesssim M \lesssim 100$ TeV

Initially in thermal equilibrium by sufficiently large couplings \Longrightarrow good prospects for testing.

• Freeze-in: $|g^2| \simeq 10^{-11}$ Chu at al'12, Lebedev and Toma'19

 $\mathsf{Freeze-out} \to \mathsf{freeze-in} \to \mathsf{inverse}$ phase transition

Scalar Portal Dark Matter

• Freeze-out: $10^{-8} \ll |g^2| \ll 1$

WIMPS: 1 MeV $\lesssim M \lesssim$ 100 TeV

Initially in thermal equilibrium by sufficiently large couplings \Longrightarrow good prospects for testing.

• Freeze-in: $|g^2| \simeq 10^{-11}$ Chu at al'12, Lebedev and Toma'19

• For $0 < g^2 \lesssim 10^{-11}$ Dark Matter from inverse phase transition.

 $\mathcal{L} = rac{(\partial_\mu \chi)^2}{2} - rac{M^2 \cdot \chi^2}{2} - rac{\lambda \cdot \chi^4}{4} + rac{g^2 \chi^2 \phi^\dagger \phi}{2} \; .$

 $T \propto \frac{1}{a(t)} \Longrightarrow Z_2$ -symmetry breaking at early times

$$\langle \chi \rangle = \sqrt{\frac{Ng^2 T^2(t)}{12\lambda} - \frac{M^2}{\lambda}}$$

At very early times the field χ is tracking its vacuum value $\chi = \langle \chi \rangle$

$$\langle \chi
angle \propto T(t) \Longrightarrow rac{\langle \chi
angle}{\langle \chi
angle} \sim H$$

No DM particles initially - same conditions as for freeze-in

At early times χ tracks the minimum $\chi=\langle\chi\rangle$

At early times χ tracks the minimum $\chi=\langle\chi\rangle$

$$\langle \chi \rangle = \sqrt{\frac{\textit{Ng}^2 \textit{T}^2}{12\lambda} - \frac{\textit{M}^2}{\lambda}}$$

$$rac{d\langle\chi
angle}{dt}\proptorac{1}{\langle\chi
angle}
ightarrow\infty$$
 as $\langle\chi
angle
ightarrow0$

At early times χ tracks the minimum $\chi = \langle \chi \rangle$

$$\langle \chi
angle = \sqrt{rac{Ng^2 T^2}{12\lambda} - rac{M^2}{\lambda}} \qquad \qquad rac{d\langle \chi
angle}{dt} \propto rac{1}{\langle \chi
angle} o \infty \ {
m as} \ \langle \chi
angle o 0$$

 χ stops tracking minimum and starts oscillating at low T

At early times χ tracks the minimum $\chi = \langle \chi
angle$

$$\langle \chi
angle = \sqrt{rac{Ng^2 T^2}{12\lambda} - rac{M^2}{\lambda}} \qquad \qquad rac{d\langle \chi
angle}{dt} \propto rac{1}{\langle \chi
angle} o \infty \ {
m as} \ \langle \chi
angle o 0$$

 χ stops tracking minimum and starts oscillating at low ${\cal T}$

 Z_2 -symmetry + feeble couplings involved protect stability \implies these oscillations naturally feed into Dark Matter

Dark Matter abundance is fulfilled provided that

$$M \simeq 25 \text{ eV} \cdot rac{eta^{3/5}}{\sqrt{N}} \cdot \left(rac{g}{10^{-8}}
ight)^{7/5} \qquad eta \equiv rac{\lambda}{g^4} \gtrsim 1/\lambda_\phi \gtrsim 1$$

Why being interested in so small masses and/or feeble couplings?

S. Ramazanov (CEICO)

Is there a life beyond freeze-in?

S. Ramazanov (CEICO)

 $eta \equiv rac{\lambda}{g^4} \qquad \qquad 1 \lesssim rac{1}{\lambda_\phi} \lesssim eta \lesssim 10^{18}$

How to probe very small couplings?-Gravitational waves from domain walls

Domain walls are common in models with spontaneous breaking of Z_2 -symmetry Zel'dovich et al'74

NB Setting to zero through $\xi R \chi^2/2$ for $\xi \gtrsim 1$

Domain walls separate regions, where $\chi = \pm \langle \chi \rangle$

The picture is taken from http://www.ctc.cam.ac.uk/

Domain wall problem

$$\begin{array}{ll} {\rm Kink}: \quad \chi(z) = \langle \chi \rangle \cdot \tanh\left(\sqrt{\frac{\lambda}{2}} \cdot \langle \chi \rangle \cdot z\right) \\ \\ {\rm Domain \ wall \ tension:} \quad \sigma_{wall} = \frac{M_{wall}}{S} = \frac{2\sqrt{2\lambda} \langle \chi \rangle^3}{3} \end{array}$$

Domain wall problem

$$\begin{array}{rl} {\sf Kink}: & \chi(z) = \langle \chi \rangle \cdot {\sf tanh} \left(\sqrt{\frac{\lambda}{2}} \cdot \langle \chi \rangle \cdot z \right) \\ {\sf Domain \ wall \ tension:} & \sigma_{wall} = \frac{M_{wall}}{S} = \frac{2\sqrt{2\lambda} \langle \chi \rangle^3}{3} \\ {\sf the \ scaling \ regime: \ one \ or \ a \ few \ domain \ walls \ in \ the \ horizon \ volume.} \\ {\sf Ryden, \ Press, \ Spergel'89} \end{array}$$

In

Domain wall problem

$$\begin{array}{rl} {\sf Kink}: & \chi(z) = \langle \chi \rangle \cdot {\sf tanh} \left(\sqrt{\frac{\lambda}{2}} \cdot \langle \chi \rangle \cdot z \right) \\ {\sf Domain \ wall \ tension:} & \sigma_{wall} = \frac{M_{wall}}{S} = \frac{2\sqrt{2\lambda} \langle \chi \rangle^3}{3} \\ {\sf the \ scaling \ regime: \ one \ or \ a \ few \ domain \ walls \ in \ the \ horizon \ volume.} \\ {\sf Ryden, \ Press, \ Spergel'89} \end{array}$$

$$\label{eq:rho} \begin{split} \rho_{wall} \sim M_{wall} H^3 \sim \sigma_{wall} H \\ \text{Constant tension domain walls: } \rho_{wall} \simeq \sigma_{wall} H \propto T^2 \end{split}$$

 $rac{
ho_{\it wall}}{
ho_{\it rad}} \propto rac{1}{T^2(t)} \propto a^2(t) \Longrightarrow$ domain walls overclose the Universe!

In

No domain wall problem in our case

$$\langle \chi \rangle \propto T \Longrightarrow \sigma_{wall} \sim \sqrt{\lambda} \langle \chi \rangle^3 \propto T^3$$

$$ho_{wall} \simeq \sigma_{wall} H \propto T^5 \qquad rac{
ho_{wall}}{
ho_{rad}} \propto T(t) \propto rac{1}{a(t)}$$

No domain wall problem in our case

$$\langle \chi
angle \propto T \Longrightarrow \sigma_{\it wall} \sim \sqrt{\lambda} \langle \chi
angle^3 \propto T^3$$

$$ho_{wall} \simeq \sigma_{wall} H \propto T^5 \qquad rac{
ho_{wall}}{
ho_{rad}} \propto T(t) \propto rac{1}{a(t)}$$

Energy density of domain walls redshifts faster than radiation

Domain walls completely vanish at inverse phase transition Vilenkin'81

Do melting domain walls leave any trace?

Gravitational waves from domain walls

Numerical simulations: Hiramatsu, Kawasaki, Saikawa'13

$$F_{gw,peak} \simeq H(t)$$
 $ho_{gw} \simeq rac{\sigma_{wall}^2}{M_{Pl}^2}$

Gravitational waves from domain walls

Numerical simulations: Hiramatsu, Kawasaki, Saikawa'13

$$F_{\mathsf{gw},\mathsf{peak}} \simeq H(t) \qquad
ho_{\mathsf{gw}} \simeq rac{\sigma_{\mathit{wall}}^2}{M_{Pl}^2}$$

$$f_{gw,peak} \simeq 60 \; {
m Hz} \cdot \sqrt{rac{N}{B}} \cdot \left(rac{g}{10^{-8}}
ight)$$

$$\Omega_{gw,peak} \cdot h_0^2 pprox rac{4 \cdot 10^{-14} \cdot N^4}{B \cdot eta^2}$$

 $B = \ln^2 rac{2 \langle \chi
angle}{\delta \chi} \simeq 1 - 100 \,$ takes into account finite time of roll

Gravitational waves from domain walls

Numerical simulations: Hiramatsu, Kawasaki, Saikawa'13

$$extsf{F}_{ extsf{gw,peak}} \simeq extsf{H}(t) \qquad
ho_{ extsf{gw}} \simeq rac{\sigma_{ extsf{wall}}^2}{M_{ extsf{Pl}}^2}$$

$$f_{gw,peak} \simeq 60 \,\, ext{Hz} \cdot \sqrt{rac{N}{B}} \cdot \left(rac{g}{10^{-8}}
ight)$$

$$\Omega_{gw,peak} \cdot h_0^2 pprox rac{4 \cdot 10^{-14} \cdot N^4}{B \cdot eta^2}$$

 $B = \ln^2 rac{2 \langle \chi
angle}{\delta \chi} \simeq 1 - 100 \,$ takes into account finite time of roll

Vanilla region:
$$g^2 \lesssim 10^{-16}$$

$$\beta \equiv \frac{\lambda}{g^4} \simeq 1$$

Weaker coupled means more visible!

S. Ramazanov (CEICO)

Gravitational waves vs sensitivity curves

Strain $\sqrt{S_h}$ $\Omega_{gw}H_0^2 = \frac{2\pi^2 f^3}{3}S_h$

gwplotter.com Moore, Cole, and Berry'14

Preliminary spectrum of GWs

Different spectrum compared to the case of constant tension domain walls.

S. Ramazanov (CEICO)

- Dark Matter can be produced via inverse phase transition even for tiny portal couplings $g^2 \ll 10^{-11}$.
- Weak couplings can be tested through GWs emitted by domain walls. The peak frequency is pinned to the constant g, i.e., $f_{gw} \propto g$.
- Domain walls are melting and do not overclose the Universe.

Merci Beaucoup! Thanks for your attention!!!