Credits: Aman Chokshi

Building the SPT-3019/20 HREHMOOG

Paris-Saclay Astroparticle Symposium 2022 - Early and Late Universe Cosmology session

Etienne Camphuis (Institut d'Astrophysique de Paris) with K. Benabed, T. Crawford, A. Doussot, S. Galli, F. Guidi, E. Hivon, W. Quan on behalf of SPT-3G collaboration

- SPT-3G 2019-2020 winter field 1
- Forecasts 2.
- Robust likelihood pipeline: focus on covariance matrix 3.
 - A. Analytical covariance matrices for 19/20 likelihood [<u>https://arxiv.org/abs/2204.13721</u>]
 - High-precision inpainting [Benabed, Camphuis, in prep] В.
 - C. Adapting framework to filtering [Hivon, Doussot, in prep]

Content

1. South Pole Telescope Current survey: SPT-3G

- 10-meter diameter telescope located at the South Pole in optimal conditions for microwave observations, observing CMB anisotropies
- SPT-3G: state-of-the art instrument with 3 frequencies 90, 150, 220 GHz
- Beam: 1.6'/1.2'/1.0' (*Planck:* 5')
- See <u>Sobrin et al. 2022</u> for more details

Kavli Institute for Cosmological Physics at The University of Chicago

1. SPT-3G Winter Field 2019-2023

- Winter field covers 4.1% of the sky = 1700 deg²
- Aimed final map-depth after 5 years: 2.3
 μKarcmin in T @ 150GHz (*Planck:* ~40
 μKarcmin)

• Additional summer fields: see F. Guidi's presentation

N

2. Forecasts

From full 2019-2023 survey (winter field only)

- All (but n_s) parameters constrained as well or better than Planck
- Combined constraints: twice as good!
- We will test consistency and extensions
- More improvements including summer fields

Forecasts on Λ CDM parameters

Credits: Silvia Galli

Planck 2018 + lensing:

• $\sigma(H_0) = 0.54 \text{ km.s}^{-1} \text{Mpc}^{-1}$, $\sigma(\sigma_8) = 0.0060$

SPT-3G TTTEEE+tau-prior+lensing (but ignoring correlations with lensing):

• $\sigma(H_0) = 0.34 \text{ km.s}^{-1} \text{Mpc}^{-1}$, $\sigma(\sigma_8) = 0.0040$

3. Analytical covariance

- Robust pipeline = light pipeline
- Accurate covariance matrices are required for a unbiased estimation of the cosmological parameters and their error bars. [Sellentin&Starck 2019]
- Mock-observations are used to build the covariance matrix of the data vector of primary anisotropies (TTTEEE) => we replace it by a precise and fast analytical computation of the covariance

Power spectrum gaussian likelihood : $-\ln \mathscr{L}(\hat{C} \mid \Lambda \text{CDM})$ $\propto \frac{1}{2} (\hat{C} - C^{\text{th}})^T \Sigma^{-1} (\hat{C} - C^{\text{th}}))$

> This work can be applied to any power spectrum based gaussian likelihood!

3. A. Accurate covariance matrices on small survey area

- Robust pipeline = light pipeline
- Accurate covariance matrices are required for a unbiased estimation of the cosmological parameters and their error bars. [Sellentin&Starck 2019]
- Mock-observations are used to build the covariance matrix of the data vector of primary anisotropies (TTTEEE) => we replace it by a precise and fast analytical computation of the covariance

3. A. Accurate covariance matrices on small survey area

For the first time, we implemented 1. a speed-up allowing to compute exactly the covariance

3. A. Accurate covariance matrices

- For the first time, we implemented a speed-up allowing to compute exactly the covariance matrix
- 2. Then, we used that exact covariance to assess the accuracy of existing (NKA, INKA, FRI) and a new (ACC) fast approximations of the covariance
- 3. See [Camphuis et al. 2022] in A&A

Relative difference of binned approximations vs exact computation

[Camphuis et al., 2022]

Previous works: [Efstathiou 2004]+[Challinor&Chon 2004], [Friedrich et al. 2021], [Nicola et al. 2021]

 Small scale features in the mask (source-masking) makes analytical framework fail

Holes in the map to mask emitting sources

 1.U
-
0.8
 0.6
 Š
 0.4
 0.2
0.0

- 1. Small scale features in the mask makes analytical framework fail
- 2. We use high-precision inpainting to fill the holes in the data, thus simplifying the mask geometry:
 Gaussian constrained realization

Holes in the map to mask emitting sources

 	1.0	
-	1.0	
-	0.8	
-		
-	0.6	~
	0.4	Ċ
-		
	0.2	
	0.0	

- Small scale features in the mask 1. makes analytical framework fail
- We use high-precision inpainting 2. to fill the holes in the data, thus simplifying the mask geometry
- We show that we have very small 3. bias on the spectra of inpainted maps

Bias on spectra of unpainted maps in units of standard deviation

- Small scale features in the mask makes analytical framework fail
- We use high-precision inpainting 2. to fill the holes in the data, thus simplifying the mask geometry
- We show that we have very small 3. bias on the spectra of inpainted maps
- We correct the covariance to down-weight the fake information in the map

Bias on spectra of unpainted maps in units of standard deviation

3. C. Covariance with anisotropies

 For SPT-3G, the maps are treated with an **anisotropic filtering**. The analytical framework should fail

CMB temperature map with anisotropic filter

3. C. Covariance with anisotropies

- 1. For SPT-3G, the maps are treated with an **anisotropic filtering**. The analytical framework should fail
- 2. We adapted the analytical covariance framework to take into account those anisotropies, using a 1D correction [Hivon, Doussot et al. in prep] Plot: ratio of diagonals analytical framework over simulations, we always overestimate the variance by less than 5%.

CMB temperature map with anisotropic filter

Ratio of diagonals : (Analytical covariance)/(Simulations with 2D filtering)

Conclusions

- The SPT-3G 2019-2020 data set will allow us to put tight constraints on cosmological parameters. Such constraints require a robust likelihood
- In [https://arxiv.org/abs/2204.13721], we show that we are able (1) to compute exactly covariance matrices, (2) to evaluate precision of approximations on small footprints and (3) to build a high-accuracy new approximation ACC.
- We are inpainting with high-precision the maps to allow for the analytical computation, taking into account every instrumental effect and correcting accordingly the covariance [Camphuis, Benabed, in prep]
- We have adapted this analytical framework to anisotropies [Hivon, Doussot, in prep]

3. Final covariance

Preliminary multi-frequency covariance matrix for the likelihood pipeline obtained with our analytical framework!

Future work: extensively test the likelihood

SPT-3G covariance in microKelvin⁴

