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1. South Pole Telescope
Current survey: SPT-3G

• 10-meter diameter telescope located 
at the South Pole in optimal 
conditions for microwave 
observations, observing CMB 
anisotropies 

• SPT-3G: state-of-the art instrument 
with 3 frequencies 90, 150, 220 GHz 

• Beam: 1.6’/1.2’/1.0’ (Planck: 5’) 

• See Sobrin et al. 2022 for more details

Credits: Aman Chokshi

https://arxiv.org/abs/2106.11202


1. SPT-3G Winter Field
2019-2023

• Winter field covers 4.1% of the sky = 1700 
deg2 

• Aimed final map-depth after 5 years: 2.3
 in T @ 150GHz (Planck: ~40
) 

• Additional summer fields: see F. Guidi’s 
presentation
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Planck 2018 + lensing:  
• ,  
SPT-3G TTTEEE+tau-prior+lensing (but ignoring correlations with lensing): 
• , 

σ(H0) = 0.54 km.s−1Mpc−1 σ(σ8) = 0.0060

σ(H0) = 0.34 km.s−1Mpc−1 σ(σ8) = 0.0040

2. Forecasts
From full 2019-2023 survey (winter field only)

• All (but ) parameters constrained 
as well or better than Planck 

• Combined constraints: twice as 
good ! 

• We will test consistency and 
extensions 

• More improvements including 
summer fields

ns

Credits: Silvia Galli

Forecasts on CDM parametersΛ



• Robust pipeline = light pipeline 

• Accurate covariance matrices are 
required for a unbiased estimation 
of the cosmological parameters and 
their error bars. [Sellentin&Starck 
2019] 

• Mock-observations are used to build 
the covariance matrix of the data 
vector of primary anisotropies 
(TTTEEE) => we replace it by a 
precise and fast analytical 
computation of the covariance

3. Analytical covariance 
−ln ℒ(Ĉ |ΛCDM)

∝
1
2

(Ĉ − Cth)TΣ−1(Ĉ − Cth))

Power spectrum gaussian likelihood :

This work can be 
applied to any power 
spectrum based 
gaussian likelihood!
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−ln ℒ(Ĉ |ΛCDM)

∝
1
2

(Ĉ − Cth)TΣ−1(Ĉ − Cth))

Power spectrum gaussian likelihood :

Pure geometric coupling  

- MASTER matrix 

Fiducial power spectrum

Covariance coupling kernel 

Computationally expensive

Cov(Ĉℓ, Ĉℓ′ 
) = 2Ξℓℓ′ 

[W2]∑
ℓ1ℓ2

Cth
ℓ1

Θ̄ℓ1ℓ2
ℓℓ′ 

[W] Cth
ℓ2

3. A. Accurate covariance matrices 
on small survey area

• Robust pipeline = light pipeline 

• Accurate covariance matrices are 
required for a unbiased estimation 
of the cosmological parameters and 
their error bars. [Sellentin&Starck 
2019] 

• Mock-observations are used to build 
the covariance matrix of the data 
vector of primary anisotropies 
(TTTEEE) => we replace it by a 
precise and fast analytical 
computation of the covariance



1. For the first time, we implemented 
a speed-up allowing to compute 
exactly the covariance
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3. A. Accurate covariance matrices 
on small survey area



1. For the first time, we implemented 
a speed-up allowing to compute 
exactly the covariance matrix 

2. Then, we used that exact 
covariance to assess the 
accuracy of existing (NKA, INKA, 
FRI) and a new (ACC) fast 
approximations of the 
covariance 

3. See [Camphuis et al. 2022] in A&A

�4

�2

0

2

4

D
ia

go
na

l
⌃̃

A
PP

bb
/⌃̃

bb
�

1

⇥10�2 TTTT EEEE

225 375 525 675 825 975
b

�4

�2

0

2

4

Fi
rs

to
↵

-d
ia

go
na

l
⌃̃

A
PP

b,
b+

1/
⌃̃

b,
b+

1
�

1

⇥10�2

ACC (this work) NKA INKA FRI

225 375 525 675 825 975
b

Relative difference of binned approximations vs exact computation

3. A. Accurate covariance matrices

[Camphuis et al., 2022] Previous works: 
[Efstathiou 2004]+[Challinor&Chon 2004],  

[Friedrich et al. 2021], [Nicola et al. 2021]



3. B.  High-precision inpainting

1. Small scale features in the mask 
(source-masking) makes 
analytical framework fail

Holes in the map to mask emitting sources



3. B.  High-precision inpainting

1. Small scale features in the mask 
makes analytical framework fail 

2. We use high-precision inpainting 
to fill the holes in the data, thus 
simplifying the mask geometry: 
Gaussian constrained 
realization

Holes in the map to mask emitting sources

T,Q,U



3. B.  High-precision inpainting

1. Small scale features in the mask 
makes analytical framework fail 

2. We use high-precision inpainting 
to fill the holes in the data, thus 
simplifying the mask geometry 

3. We show that we have very small 
bias on the spectra of inpainted 
maps T,Q,U

Bias on spectra of unpainted maps in units of standard deviation



3. B.  High-precision inpainting

1. Small scale features in the mask 
makes analytical framework fail 

2. We use high-precision inpainting 
to fill the holes in the data, thus 
simplifying the mask geometry 

3. We show that we have very small 
bias on the spectra of inpainted 
maps  

4. We correct the covariance to 
down-weight the fake information 
in the map

TI = WTD + (1 − W)TR ⟹ ⟨CI
ℓ⟩ = Cth

ℓ

We define ρ =
Cth

ℓ

⟨CWTD
ℓ ⟩

then Σinpainted = ρ ⊗ ρΣbare

Corrects for the bias

Fake data, so you boost your covariance 

Bias on spectra of unpainted maps in units of standard deviation



1. For SPT-3G, the maps are treated 
with an anisotropic filtering. 
The analytical framework should 
fail

3. C. Covariance with anisotropies

CMB temperature map with anisotropic filter

Scanning strategy



Ratio of diagonals : (Analytical covariance)/(Simulations with 2D filtering) 

CMB temperature map with anisotropic filter

1. For SPT-3G, the maps are treated 
with an anisotropic filtering. The 
analytical framework should fail 

2. We adapted the analytical 
covariance framework to take 
into account those anisotropies, 
using a 1D correction [Hivon, 
Doussot et al. in prep] 
Plot: ratio of diagonals analytical 
framework over simulations, we 
always overestimate the variance 
by less than 5%. 

3. C. Covariance with anisotropies Scanning strategy

Preliminary Preliminary



Conclusions
• The SPT-3G 2019-2020 data set will allow us to put tight constraints on 

cosmological parameters. Such constraints require a robust likelihood 

• In [https://arxiv.org/abs/2204.13721], we show that we are able (1) to compute 
exactly covariance matrices, (2) to evaluate precision of approximations on small 
footprints and (3) to build a high-accuracy new approximation ACC.  

• We are inpainting with high-precision the maps to allow for the analytical 
computation, taking into account every instrumental effect and correcting 
accordingly the covariance [Camphuis, Benabed, in prep] 

• We have adapted this analytical framework to anisotropies [Hivon, Doussot, in 
prep]
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https://arxiv.org/abs/2204.13721


Preliminary multi-frequency 
covariance matrix for the likelihood 
pipeline obtained with our analytical 
framework ! 

Future work: extensively test the 
likelihood 

3. Final covariance


