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Motivation

‘ Multimessenger Alliance

Gravitational Waves Electromagnetism Neutrinos
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Motivation

‘ Gravity at the Quantum Realm

Source: APS
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Brief Introduction to Neutrino Oscillations

Brief Introduction to Neutrino Oscillations

@ Neutrino Oscillations: back and forth change between their
different flavors(e, u and 7, for now).
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Brief Introduction to Neutrino Oscillations

Brief Introduction to Neutrino Oscillations

@ Neutrino Oscillations: back and forth change between their
different flavors(e, p and 7, for now).

@ First proposed by Bruno Pontecorvo in the late 50s and shown
to solve the Solar neutrino problem in the late 60s.
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Bruno Pontecorvo
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Brief Introduction to Neutrino Oscillations

Brief Introduction to Neutrino Oscillations

@ Neutrino Oscillations: back and forth change between their
different flavors(e, pu and 7, for now).

@ First proposed by Bruno Pontecorvo in the late 50s and shown
to solve the Solar neutrino problem in the late 60s.

@ Quantify in terms of transition probability:

2 2
my—m L

Preosv, = [{ve(t)|vu(t)]? = ... = sin?(20) sin <2E )
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Brief Introduction to Neutrino Oscillations

Brief Introduction to Neutrino Oscillations

@ Neutrino Oscillations: back and forth change between their
different flavors(e, u and 7, for now).

@ First proposed by Bruno Pontecorvo in the late 50s and shown
to solve the Solar neutrino problem in the late 60s.

@ Quantify in terms of transition probability:
Prccon, = e (D = .. = sin(26)sin? (7 L)

@ When passing through matter, § — 6, m; — m;(MSW effect).
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Brief Introduction to Neutrino Oscillations

Brief Introduction to Neutrino Oscillations

@ Neutrino Oscillations: back and forth change between their
different flavors(e, u and 7, for now).

@ First proposed by Bruno Pontecorvo in the late 50s and shown
to solve the Solar neutrino problem in the late 60s.

@ Quantify in terms of transition probability:
Prccsn, = e (D = . = sin(26) sin? (7 L)

@ When passing through matter, § — 6, m; — m;(MSW effect).
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Spinors in Curved Spacetime

Dirac Equation in Curved Spacetime

(ifmw/yuﬁ” — mc)d) =0
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Spinors in Curved Spacetime

Dirac Equation in Curved Spacetime

CurvedSpacetime
_

(A" 0" —mc)y =0 (itiguw (X)y*V” —mc)y =0
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Spinors in Curved Spacetime

Dirac Equation in Curved Spacetime

CurvedSpacetime

(ihnwﬁ“@” — mc)¢ =0 (ihgu,,(x)vl‘V” — mc)w =0
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Spinors in Curved Spacetime

Dirac Equation in Curved Spacetime

. Cl dS, til .

(lhﬁuy’)/“ay—mc)@[) —0 urveaspacetime (/hgu,,(x)W"V”—mc)@Z) —0
General covariance requires fields to behave like tensors under
coordinates transformation. However, 1) is not a tensor. J

Ali Rida Khalifé ridakhal@iap.fr Neutrino Oscillation: an Avenue to Probe the Universe



Spinors in Curved Spacetime

Dirac Equation in Curved Spacetime

CurvedSpacetime

(ihnwﬁ“@” — mc)¢ =0 (ihgw,(x)v“V” — mc)w =0

General covariance requires fields to behave like tensors under
coordinates transformation. However, 1 is not a tensor.
Fundamental reason: GL(4,R) does not have a spinorial
representation.

Solution: Use tetrad formalism, i.e. link local coordinates to global
ones
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Spinors in Curved Spacetime

Dirac Equation in Curved Spacetime

CurvedSpacetime

(A" 0" —mc)y =0 (ihiguw (X)y*V” —mc)y =0

General covariance requires fields to behave like tensors under
coordinates transformation. However, 1) is not a tensor.
Fundamental reason: GL(4,R) does not have a spinorial
representation.

Solution: Use tetrad formalism, i.e. link local coordinates to global
ones

iy (x) (0, — Tu) — mC] W =0; P =y
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Partl: General Formalism

Part |:General Formalism

e 5= Sgravity + Sscalar + Sspinor + Sinteraction
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Partl: General Formalism

Part |:General Formalism

e 5= Sgravity + Sscalar + Sspinor + Sinteraction
Variational Principle\U/

° (ihv“Du — mc)q/) ="Force”
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Partl: General Formalism

Part |:General Formalism

e 5= Sgravity + Sscalar + Sspinor + Sinteraction
Variational Principle\U/
o (iny*Dy — mc)tp ="Force”

o Consider different types of couplings
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Partl: General Formalism

Part |:General Formalism

e 5= Sgravity + Sscalar + SSpinor + Sinteraction
Variational PrincipleU/

° (ihv“Du — mc)q/) ="Force”

e Consider different types of couplings

e

Solve Dirac equation using
WKB approximation at 0"
and 1% order in A
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Partl: General Formalism

Part |:General Formalism

e 5= Sgravity + Sscalar + SSpinor + Sinteraction
Variational PrincipleU/

° (ihv“Du — mc)q/) ="Force”

e Consider different types of couplings

N

Solve Dirac equation using Oscillation probability as a

WKB approximation at 0" function of redshift. Gravity

and 1%t order in A. and ¢ alter neutrino
oscillations.
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Partl: General Formalism

Part |:General Formalism

5= d4x¢fg[% — 10,p0" @ — V(@) +il(Py* Dprp —DpibyHap) —2miprp+ 10
Variational Principle\U/

o (iny*Dy — mc)ip ="Force”

o Consider different types of couplings

YR
Solve Dirac equation using Oscillation probability as a
WKB approximation at 0t function of redshift. Gravity
and 1% order in h. and ¢ alter neutrino
oscillations.
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Partl: General Formalism

Part |:General Formalism

@ S= fd4x\/fg[%Rf%8u<p8“<pfV(g0)+ih(1/_17“D#w7DmZ’y“w)72m1/_11/J+)\@}
1 6S

V=g &y
° (ihv“(@u —Tu) - mc)lj) = —% <gg — (0" — F“);%) = —%g—Q

e Consider different types of couplings

YR
Solve Dirac equation using Oscillation probability as a
WKB approximation at Ot function of redshift. Gravity
and 1% order in h. and ¢ alter neutrino
oscillations.
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Partl: General Formalism

Part |:General Formalism

—

° 5= fd4x\/7—g[%R—%(’?ﬂg@(‘)“w—V(go)-l—iﬁ(i/_)'y“Duw—DHqZ'y“w)—2m1/_)w+)\®
1 4S

V=g &P
: 99 90 — 1)
° (Iﬁ’y“(au —Tu)— mc)qj) = _% <81; — (0" — ru)ax5> = _%T
@ Current-Velocity coupling:© = ihzﬁfyﬂwaucp;

Kinetic-Potential coupling:© = ih}Z’y“Dung@z;
Kinetic-Kinetic coupling: © = ihpy" D, 0,00 .

YR
Solve Dirac equation using Oscillation probability as a
WKB approximation at 0t function of redshift. Gravity
and 1% order in h. and ¢ alter neutrino
oscillations.
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Partl: General Formalism

Part |:General Formalism

—

° 5= fd4x\/7—g[%R—%(’?ﬂg@(‘)“w—V(go)-l—iﬁ(i/_)'y“Duw—DHqZ'y“z/;)—2m1/_)w+)\®
1 4S

V=g &P
: Al 0© 90 — A9
o (iy#(Qu—Ty) —me)p = —3 <315 — (9" - r“)aX{ﬁ) =725
@ Current-Velocity coupling:© = iﬁfzﬁﬂ/“w@unp;

Kinetic-Potential coupling:© = ihz/_fﬁ,’“Duq/wz;
Kinetic-Kinetic coupling: © = ihpy" D, 0,00 .

YR
Solve Dirac equation using Oscillation probability as a
WKB approximation at 0t function of redshift. Gravity
and 1% order in F. and ¢ alter neutrino
oscillations.
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Partl: General Formalism

Part |: WKB approximation- Linear Derivative Coupling

o © = iy Ydup
o Write ¢(x) = e"s(x)/hZio(—ih)"wn(X)
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Partl: General Formalism

Part |: WKB approximation- Linear Derivative Coupling

® O = iy Yduyp
o Write ¢(x) = eS(x)/n o2 o(—ih)"Pn(x).

@ Insert into Dirac equation and isolate powers of i
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Partl: General Formalism

Part |: WKB approximation- Linear Derivative Coupling

0 O = ify"pd,p
o Write 90(x) = eS()/" 5% (—iR)")n(x).

@ Insert into Dirac equation and isolate powers of i

| (0,54 m) + 3179, v

- ih[(v“&ﬁ +m— Sv“amp) Y1+ V“Duwo] +O(r?) =0.
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Partl: General Formalism

I: WKB approximation- Linear Derivative Coupling

© = ihz/?’y“zbaucp
Write 1h(x) = €S0/ S0 (i) ™pn(x).
Insert into Dirac equation and isolate powers of &

{ — (v0,S + m) + gw(m} o

+ ih[<7u3#5 +m— ;"Y“amp) 1 + 7#1)“1#0] + O(h2) =0.
At order h°, 4-momentum satisfies usual geodesic equation:
G+ il 5,P P =0
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Partl: General Formalism

I: WKB approximation- Linear Derivative Coupling

© = ihpy" P8,
Write ¢(x) = i5(x)/h Y02 o(—iR) ().

Insert into Dirac equation and isolate powers of &

|: (’Y“aus + m) + ;\’Y'“au‘r{| (o

+ ithaus +m— ;‘fy“@mo) Y1+ wmwo] +O(h*) = 0.
o At order h?, 4-momentum satisfies usual geodesic equation:
T: + #r%pﬂpv =0
o At order h:
ddp—: + #I'C“mpﬂp7 = mf* < hp*Rusvs
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Partl: General Formalism

Part |: WKB approximation- Kinetic-Potential Coupling

o © = ilpy"D,hp?, apply same steps.
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Partl: General Formalism

Part |: WKB approximation- Kinetic-Potential Coupling

o © = ipy"D,hp?, apply same steps.
o At order A:

“1
dp® 2
B+ Lrey PP = =M [m( - Af)] (m°Xg + ppsX7);

Xg =0%
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Partl: General Formalism

Part |: WKB approximation- Kinetic-Potential Coupling

o © = ilpy"D,hp?, apply same steps.
o At order A0:

“1
dp® ?
B+ Lrey pPpr = —)p [m( - Af)] (mXg + p°psXy);

o In flat FLRW:
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Partl: General Formalism

Part |: WKB approximation- Kinetic-Potential Coupling

e ©= I'ﬁ’l/_J’}/”DM’l/J(p2, apply same steps.
o At order A0:

-1
[e 2
S O N

Xg =0%
o In flat FLRW:

~ 2
S

@ Change in matter-radiation equality:

1/3 o\ 171
1+2eq:g';’(‘)’[1+Ny<181) (1—“5) }

32
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Partl: General Formalism

Part |:General Formalism

—

° 5= fd4x\/7—g[%R—%(’?ﬂg@(‘)“w—V(go)-l—iﬁ(i/_)'y“Duw—DHqZ'y“z/;)—2m1/_)w+)\®

_1 945
V—g &
: Al 0© 90 — A9
o (ity"(8y —Tpu)—me)p =—35 <81; — (0" — F“)BX5> =55
@ Current-Velocity coupling:© = 1/_1761#8“@;
Kinetic-Potential coupling:© = ih}b'y“Dungpz;
Kinetic-Kinetic coupling: © = ihpy" D, 0,00 .
YR
Solve Dirac equation using Oscillation probability as a
WKB approximation at 0 function of redshift. Gravity
and 1% order in h. and ¢ alter neutrino

oscillations(NO).
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Results
Part II: Neutrino Oscillation in flat FRW

Part II: NO & DE-Interaction term

What type of coupling © should we consider for Neutrino-DE
interaction?
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Results
Part II: Neutrino Oscillation in flat FRW

Part II: NO & DE-Interaction term

What type of coupling © should we consider for Neutrino-DE
interaction?

_%% — (fF((p,Xg) -l-ff’y“Gu(‘Pan))l/}-
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Results
Part II: Neutrino Oscillation in flat FRW

Part II: NO & DE-Interaction term

What type of coupling © should we consider for Neutrino-DE
interaction?

—352 = (6F (0, XE) + &7 Gulip, X2)) ¥
e N
Flavor-invariant coupling Flavor-dependent Coupling
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Results
Part II: Neutrino Oscillation in flat FRW

Part II: NO & DE-Interaction term

What type of coupling © should we consider for Neutrino-DE
interaction?
=552 = (6F (0, XE) + &7 Gulep, X£)) ¥
/ N

Flavor-invariant coupling Flavor-dependent Coupling

Focus later on A and Scalar field DE, with Current-Velocity

coupling(y)y*10,up)
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Results

Part II: Neutrino Oscillation in flat FRW

Part Il: NO & DE-Dirac Equation

For 2-flavor system (v, v,,), define ¢ = ("Ze>
i

(W“DM - Mf>1b = (EF (9, XE) + & Gulp, X5)) b
where My = vaccum mass matrix in flavor space;
2
M= U ( " m%> U

cosf sinf

and U = mixing matrix = (_ Ginf  cos 9> ;0 = mixing angle

Neutrino Oscillation: an Avenue to Probe the Universe
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Results
Part II: Neutrino Oscillation in flat FRW

Part Il: NO & DE-Flavor state

2

Recall: in flat S.T, |va) =32, 5 Uaje_’-%L|1/j>.
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Results
Part II: Neutrino Oscillation in flat FRW

Part Il: NO & DE-Flavor state

m2

Recall: in flat S.T, |va) =3, Uaje_’-%ﬂyj}.

In curved S.T,

Va) = 2jz12 Unje'® M)

A
where () = f P.ppundN; P = 4-momentum operator;
Ao

Pnun =null vector tangent to worldline.
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Results
Part II: Neutrino Oscillation in flat FRW

Part Il: NO & DE-Flavor state

Vo) = X jm12 Uaje' ) i;;!Va(A» = ®(A)[va(A))
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Results
Part II: Neutrino Oscillation in flat FRW

Part Il: NO & DE-Transition Amplitude

ad = Yo Uage® i) 10 ra(0) = O()lwa(V)

Vag = (vlva(X))

Ali Rida Khalifé ridakhal@iap.fr Neutrino Oscillation: an Avenue to Probe the Universe



Results
Part II: Neutrino Oscillation in flat FRW

Part Il: NO & DE-Transition Amplitude
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Results
Part II: Neutrino Oscillation in flat FRW

Part Il: NO & DE-Transition Amplitude

Vo) = 3oj—12 Uaje V) i;;\!Va(A)) = ®(N)|va(A))

. d ~
\Ualg = (Vﬁ’Va()\» > Iﬁwag = [;M% + V/] \Uag
2
~ —&F 0
M2 = U ((m1 Of ) (s — fF)2> Ut Vi o & Gupl,

Gravitational MSW effect
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Results
Part II: Neutrino Oscillation in flat FRW

Part Il: NO & DE-Transition Amplitude

Vo) = Yjm1.2 Unje™*My) & ijA!Va(A» = ®(A)[va(A))

.d ~
\Uaﬂ = <V5’Va()\)> E— Iﬁwaﬁ = [EM% -+ V[] \Ua,g

2
~ m —&F 0 .
M%: U<( ' 0 ) (m2_§F)2> UT'VI OcéfGﬂpﬁull
. . 1472 o cos@NN sinéN o
Diagonalize [2Mf + V/] by U = (_ <ind cosc9> with eigenvalues vy
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Results
Part II: Neutrino Oscillation in flat FRW

Part II: NO & DE-Probability

For A and scalar DE with linear derivative coupling, we have

adiabatic regime, i.e. % =0.

Pl/e%uu = ’\Ue'u|2 — ]:(fF,éfG) Sil‘\2 295in2 (

)

w_ — W+ ~
A
@(Ao —\) + Vjcos20(€e — £,)(A — o) + EAm L Fd\.
Compare to flat S.T: PS4, = sin® 20 sin® <(’"§—”'§)L>
"ot Ve_n’u AE
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Results
Part II: Neutrino Oscillation in flat FRW

Part II: NO & ACDM

In Particle Physics (Minkowski spacetime):

. . 2
Py, = sin® 20 sin® (A&L)
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Results
Part II: Neutrino Oscillation in flat FRW

Part II: NO & ACDM

In Particle Physics (Minkowski spacetime):

. . 2
Py, = sin® 20 sin® (AZ;EL)

FRWﬂ L—d;E— Ey/a

.2 . 2 rAm?d;a
Py, = sin®20sin (74‘50 )

dp = (1 + Ze)H(;l I <Qm0(1 + 2)3 + Q/\())

—-1/2
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Results
Part II: Neutrino Oscillation in flat FRW

Part II: NO & ACDM

Quantum spinors in flat FLRW universe with cosmological constant
DE:
Pp = sin® 20 sin® wp;

Ze -1/2
won =285 [ 2 = 55 ) (Qmo(l +z)7+QA0(1+z)4> dz

— Hy =Hubble constant today;
— z. =emission redshift;

— Qmy (24,) =matter(DE) density parameter.
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Results

Part II: Neutrino Oscillation in flat FRW

Part II: NO & ACDM

0.8} J
0.6} J

P/Sin?20 —-%
0.4} -
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Results

Part II: Neutrino Oscillation in flat FRW

Part II: NO & Quintessence

In flat FLRW with scalar field DE(e.g. quintess§nce, modified
gravity) coupled to neutrinos via Line = {y* 100,

= ACDM

P Y . I §~1047

PIsin?26

........ §~10—16
§~107"°

—_— 10

Ze
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Part IIl: On the Hubble Tension

Part I1l: NO & the Hubble Tension(HT)-Plan

@ Generalize to three neutrino flavors in ACDM
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Part IIl: On the Hubble Tension

Part I1l: NO & HT-Plan

o Generalize to three neutrino flavors in ACDM

o Effect of different Hy values on the oscillation probability.
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Part IIl: On the Hubble Tension

Part I1l: NO & HT-Plan

o Generalize to three neutrino flavors in ACDM

o Effect of different Hy values on the oscillation probability.

o Distinguish between Normal Hierarchy(NH) and Inverted
Hierarchy(IH)

" — ()" (m,)” — —

(m,)” e——

(@),
-— (m,)’ (my)’m e—

normal hierarchy inverted hierarchy

Schematic difference between the two neutrino hierarchies. my > 3 are eigenvalues for neutrino mass
2 _ 2 2
states, and Am'-j =mj m;
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Part IIl: On the Hubble Tension

IIl: NO & HT-Plan

Generalize to three neutrino flavors in ACDM

Effect of different Hy values on the oscillation probability.

Distinguish between Normal Hierarchy(NH) and Inverted
Hierarchy(IH)

Show results in terms of Ternary diagrams and neutrino flux vs.
redshift plots.
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Part IIl: On the Hubble Tension

Part I1l: NO & HT-Equations Needed

o ACDM:
ds? = gy dxtdx? = —dt? + a(t)(dr® + r?d6? + r?sin? 0d¢?),

H?(2) = %58 (pm + p) = H} (Qm(l +2)* + QA>
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Part IIl: On the Hubble Tension

Part I1l: NO & HT-Equations Needed

o ACDM:
ds? = g, dxtdx” = —dt? + a?(t)(dr? + rd6? + r?sin? 0d ¢?),

HA(2) = 558 (o + on) = HB (1 +20° + 20
@ Transition Probability:

_ AmZ AN [ AmZAN
P.s = 6a5+; [aag;,-j sin? <i> +bagjjsin (é)]
i<
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Part IIl: On the Hubble Tension

Part IIl: NO & HT-Pion Decay I.C.

(Ve, vu,vr) = (1/3,2/3,0)

R RS R 2
-
c

——IceCube 68%CL ——lceCube 15yrs 68% CL

—IceGube 85%CL IceCube 15yrs+Gen2 10 yrs 68% CL
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Part IIl: On the Hubble Tension

Part Ill: NO & HT-Flux EU vs. LU

0.4
0.3]
S EUty 02
0.1
0.0 =
0.01 0.05 0.10 050 1 5 10 0.01 0.05 0.10 050 1 5 10
Ze 2
0.24f
EU-LU —NH
s L H
0.22]
0.20)
0.1 0.5 1 5 10

n Avenue to Probe the Universe



Part IIl: On the Hubble Tension

Part I1l: NO & HT-Observational Prospects

@ Uncertainty from Planck2018 on Q, induces ~ 0.12% change
to results.
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Part IIl: On the Hubble Tension

Part I1l: NO & HT-Observational Prospects

e Uncertainty from Planck2018 on Q,, induces ~ 0.12% change
to results.

e For extra-galactic neutrinos, IceCube and its upgrade
IceCube-Gen2 are the most relevant neutrino observatories.

@ lceCube cannot give a lot of input currently: Contours are still
wide and very few sources detected with sufficient accuracy(2
blazars at redshifts 0.33 and 0.5 detected at 30).
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blazars at redshifts 0.33 and 0.5 detected at 30).

@ However, IceCube-Gen2 has 10 times more sensitivity, and can
detect sources that are 5 times fainter.
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Part IIl: On the Hubble Tension

Part I1l: NO & HT-Observational Prospects

@ Uncertainty from Planck2018 on Q, induces ~ 0.12% change
to results.

@ For extra-galactic neutrinos, IceCube and its upgrade
IceCube-Gen2 are the most relevant neutrino observatories.

@ lceCube cannot give a lot of input currently: Contours are still
wide and very few sources detected with sufficient accuracy(2
blazars at redshifts 0.33 and 0.5 detected at 30).

@ However, IceCube-Gen2 has 10 times more sensitivity, and can
detect sources that are 5 times fainter.

@ Analysis is made assuming flat spacetime. But gravity now must
be included.
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Conclusion

What's Next?

More work on the observational front: MCMCs.

Look at wave-packets of neutrinos.

Look at 1t order perturbations and effect of power spectra.
Neutrinos traveling near Dark Matter halos.

Apply to other fermionic entities: electrons or DM(7?).
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Conclusion

A Take-Home Message

Quantum field theory in curved space-time is a natural
generalization to the analysis of our Universe, with many
applications still to explore!
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Conclusion

The End! J

Questions or comments?

Refs:2010.08181, 2105.07973 and 2111.15249

Ali Rida Khalifé ridakhal@iap.fr Neutrino Oscillation: an Avenue to Probe the Universe


https://arxiv.org/abs/2010.08181
https://arxiv.org/abs/2105.07973
https://arxiv.org/abs/2111.15249

Conclusion

Spinors in Curved Spacetime

The solution is to introduce tetrad fields, e,/'(x), that covers the
entire spacetime. These fields link local flat coordinates to the
global curved ones. Latin indices<local coordinates; Greek
indices<global coordinates.

{1797} =207 & {9} = 28" (x) = &' (x)7°
'Dlﬂ/) = (6” — F“)i/f; r,u = _%Wavbeaa(x)vﬂeboc(x)

b a1 } cabed
Viealy = e A A = 3v/—8ea €™ (Jpen, — Dvevs)ele]

(ihy“DM — mc)w =0« [ih’y” (8“ — ;'LA“) — m]w =0
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