Nonlinear Structure and Linear Dynamics of Voids

arxiv:2210.02457

Nico Schuster

in collaboration with

Nico Hamaus, Klaus Dolag & Jochen Weller

Outline

- Magneticum Simulations
- Void Distributions
- Density Profiles
- Velocity Profiles
- Linear Mass Conservation
- Conclusions

Magneticum Simulations - CDM

midres / mr

Hydrodynamical simulations with WMAP7 cosmology at different resolutions and scales, in this work at redshift z = 0.29.

highres / hr

ultra-hr / uhr

magneticum.org

Magneticum Simulations - Halos

midres / mr

(Sub-) halo selection at different masses, depending on resolution limit of the simulations. For void finding both halos & CDM possible.

highres / hr

ultra-hr / uhr

Magneticum Simulations - Voids

Voids identified using <u>VIDE</u>, via Voronoi tesselation and watershed algorithm. Voids can be merged, depending on density between shared wall.

highres / hr

ultra-hr / uhr

Void Distributions

Void size function in **midres** & **highres** for CDM and halo defined voids. More CDM voids than halo voids at identical $n_{\rm t}$. Void size function of **merged** voids converges on large scales.

Density Profiles

Density profiles of halo voids in **midres**, presented in stacked bins of their radii:

Velocity Profiles

Velocity of CDM & halos around isolated halo voids → high agreement in both simulations

highres

Linear Mass Conservation - Individual Voids

Application of linear mass conservation on the individual density profiles of halo voids, the resulting velocity profiles (solid lines) and "measured" velocity profiles (dashed), b_t is fitted for each profile:

$$u_{\mathbf{v}}(r,z) = -\frac{\Omega_{\mathbf{m}}^{\gamma}(z)}{b_{\mathbf{t}}} \frac{H(z)}{1+z} \frac{1}{r^2} \int_{0}^{r} \left(\frac{n_{\mathbf{v}}(q)}{\overline{n}} - 1 \right) q^2 dq$$

midres

highres

Linear Mass Conservation - Stacked Voids

Individual fits: use linear theory on each individual profile and fit b_t , then stack the resulting linear theory. Indicated b_t is the mean value

Global fits: use linear theory on each individual profile with $b_{\rm t}=1$, stack the resulting linear theory profiles and then fit for a global $b_{\rm t}$ to stacks of measured velocity profiles (data)

Linear Mass Conservation - Stacked Voids

Similar agreement between (simulation) data and model in **highres** at smaller scales than in **midres**, e.g. 22 Mpc/h in **mr** and 12 Mpc/h in **hr**

→ resolution effect and not onset of nonlinearity around voids

Differences decrease with increasing radius.

Slightly smaller differences in individual fits near the void centers.

Linear Mass Conservation - Resolution Study

ultra-hr: 48 Mpc/h box with 346 halo voids

 \rightarrow linear mass conservation still holds up around voids with radii of a few Mpc/h.

individual profiles:

stacked profiles:

Conclusions

- Merged voids have shallower density profiles due to substructure inside voids and their void size functions converge on large scales
- CDM & halo move at same speed around halo defined voids
- Large voids dominated by outflow, small ones by infall towards compensation wall
- Individual & stacked voids accurately obey linear mass conservation, down to scales of order $1 \, \mathrm{Mpc}/h$.
- More results on non-radial stacks, mass weights, different velocity estimators, sampling effects in void profiles and linear mass conservation around CDM voids: arxiv:2210.02457

Simulation Details, Halo Mass Function & Void Numbers

WMAP7 cosmology:

$$h = 0.704$$

$$\Omega_{\Lambda} = 0.728$$

$$\Omega_{\rm m} = 0.272$$

$$\Omega_{\rm b} = 0.0456$$

$$\sigma_8 = 0.809$$

$$n_s = 0.963$$

Name	Box	L_{Box}	$N_{ m particles}$	$m_{ m CDM}$	$m_{\rm baryon}$	z	$M_{ m cut} \left[M_{\odot}/h ight]$	$N_{ m h} \left[imes 10^6 ight]$	$ar{r}_{ m t} \left[{ m Mpc}/h ight]$	$N_{\rm v}$ in halos	$N_{ m v}$ in CDM
midres (mr)	0	2688	2×4536^3	1.3×10^{10}	2.6×10^{9}	0.29	1.0×10^{12}	62.1	6.8	356597	600273
highres (hr)	2b	640	2×2880^3	6.9×10^{8}	1.4×10^8	0.29	1.0×10^{11}	8.21	3.2	33324	52951
ultra-hr (uhr)	4	48	2×576^3	3.6×10^7	7.3×10^{6}	0.29	1.3×10^{9}	0.136	0.93	346	424
, , ,											

Nico Schuster

Void Properties

center (volume-weighted barycenter):
$$\mathbf{X}_{v} = \frac{\sum_{j} x_{j} V_{j}}{\sum_{i} V_{i}}$$

$$\mathbf{X}_{\mathrm{v}} = \frac{\sum_{j} x_{j} V_{j}}{\sum_{j} V_{j}}$$

radius:
$$r_{\rm v} = \left(\frac{3}{4\pi} \sum_{i} V_{i}\right)^{1/3}$$

core density:
$$\hat{n}_{\min} = \frac{n_{\min}}{\bar{n}}$$

$$\hat{n}_{\min} = \frac{n_{\min}}{\bar{n}}$$

$$M_{xy} = -\sum_{i} x_{i} y_{j}$$

inertia tensor:
$$M_{xy} = -\sum_{i} x_{i} y_{j}$$
 $M_{xx} = \sum_{i} (y_{j}^{2} + z_{j}^{2})$

ellipticity:
$$\varepsilon = 1 - \left(\frac{J_1}{J_3}\right)^{1/4}$$

compensation:
$$\Delta_{\rm t} \equiv \frac{N_{\rm t}/V}{\bar{n}} - 1 = \hat{n}_{\rm avg} - 1$$

Void Finding

M. C. Neyrinck (2008)

Void finding done by using <u>VIDE</u> in both CDM and halos.

- a) tracer positions
- c) zoning

- b) Voronoi tesselation
- d) watershed

Voids can be merged, depending on the density of the rigdes between them

Platen (2007)

Void Distributions II

Two-dimensional distributions of voids in midres in radius and...

Void Profiles

Individual profiles:

Stacked profiles:

Density:
$$n_{\rm v}^{(i)}(r) = \frac{3}{4\pi \, \overline{w}} \sum_{j} \frac{w_j \, \Theta({\bf r_j})}{(r + \delta r)^3 - (r - \delta r)^3}$$

$$n_{\rm v}({\rm r}) = \frac{1}{N_{\rm v}} \sum_{i} n_{\rm v}^{(i)}(r)$$

 w_i (optional) weights, \overline{w} mean weight and $\Theta(r_i) \equiv \vartheta[r_i - (r - \delta r)] \vartheta[-r_i + (r + \delta r)]$ with Heaviside step function ϑ

Velocity:
$$u_{v}^{(i)}(r) = \frac{\sum_{j} \mathbf{u}_{j} \cdot \hat{\mathbf{r}}_{j} V_{j} \Theta(r_{j})}{\sum_{j} V_{j} \Theta(r_{j})}$$

individual stacks:

$$u_{\mathbf{v}}(r) = \frac{1}{N_{\mathbf{v}}} \sum_{i} u_{\mathbf{v}}^{(i)}(r)$$

$$u_{v}(r) = \frac{\sum_{i} \left[\sum_{j} \mathbf{u}_{j} \cdot \hat{\mathbf{r}}_{j} \ V_{j} \ \Theta(r_{j}) \right]^{(i)}}{\sum_{i} \left[\sum_{j} V_{j} \ \Theta(r_{j}) \right]^{(i)}}$$

From local mass conservation

From local mass conservation via linear continuity equation:
$$u_v(r,z) = -\frac{\Omega_m^{\gamma}(z)}{b_t} \frac{H(z)}{1+z} \frac{1}{r^2} \int_0^r \left(\frac{n_v(q)}{\bar{n}} - 1\right) q^2 dq$$

Sampling Effects

Effects of mass cuts and subsamplings on density profiles (bottom) and velocity profiles (right) in both stacking methods for halo voids in exemplary bin with $r_v[\text{Mpc}/h] \in [16.0, 20.0]$ in **highres**

→ only density profiles and velocity profiles with global stacks give expected results

Density Profiles - CDM

Density profiles of CDM voids in **midres**, presented in stacked bins of their radii:

Density Profiles - Alternative Stacks

Density profiles of halo voids in midres, presented in stacked bins different void properties:

Density Profiles - HR

Density profiles of halo voids in **highres**, presented in stacked bins of their radii:

Density Profiles - HR CDM

Density profiles of CDM voids in **highres**, presented in stacked bins of their radii:

Matter Density Profiles

Matter density profiles of CDM around isolated halo voids in midres, in void radius bins:

Mass-Weighted Density Profiles

Mass-weighted density profiles *isolated* halo voids, in void radius bins:

Velocity Profiles - Individual/Global Stacks

Velocity of CDM & halos around halo voids in **midres** → high agreement in both stacking methods

Velocity Profiles - HR

Velocity profiles CDM and halos around halo voids in highres, in void radius bins:

Velocity Profiles - Alternative Stacks

Velocity profiles of halo voids in midres, presented in stacked bins different void properties:

Linear Mass Conservation - Individual CDM Voids

Application of linear mass conservation on the density profiles of **CDM** voids in **midres** and the resulting velocity profiles with $b_t = 1$ (no fitting!).

Linear Mass Conservation - Individual Voids $(w_i = M_i)$

Application of linear mass conservation on the individual **mass-weighted** density profiles of halo voids and the resulting velocity profiles, where b_t is fitted for each profile:

Linear Mass Conservation - Individual Voids $(w_i = 1)$

As in main slides, linear mass conservation on the individual density profiles of halo voids and the resulting velocity profiles, where b_t is fitted for each profile:

Linear Mass Conservation - Stacked Voids, both estimators

midres

Global fits: use linear theory on each individual profile with $b_{\rm t}=1$, stack the resulting linear theory profiles and then fit for a global $b_{\rm t}$ to stacks of measured velocity profiles (data)

Individual fits: use linear theory on each individual profile and fit $b_{\rm t}$, then stack the resulting linear theory. Indicated $b_{\rm t}$ is the mean value

midres

Linear Mass Conservation - Stacked Voids, both estimators

highres

In global stacks differences decrease with increasing radius, in individual stacks same magnitude independent of $r_{\rm v}$.

Slightly smaller differences in individual fits near the void centers.

Similar agreement between (simulation) data and model in **highres** at smaller scales than in **midres**, e.g. 22 Mpc/h in **mr** and 12 Mpc/h in **hr**

→ resolution effect and not onset of nonlinearity around voids

highres

Linear Mass Conservation - Stacked Voids, CDM

midres, CDM

Even though CDM should have $b_t = 1$, we choose to fit b_t in order to see which method results in bias values closest to unity.

midres, CDM

Linear Mass Conservation - Stacked Voids, mass weights

midres

Even though CDM should have $b_t = 1$, we choose to fit b_t in order to see which method results in bias values closest to unity.

midres

