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Optical Telescopes: Gemini Telescope
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Galaxies: Building Blocks of the Cosmology
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Large-Scale Structure
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o The universe is immense ( ~ 13 x 10° light years).
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Paradigms o There is structure in the universe.

Sung Gas o Convergence to homogeneity on large scales (support
‘ for the cosmological principle).
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Isotropic CMB Background
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Angular Power Spectrum of CMB Anisotropies
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o The CMB is isotropic to excellent accuracy. (strong
R support for the cosmological principle).
String Gas o Small amplitude anisotropies with distinctive

- structure.
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Scenario 1: Standard Big Bang Cosmology

(SBB)

String Assumptions
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R. Branden- o 1. Space-Time described by classical General
erger Relativity

ot o 2. Matter described by classical matter: superposition
Scenarios of ideal gases

S o Cold matter: p =0
o Radiation: p = }p
o 3. Space is homogeneous and isotropic
(Cosmological Principle)
Successes
@ Hubble law - Space is expanding

o Existence and Black Body nature of the Cosmic
Microwave Background

@ Nucleosynthesis - Abundances of light elements
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Time Line: Big Bang Cosmology
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Spectrum of the CMB
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Conceptual Problems of the SBB Model
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@ Horizon Problem: No explanation for the isotropy of the
Data CMB’

S i 0 .
e o Flatness Problem: No explanation of the spatial
S flatness of the universe.

Sting Gas o Formation of Structure Problem: No explanation of the
e observed inhomogeneities in the distribution of matter
and anisotropies in the Cosmic Microwave Background.

Challenges

Matrix Theory

Conclusions

o Singularity Problem: Breakdown of applicability of the
model at the Big Bang singularity.
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Scenario 2: Inflationary Universe Scenario
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onclusions

o {;: inflation begins
o tg: inflation ends, reheating
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Space-Time Sketch of the Inflationary Scenario
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Successes of Inflation
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Data

o inflation renders the universe large, homogeneous and
spatially flat

Scenarios

E:j‘::ge: o classical matter redshifts — matter vacuum remains
e @ quantum vacuum fluctuations: seeds for the observed
Matrix Theory structure [Chibisov & Mukhanov, 1981]

Conclusions @ sub-Hubble — locally causal
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Obtaining Inflation

o Assumption: Space-time described by General
Relativity.

o — require matter with p < —%p.

o Consider scalar field ¢ as matter: potential energy term
has an equation of state p = —p.

o Require a slowly rollling scalar field:

4 < 1
4 mp, ’

o Require rolling over large distances

Ap > my.
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Formation of Structure in Inflationary
Cosmology
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o Quantum vacuum fluctuations are the seeds for the
radiame observed structure.

Sting Gas o — successful predictions for cosmological
0smolog .
: observations.
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Problems of the Inflationary Scenario
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o How does one obtain inflation?

Data

Scenarios o Inflation takes place at energy scales close to the
Challenges PIaan Scale

PR o At this scale quantum effects of gravity should be
Coeraoiogy important.

Matrix Theory o Setup of inflationary cosmology is unable to handle this
Conclusions pl’0b|em.

o Singularity problem persists.
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Scenarios @ Question: What cosmological scenario for the very
Challenges early universe emerges from superstring theory?
::::Z o Are there testable predictions?
gt ey o Note: both SBB and Inflationary Cosmology are based

Matrix Theory

on the hypothesis that point particles are the basic
building blocks of nature.

@ In superstring theory the basic building blocks are
fundamental strings.

Conclusions
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Constraints on Effective Field Theories
consistent with String Theory
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Data

The space of effective scalar field theories consistent with
superstring theory is constrained by the swampland criteria
e (see e.g. E. Palti, 2019):
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superstring theory is constrained by the swampland criteria
e (see e.g. E. Palti, 2019):

String Gas Q A‘P < 0(1 )mp/

Cosmology
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Scenarios

Challenges

35/105



s-Planckian Problem

String
Cosmology

post :
R. Branden- inflation “ Hubble radios

berger

Data R > x

Scenarios ’ T borizon
inflati . -

Challenges inflation

Paradigms t: /

String Gas
Cosmology

rix Theory

Conclusions

36/105



Trans-Planckian Problem
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o Success of inflation: At early times scales are inside
the Hubble radius — causal generation mechanism is
possible.

o Problem: If time period of inflation is more than 70H~",
then \p(t) < Iy at the beginning of inflation.

@ — new physics MUST enter into the calculation of the
fluctuations.

Conclusions
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Justification
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o Effective field theory of General Relatiivty allows for

e solutions with timelike singularities: super-extremal
e black holes.
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e solutions with timelike singularities: super-extremal

e black holes.

Challenges 0

F— o — Cauchy problem not well defined for observer

ShingGas external to black holes.

Cosmology . q

, o Evolution non-unitary for external observer.

Matrix Theory

Conclusions o Conjecture: ultraviolet physics — external observer
shielded from the singularity and non-unitarity by
horizon.
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Cosmological Version of the Censorship
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Data Translation
Seenanos o Position space — momentum space.

Challenges

e o Singularity — trans-Planckian modes.
String Gas o Black Hole horizon — Hubble horizon.

Cosmology

Matrix Theory

Conclusions Observer measuring super-Hubble horizon modes must be
shielded from trans-Planckian modes.
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Unitarity Problem

R.B. arXiv:1911.06056; A. Bedroya and C. Vafa., arXiv:1909.11063
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berger o Recall: non-unitarity of effective field theory in an
expanding universe (N. Weiss, Phys. Rev. D32, 3228
ET— (1985); J. Cotler and A. Strominger, arXiv:2201.11658).

Challenges o H is the product Hilbert space of a harmonic oscillator

e Hilbert space for all comoving wave numbers k

e o UV cutoff: time dependent Kmax : kmax(t)a(t)~" = my,

Matrix Theory o Continuous mode creation — non-unitarity.

o Demand: classical region be insensitive to
non-unitarity.

o — no trans-Planckian modes ever exit Hubble horizon.

Data

Conclusions
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Effective Field Theory (EFT) and the CC
Problem
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Effective Field Theory (EFT) and the CC
Problem
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Data

. o EFT: expand fields in comoving Fourier space.
cenarios

Challenges @ Quantize each Fourier mode like a harmonic oscillator
Paradigms — ground State energy

Sl o Add up ground state energies — CC problem.

Cosmology
Matrix Theory @ The usual quantum view of the CC problem is an
Conclusions artefact of an EFT analysis!
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Application of the Second Law of
Thermodynamics
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o Consider entanglement entropy density sg(t) between
D sub- and super-Hubble modes.

Scenarios

Chalenges o Consider an phase of inflationary expansion.
Paradigms o sg(t) increases in time since the phase space of
String Gas super-Hubble modes grows.

Cosmology

R o Demand: sg(t) remain smaller than the

Conclusions post-inflationary thermal entropy.

o — Duration of inflation is bounded from above,
consistent with the TCC.
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Application to EFT Description of Inflation
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Application to EFT Descriptions of Inflation
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Data

a(t _
Scenarios ﬂlpl < H(tR) 1
Challenges a(t*)
Paradigms
L Demanding that inflation yields a causal mechanism for

s generating CMB anisotropies implies:

_1a(to) a(tr)
0 a(tg) a(t.)

Conclusions

< H'(t)
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Implications
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FIEHEI — upper bound on the primordial tensor to scalar ratio r:
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Matrix Theory r < 10730

Conclusions

Note: Secondary tensors will be larger than the primary
ones.
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Implications for Dark Energy
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Challenges o Dark Energy cannot be a bare cosmological constant.

Paradigms o Quintessence models of Dark Energy are constrained
Rl (L. Heisenberg et al. arXiv:2003.13283]
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Challenges o In order to understand the early universe we need to go
Paradigms beyond point particle effective field theory.

o o Superstring theory is our best candidate.
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Challenge
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Data

o Can superstring theory yield an improved early
oh universe scenario?
allenges

Paradigms o Can superstring theory resolve the Big Bang
String Gas singularity?

Cosmology

Matrix Theory o Can superstring theory yield a quantum theory of
Conclusions space, time and matter?

Scenarios
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Angular Power Spectrum of CMB Anisotropies
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Early Work
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.
15 ig(M/Mg)

Fig. la. Diagram of gravitational instability in the ‘big-bang” model. The region of instability is

located to the right of the line M (¢); the region of stability to the left. The two additional lines of

the graph demonstrate the temporal evolution of density perturbations of matter: growth until the

moment when the considered mass is smaller than the Jeans mass and oscillations thereafter. It is

apparent that at the moment of recombination perturbations corresponding to different masses
correspond to different phases.
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Key Realization
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Data

@ Given a scale-invariant power spectrum of adiabatic
fluctuations on "super-horizon" scales before tgq, i.e.
Paradigms standing waves.

String Gas o — "correct" power spectrum of galaxies.

Cosmology

T T @ — acoustic oscillations in CMB angular power
Conclusions SpeCtI’um.

Scenarios

Challenges
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Predictions from 1970
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o Given a scale-invariant power spectrum of adiabatic
oo fluctugtlons on "super-horizon" scales before tgq, i.e.
Challenges standing waves.

Data

Paradigms o — "correct" power spectrum of galaxies.

L o — acoustic oscillations in CMB angular power

Matrix Theory SpeCtrum.

coneisions @ — baryon acoustic oscillations in matter power
spectrum.
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Data

=S E How does one obtain such a spectrum?

Challenges . . . .
baradigms o Inflationary Cosmology is the first scenario based on
S causal physics which yields such a spectrum.

Cosmology o Butitis not the on|y one.

Matrix Theory

Conclusions
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Hubble Radius vs. Horizon

String
Cosmology

R. Branden-

berger Horizon: Forward light cone of a point on the initial

5 Cauchy surface.
ata
Scenarios @ Horizon: region of causal contact.
Challenges o Hubble radius: Iy(t) = H~'(t) inverse expansion rate.
Paradigms . .
S G o Hubble radius: local concept, relevant for dynamics of
Cosmology cosmological fluctuations.
ZQ”‘T e o In Standard Big Bang Cosmology: Hubble radius =
onclusions .

horizon.

o In any theory which can provide a mechanism for the
origin of structure: Hubble radius # horizon.
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Challenges o Scales of cosmological interest today originate inside
Paradigms the Hubble radius at early times in order for a causal
Sting Gas generation mechanism of fluctuations to be possible.
Vet Theory o Squeezing of fluctuations on super-Hubble scales in
Conclusions order to obtain the acoustic oscillations in the CMB

angular power spectrum.

o Mechanism for producing a scale-invariant spectrum of
curvature fluctuations on super-Hubble scales.
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String
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Idea: make use of the new symmetries and new degrees of

R. Branden-

Lelosy freedom which string theory provides to construct a new
o theory of the very early universe.
et Assumption: Matter is a gas of fundamental strings
Challenges Assumption: Space is compact, e.g. a torus.
Paradigms Key points:
e o New degrees of freedom: string oscillatory modes
Matrix Theory o Leads to a maximal temperature for a gas of strings,
cenclusions the Hagedorn temperature

o New degrees of freedom: string winding modes

0 Leads to a new symmetry: physics at large R is
equivalent to physics at small R
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@ Momentum modes: E, = n/R
Winding modes: E;, = mR
Duality: R — 1/R (n,m) — (m,n)
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°
°

Cosmoiogy o Mass spectrum of string states unchanged

Matrmeon o Symmetry of vertex operators

Conclusions -

Symmetry at non-perturbative level — existence of
D-branes

67/105



Adiabatic Considerations

String

B Temperature-size relation in string gas cosmology

R. Branden-

T-dual Phase

Paradigms

T

~

Iy

String Gas

Cosmology

Matrix T

InR

68/105



Singularity Problem in Standard and
Inflationary Cosmology

String
Cosmology

R. Branden-
berger

Data

Temperature-size relation in standard cosmology
T

Scenarios
Challenges
Paradigms

String Gas
Cosmology

Matrix Theory

Conclusions

69/105



String
Cosmology

R. Branden-
berger
Data
Scenarios
Challenges
Paradigms

String Gas
Cosmology

Matrix Theory

Conclusions

Position Operators

Position operators (dual to momenta)

x>= 3 explix - p)lp >
p

70/105



Position Operators

String
Cosmology

R. Branden- Position operators (dual to momenta)

berger

Data x >=")"exp(ix - p)|p >
o

Scenarios

CIEEaes Dual position operators (dual to windings)

Paradigms

String Gas ~ i~
Cosmology |X > = Z eXp(IX . W)‘ w >
Matrix Theory w

Conclusions

70/105



Position Operators

String
Cosmology

R. Branden- Position operators (dual to momenta)

berger

Data x >=")"exp(ix - p)|p >
o

Scenarios

Chall 0ng - n
P;::“e: Dual position operators (dual to windings)
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Conclusions

- - 1
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E::::ie: o R < 1: length measured in terms of |x >
String Gas @ R~ 1: both |[x > and |x > important.

Cosmology

el Conclusion: At string scale densities usual effective field
Conclusions theory (EFT) based on supergravity will break down.

Conclusion: If an effective field theory description is valid, it
must be an EFT in 18 spatial dimensions.
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Data

o Calculate matter correlation functions in the Hagedorn
Challonges phase (neglecting the metric fluctuations)

Paradigms o For fixed k, convert the matter fluctuations to metric
String Gas fluctuations at Hubble radius crossing t = ti(k)

Cosmology

T o Evolve the metric fluctuations for t > #;(k) using the
Conclusions usual theory of cosmological perturbations

Scenarios
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Extracting the Metric Fluctuations
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Cosmology

gl Ansatz for the metric including cosmological perturbations
and gravitational waves:

Data
Scenarios

Challenges ds2 _ aQ(n) ((1 e 2¢)d772 _ [(1 — 2¢)6’/ —+ hlj]dXIdX/) .
Paradigms
S Inserting into the perturbed Einstein equations yields

Cosmology

Matrix Theory

Conclusions <|¢(k)‘2> = 167T2G2k_4<5T00(k)5T00(k)>,

(Ih(K)[?) = 1672 GPKk=*(5T' (K)o T';(K)) .
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Scenarios T2
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Challenges <5p > — ﬁcv
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Matrix Theory
Conclusions RZ/gg
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Power spectrum of cosmological fluctuations

Po(K)

8G?k~ 1 < |op(k)|? >
8G?k® < (6M)? >
8G?k~* < (6p)? >R

T 1
oL 1
Sl
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Power spectrum of cosmological fluctuations

Po(k) = 8G?k~' < |dp(k)|? >
= 8G?k? < (0M)? >R
= 8G?k* < (6p)? >R

T 1
_ 2! 0
- 8¢ B1-T/Ty
Key features:
o scale-invariant like for inflation
o slight red tilt like for inflation
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Cosmolody Key ingredient for string thermodynamics

Matrix Theory T

Conclusions < ‘TU(R)|2 S ~ l3 R4 (1 _ T/ TH)

Key features:
o scale-invariant (like for inflation)
@ slight blue tilt (unlike for inflation)
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Data

o Static Hagedorn phase (including static dilaton) — new
Challenges phySICS reqUired-

Paradigms o Cy(R) ~ R? obtained from a thermal gas of strings
String Gas provided there are winding modes which dominate.

Cosmology

Matrix Theory o Cosmological fluctuations in the IR are described by
Gonclusions Einstein gravity.

Scenarios
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Starting point: BFSS matrix model at high temperatures.

@ BFSS model is a quantum mechanical model of 10
N x N Hermitean matrices.

Data
Scenarios

Challenges

Paradigms o Note: no space!

Coermolony o Note: no singularities!

LS o Note: BFSS matrix model is a proposed
Conelsons non-perturbative definition of M-theory: 10 dimensional
superstring theory emerges in the N — oo limit.
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Data 1 1
Scenarios L= g[ (é(Dt ) [)(/7)(/] ):|

Challenges

Paradigms

RS o X;,i=1,..9are N x N Hermitean matrices.

Matrix Theory o Dy: gauge covariant derivative (contains a matrix Agp)

Conclusions

‘t Hooft limit: N — oo with A = g2N = gs/5 3N fixed.
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Data
Sonarios (Euclidean) BFSS model is well approximated by the
Challenges bosonic sector of the (Euclidean) IKKT matrix model.
e © Sgrss = Skt + O(1/T)
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Cosmology o Matsubara expansion:
Matrix Theory
Conclusions )(I(t) _ Z)(iHGZTFITt
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A= T1/4X0
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Data o Eigenvalues of Ay become emergent time, continuous

Scenarios in N — oo limit.
Challenges o Work in the basis in which Ag is diagonal: A; matrices
Paradigrms elements decay when going away from the diagonal.
String Gas
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J. Nishimura, PoS CORFU 2019, 178 (2020) [arXiv:2006.00768 [hep-lat]].

Sl o Eigenvalues of Ay become emergent time, continuous
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R Branden- in N — oo limit.
berger o Work in the basis in which A is diagonal.
Data o Work in the basis in which Ag is diagonal: A; matrices
Scenarios become block diagonal.
Challenges o Extent of space in direction i
Paradigms
xi(1)? = <:—7Tr(/_\,-)(t))2> |

Matrix Theory

Conclusions

o In a thermal state there is spontaneous symmetry
breaking: SO(9) — SO(6) x SO(3): three dimensions
of space become larger, the others are confined.

[J. Nishimura and G. Vernizzi, JHEP 0004, 015 (2000);
1S.-W. Kim, J. Nishimura and A. Tsuchiya, Phys. Rev.
Lett. 109, 011601 (2012)]
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Emergent Metric from Matrix Theory

Sl o Eigenvalues of Ay become emergent time, continuous

Cosmology

—— in N — oo limit.
berger o Work in the basis in which A is diagonal: pick n
Data (comoving spatial coordinate) and consider the block
Scenarios matrix A,(t)
Challenges o Physical distance between n = 0 and n (emergent
Paradigms space):
String Gas
Cosmology -
Brysi (1) = (T(A)D)?) .
Conclusions o lphys,i(n) ~ N (for n< nc)

@ Emergent infinite and continuous space in N — oo limit.
o Emergent metric (S. Brahma, R.B. and S. Laliberte,
arXiv:2206.12468).

d
gi(n)'/? = d—nphys,i(”)
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Stri 0
e Emergent metric:

R. Branden-
berger

d

1/2

5 gi(n)'/? = an ohys.i(1)
Scenarios Result:

Challenges

Paradigms g,','(n, t) = A(t)5,, i= 17273

String Gas
Cosmology

Matrix Theory

SO(3) symmetry —

Conclusions
gij(n,t) = A(t)é; i=1,2,3

— spatially flat.

Note: Local Lorentz invariance emerges in N — oo limit.
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S. Brahma, R.B. and S. Laliberte, arXiv:2108.1152
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eroer SO(9) — SO(3) x SO(6) observed in the IKKT model
Data also holds in the BFSS model.

Seenares o Using the Gaussian approximation method we have
S shown the existence of a symmetry breaking phase
g e transition in the IKKT model (S. Brahma, RB and S.
Cosmology Laliberte, arXiv:2209.01255).

HaticTheory o Thermal correlation functions in the three large
spatial dimensions calculated in the high temperature
state of the BFSS model (following the formalism
developed in String Gas Cosmology).

o — curvature fluctuations and gravitational waves.

Paradigms

Conclusions
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Data o Calculate matter correlation functions in the emergent
Scenarios phase_
St o For fixed k, convert the matter fluctuations to metric
e fluctuations at Hubble radius crossing t = (k).
tring Gas
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Matrix Theory Cosmology: Thermal
Fluctuations

S. Brahma, R.B. and S. Laliberte, arXiv:2108.1152

o Start with the BFSS partition function .

o Note: + correction terms in the BFSS action are crucial!

o Calculate matter correlation functions in the emergent
phase.

o For fixed k, convert the matter fluctuations to metric
fluctuations at Hubble radius crossing t = f;(k).

o Evolve the metric fluctuations for t > t;(k) using the
usual theory of cosmological perturbations.

Note: the matter correlation functions are given by partial
derivatives of the finite temperature partition function
with respect to T (density fluctuations) or R (pressure
perturbations).

97/105



String
Cosmology

R. Branden-
berger
Data
Scenarios
Challenges
Paradigms

String Gas
Cosmology

Matrix Theory

Conclusions

Matrix Theory Cosmology: Results

Thermal fluctuations in the emergent phase —
@ Scale-invariant spectrum of curvature fluctuations
o With a Poisson contribution for UV scales.
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e @ Scale-invariant spectrum of gravitational waves.
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Paradigms
Sting Ges — BFSS matrix model yields emergent infinite space,

emergent infinite time, emergent spatially flat metric and an
emergent early universe phase with thermal fluctuations
leading to scale-invariant curvature fluctuations and
gravitational waves.
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emergent early universe phase with thermal fluctuations

leading to scale-invariant curvature fluctuations and
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Note: Horizon problem automatically solved.
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Include the effects of the fermionic sector.
o Understand phase transition to the expanding phase

Data

iiiﬁ:n:; of Big Bang Cosmology.

L R o Understand the emergence of GR in the IR.

Cosmoiogy o Spectral indices?

Ma‘””_“e‘“y o What about Dark Energy?

e o Emergent low energy effective field theory for localized

excitations.
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@ Inflation is not the only scenario of early universe
oo cosmology consistent with current data.

Challenges @ In light of the TCC and other conceptual problems

Paradigms effective field theory models of inflation are not viable.

e o In light of the TCC and other conceptual problems Dark

Matrix Theory Energy cannot be a cosmological constant.

Conelusions o We need to go beyond point particle EFT in order to
describe the very early universe.

Data
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Conclusions

Cosmotoay o BFSS matrix model is a proposal for a non-perturbative

R. Branden- definition of superstring theory. Consider a high
peraer temperature state of the BFSS model.
Dt @ — emergent time, space and metric. Emergent space
Scenarios is spatially flat and infinite.
Challenges
Pamd‘g;g o Thermal fluctuations of the BFSS model —
String Gas scale-invariant spectra of cosmological perturbations
e and gravitational waves.

Matrix Theory

o Horizon problem, flathess problem and formation of
structure problem of Standard Big Bang Cosmology
resolved without requiring inflation.

o Transition from an emergent phase to the radiation
phase of expansion. No cosmological constant.

o String theory testable with cosmological observations.
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