Implementation of joint X-ray and y-ray fitting with Gammapy

L. Giunti^{*}, R.Terrier

giunti@apc.in2p3.fr

https://docs.gammapy.org/1.0/

GammapyXray

- A prototype implementation of a MWL modeling framework for X-ray and γ -ray data
- Based on:
 - **Gammapy** (data handling + fitting)
 - Sherpa (Xspec models library)
 - Naima (Radiative models library)

https://github.com/luca-giunti/gammapyXray

https://zenodo.org/record/7092736

😵 main 👻 🕻 2 branches 🔉 1 tag	Go to file Ad	d file 🔻 🔷 <> Code 🗸	About
luca-giunti Merge pull request #3 from luca-giu	nti/bugfix cda36fd on	Oct 17 🕚 98 commits	A Python code for X-ray and Gam ray Astronomy based on Gamma
XMM_test_files Implement	nted wrapper for xspec models and its test	9 months ago	🔲 Readme
gammapyXray Update r	nodels.py	last month	ৰাুুুুুু BSD-3-Clause license
CITATION.cff Update 0	CITATION.cff	2 months ago	☆ 1 star
LICENSE.rst Update L	ICENSE.rst	2 months ago	1 watching
C README.rst Update F	README.rst	2 months ago	앟 0 forks
🗋 codemeta.json Update d	odemeta.json	2 months ago	
🗅 tutorial.ipynb update n	b	2 months ago	Releases 1
= README rst		R	on Sep 19

X-ray Data handling: StandardOgipDataset

- A special type of gammapy.datasets.SpectrumDataset
- I/0: reads standard OGIP files (pha)
- Handles X-ray specific features
 E.g. for grouping uses: Dataset.resample_energy_axis(...)

X-ray models interface: SherpaSpectralModel

- A wrapper for Sherpa (also **Xspec**) models
- Adapts the model parameters for fitting within the Gammapy framework

Workflow

```
# read data
dataset = StandardOGIPDataset.read(pha)
```

```
# define model
```

```
pl = SherpaSpectralModel(sherpa.models.PowLaw1D())
absorption = SherpaSpectralModel(sherpa.astro.xspec.XSwabs())
model = pl * absorption
```

```
# assign model to the dataset
dataset.models = [model]
```

```
# fit
fit = Fit()
fit_result = fit.run(dataset)
```

```
# inspect residuals
dataset.plot_fit()
```


electrons = naima.models.ExponentialCutoffPowerLaw()
synchrotron = naima.radiative.Synchrotron(electrons)
naima_model = NaimaSpectralModel(synchrotron)

absorption = SherpaSpectralModel(sherpa.astro.xspec.XSwabs())

absorbed_synchrotron_model = absorption * naima_model

First usage example with code description

All volumes For authors

Q Search ≡ Menu

Home > All issues > Volume 667 (November 2022) > A&A, 667 (2022) A130 > Full HTML

Open Acces

Issue	A&A Volume 667, November 2022
Article Number	A130
Number of page(s)	13
Section	Astrophysical processes
DOI	https://doi.org/10.1051/0004-6361/202244696
Published online	17 November 2022

A&A 667, A130 (2022)

Constraining leptonic emission scenarios for the PeVatron candidate HESS J1702–420 with deep *XMM-Newton* observations*

🝈 L. Giunti ¹ , 🛅 F. Acer	o ² , 🝺 B. Khélifi ¹	, 📵 K. Kosack ² ,	, 🝺 A. Lemière ¹	and 📵 R. Terri	er
+					

Received: 5 August 2022 Accepted: 15 September 2022

Abstract

Aims. We aim to search for a hidden leptonic accelerator, such as a high-É pulsar, associated with the

Table of Contents

D	Artic	le
ш.	AIUC	IE

Abstract Full HTML PDF (2.230 MB)
ePUB (6.901 MB) References
Tables at CDS
NASA ADS Abstract Service

Metrics

Show article metrics

Joint fit of XMM-Newton and H.E.S.S. data to constrain the magnetic field value (one-zone leptonic hypothesis) $n_{\rm h} = 5 \times 10^{22} \, {\rm cm}^{-2}, E_{\rm cut}^e = 1000 \, {\rm TeV}$ 20 Best-fit spectrum $n_h = 0.5, E_{cut}^e = 100$ $B = 1.30 \,\mu G \,(3\sigma \,u.l.)$ 10^{-12} $n_h = 0.5, E_{cut}^e = 1000$ $B = 0.93 \,\mu G \,(2\sigma \,u.l.)$ ▲ $n_h = 5, E_{cut}^e = 100$ 4 $B = 0.54 \,\mu G \,(1\sigma \,u.l.)$ $E_{\gamma}^{2} \times dN/dE_{\gamma}$ [TeV cm⁻²s⁻¹] 15 $n_h = 5, E_{cut}^e = 1000$ XMM-Newton fit range 3σ u.l. 2σ u.l. Significance $[\sigma]$ 1σ u.l. $SL\nabla$ 10^{-13} 5 10^{-10} 10^{-8} 10^{-6} 10^{-2} 10^{-4} 10^{0} 10^{2} 1.5 2.0 0.51.0 0.0 $B \left[\mu G \right]$ E_{γ} [TeV]

Joint fit of XMM-Newton and H.E.S.S. data to constrain the magnetic field value (one-zone leptonic hypothesis)

Limitations

- The current grouping logic creates various issues, e.g.:
 - For flux points estimation
 - For models assignment to specific datasets
- Complex implementation scheme
 - I/0: 280 code lines
 - StandardOgipDataset: 240 code lines
 - SherpaSpectralModel: 70 code lines
- Requires workarounds to adapt the Sherpa models evaluation scheme (w/wo integration) for Gammapy fitting
- Re-invents the wheel: most I/O functionalities are already existing in Sherpa
- It limits the fit to Cash or Wstat statistics, while others might be needed (e.g. chi2, leastsq, ...)

Possibilities for a cleaner implementation

- Re-implement the StandardOgipDataset based on the Sherpa low-level API for:
 - **I/0**
 - Statistic

```
data = sherpa.astro.ui.unpack_pha(pha)
stat = sherpa.stat.Chi2()
dataset = StandardOgipDataset(data, stat)
```

Avoids code duplication with Sherpa and allows more freedom in the fit statistic choice

Model evaluation and likelihood calculation handled directly by Sherpa

StandardOgipDataset.stat_sum() calls sherpa.stat.calc_stat(data, model)

 \checkmark

Avoids issues due to the difference between the Gammapy and Sherpa model evaluation schemes

• A working prototype already exists. Only 200 lines of code \rightarrow Easier to eventually merge into Gammapy

Sherpa

filename = "XMM_test_files/MOS1_PWN.grp"
ui.load_pha(1, filename)

ui.notice(2, 8)

ui.set_stat("wstat")

```
ui.set_source(ui.xstbabs.absorption * ui.powlawld.pl)
```

absorption.nh = 5 pl.gamma = 1.8 pl.ampl = 4e-4

ui.guess(pl)

ui.fit()
result_sherpa = ui.get_fit_results()

Gammapy

data = unpack pha("XMM test files/MOS1 PWN.grp")

stat = WStat()

dataset = SherpaSpectrumDataset(data, stat)

dataset.notice(2, 8, ignore=False)

pl = PowLaw1D()
pl.gamma.val = 1.8
pl.ampl.val = 4e-4
absorption = XSTBabs()
absorption.nH = 5
model = pl*absorption

wrapped_model = SherpaSpectralModel(model)

dataset.models = [wrapped_model]

fit = Fit()
result gammapy = fit.run([dataset])

Summary and perspectives

- GammapyXray is a prototype code that allows to jointly model X-ray and γ-ray data based on Gammapy, Sherpa and Naima
- It is completely open source: <u>https://github.com/luca-giunti/gammapyXray</u>
- Despite some limitations, it works and has been already used to publish scientific results on real data: <u>Giunti et al. 2022</u>
- Alternative (cleaner) implementations are already under study
- Open questions:
 - Should this be a standalone tool, or be merged into Gammapy?
 - Can we extend this logic to include a full 3D analysis of X-ray data? (Fabio is looking into that)
- Stay tuned!