

Assessing the **floring** behaviour of the **Crab pulsar wind nebula system** in high-energy γ-rays

Michelle Tsirou

Investigations conducted with B. Reville, E. de Oňa-Wilhelmi, G. Giacinti & J. Kirk

AstroParticle Symposium 2022

Institut Pascal – Uni Paris-Saclay

24 . 11. 2022

Tsirou et al, THAT group (DESY, Zeuthen) – AstroParticle Symposium 2022

Flares of the Crab PWN in HE $\gamma\text{-rays}$

Fermi-LAT : decade-long monitoring

Fermi

Gamma-ray Space Telescope

Fermi-LAT public available photon data and spacecraft files, analysed with Fermitools & fermipy:

Configuration	Selection
Event time range	August 4 th 2008 – August 4 th 2021
Energy	50 MeV – 500GeV 10 bins / decade
FoV	20° x 20° around the Crab
ROI	Fitting all sources within 10°
Filter	(DATA_QUAL>0) && (LAT_CONFIG==1) + Energy dispersion correction
Zenith angle	90° max (to account for Earth's limb)
Event class	128 (type : 3, front + back events)
IRFs	P8R3_SOURCE_V2
Catalogue	4FGL-8yr
Templates	Galactic diffuse + isotropic

→ **13-yr** monitoring!

 \rightarrow dominant radiation process turn-over range

Month-long energy-stacked raw event sky map

→ spectro-morphological model for the Crab with **3** components (1 pulsar + **2 nebular**)

Fermi-LAT : decade-long monitoring

Fermi Gamma-ray Space Telescope

Fermi-LAT public available photon data and spacecraft files, analysed with Fermitools & fermipy:

Configuration	Selection		
Event time range	August 4 th 2008 – August 4 th 2022	→	
Energy	50 MeV – 500GeV 10 bins / decade	→ tu	
FoV	20° x 20° around the Crab		
ROI	Fitting all sources within 10°		
Filter	(DATA_QUAL>0) && (LAT_CONFIG==1) + Energy dispersion correction		
Zenith angle	90° max (to account for Earth's limb)		
Event class	128 (type : 3, front + back events)		
IRFs	P8R3_SOURCE_V3		
Catalogue	4FGL-DR3	→ fc	
Templates	Galactic diffuse + isotropic		

→ 14-yr monitoring!

→ dominant radiation process **turn-over** range

→ spectro-morphological model
 for the Crab with
 3 components
 (1 pulsar + 2 nebular)

Time-averaged spectral energy distribution

Tsirou et al, THAT group (DESY, Zeuthen) – AstroParticle Symposium 2022

Flares of the Crab PWN in <u>HE γ -rays</u>

Time-averaged spectral energy distribution

Light-curve

+ 1-month binning

TS > 9 else 95% ULs

IC component set to best-fit value from t-averaged SED & SYN component thawed

Bayesian-block analysis applied on {1;3;5;7;14;30;365} day-bin LCs

Previously reported flaring windows

(7 flares from Mayer+15, Rudy+15)

 \rightarrow also in agreement with Yeung+19, Arakawa+20, Huang+21

Crab flare studies

- mean $\Phi_{\rm E} \sim 3.7 \ 10^{-4} \ {\rm MeV. \ cm^{-2}.s^{-1}}$ - median $\Phi_{\rm E} \sim 3.3 \ 10^{-4} \ {\rm MeV. \ cm^{-2}.s^{-1}}$

05 / ∞

Flares of the Crab PWN in HE $\gamma\text{-rays}$

Sample of flares : LCs

Flares of the Crab PWN in HE γ -rays

Sample of flares : SEDs during Bayesian blocks

April 2011 flare : rapid & bright

October 2018 flare : long & bright

Are all flares similar in their behaviour?

Flare	features	rise	peak	decay	E _{max, φ}	E _{max, e±}
						(B = 0.15mG)
Feb09	1	~ 1 week	3 days	~ 5 days	~ 500 MeV	~ 7.2 PeV
Sep10	~ 1?	-	3 days	-	~ 1 GeV	~ 10 PeV
Apr11	~ 2 at least	~ 3 days	< 1 day ~ 2 days	~ 2 days	> 1 GeV	> 10 PeV
Jul12	~1?	-	1 week	-	~ 800 MeV	~ 9.5 PeV
Mar13	~]	> ~ 5 days	> 1 week	5 days	~ 700 MeV	~ 8.4 PeV
Oct13	2	> 1 week	~ 3 days 5 days	~ 5 days	~ 650 MeV	~ 8 PeV
Aug14	~1?	> ~ 1 week	~ 3 days	~ 1 week	~ 400 MeV	~ 6.4 PeV

Investigations for (here 7) flaring windows

Differences for :

- Pre- and post-flaring epochs show trends

- Duration of flaring event

- Variability scale

- Features within a given flare window : ``flare sub-structures"

- radiated E_{max}, φ ESYN burn-off

Hillas criterion

For "low" B :

$$e^{\pm} \sim \text{TeV range}$$

 $\rightarrow E_{\max, \varphi} << \text{MeV}$

 For very high B : synchrotron losses would dominate

10⁄∞

Synchrotron burn-off limit

Power spectra

Power spectrum for the complete 13-yr dataset LCs

- Using Fourier space to investigate emerging scales for several sub-samples
- Noise
 - \rightarrow filter signal (low-pass)
 - \rightarrow white (ν^{-0}) +

pink (v^{-1}) [+ **Brownian** (v^{-2})] noise?

Could the flares be a signature of ...

highly efficient acceleration in the PW

nebular emission process ?

Tsirou et al, THAT group (DESY, Zeuthen) – AstroParticle Symposium 2022

Open questions :

o Origin of the flares? Universality ?

o Acceleration site

(light-cylinder vicinity, inner-knot, close to TS, shock interface?) o Which mechanism at play for the short-timescale variability?

Models rely on system conditions

(B-field strength, bulk Lorentz factor, topology, anisotropy, ...)

? Inductive acceleration model Kirk & Giacinti 2017

Drop in ρ_{e} with R

→ possible origin of "inductive" spikes via low-density pockets injected radially as a beam by the PW into the PWN

The flaring behaviour of the \bigcirc system in HE γ -rays

Study based on the 13-year-long monitoring of Crab PWN emission detected in [50 MeV – 500 GeV] :

- Gated pulsar emission with observed glitches taken into account
- Spectro-morphological model of both nebular components
- Investigation for day-week-month timescales via Bayesian analysis

Power spectra examination + selected flux-level samples & samples of candidate flaring epochs

~ 34 candidate flaring windows [2008 - 2021]

Flaring behaviour: Not driven by a single mechanism?

→ flare characteristics pointing to different observational signatures!

Interpretation relying on the observed energy-dependence & time variability of the synchrotron associated emission

 \rightarrow intense flaring contributes to the unabridged Crab PWN spectrum ?

- \rightarrow possible nebular origin of the flares ?
- $(\rightarrow$ acceleration ~ TS and anisotropic injection then cooling in the PWN?)

Back-up

