Prospects on the W mass measurement

Miguel Ramos Pernas

on behalf of the LHCb collaboration

University of Warwick

miguel.ramos.pernas@cern.ch

W mass workshop, Orsay 24/02/2023

European Research Council

Established by the European Commission

Current work

- Currently processing full Run 2 data (2016, 2017, 2018) with a similar strategy as for the 2016 analysis (additional 4 fb⁻¹ of data)
- The result is blinded (for all years); currently revisiting different parts of the analysis:
 - Production model (QCD, FSR)
 - Momentum scaling, curvature biases, efficiencies
 - Backgrounds
- Keeping track of the evolution of the systematic uncertainties and their coverage
- Aiming for a LHC combination to reduce the uncertainty to the global EW fit precision (~6 MeV)

Uncertainties from the previous result

[JHEP 01 (2022) 036], [LHCB-PAPER-2021-024] (supplementary)

Source	Size (MeV)	Average of NNPDF3I, CT18 and MSH120 systematic uncertainties
Parton distribution functions	9 -	
Total theoretical syst. uncertainty (excluding PDFs)	17	Envelope of five different models
Transverse momentum model	11 -	
Angular coefficients	10 -	Uncertainty due to scale variations
QED FSR model	7 ~	
Additional electroweak corrections	5 -	Envelope of the QED FSR from
Total experimental syst. uncertainty	10	Pythia, Photos and Herwig.
Momentum scale and resolution modelling	7	Powheg-EW
Muon ID, tracking and trigger efficiencies	6	
Isolation efficiency	4	Variation of ranges, number of bins
QCD background	2	parametrizations,
Statistical	23	
Total uncertainty	32	

Analysis strategy for the full Run 2 result

The overall strategy remains the same as for the 2016 analysis:

- Calibration using J/ψ , Y(1S) and Z decays:
 - Dedicated alignment and momentum scaling
 - Momentum smearing and selection efficiencies
- Reweighting the simulation at generator level in 5 dimensions
- Template fit to the muon transverse momentum using a Beeston-Barlow method in the minimization

W mass workshop

Simulating signal decays

- POWHEG + Pythia gave the best description of the unpolarized cross-section in the 2016 analysis
 - Varied success with other generators, used to determine systematic uncertainties
- DYTurbo performed well at reproducing the angular cross-section, but prefers larger values of the Z transverse momentum

An updated production model

- Aim at using a single generator to describe the cross-section
- Considering to switch into more modern generators to fully describe the cross-section:
 - \circ ~ We would expect that the difference between $\alpha_{_{S}}$ for W and Z is reduced
 - Attempt to move to N2LO, N2LL predictions of both cross-sections
 - \circ $\,$ $\,$ Partial calculations at N3LO, N3LL worth to study $\,$
 - $\circ \quad \ \ {\rm Exploring \ the \ usage \ of \ NNPDF \ 4.0}$
- Cross-checks to be made with POWHEG + Pythia

W mass workshop

Studying final-state radiation

- Need a more careful study of final-state radiation to reduce the FSR systematic uncertainty (currently 9 MeV):
 - 7 MeV comes from differences between bare- and born-level information (Pythia, Photos, Herwig)
 - An additional 5 MeV systematic comes from pseudoexperiments using POWHEG-EW
- Aim for a more systematic approach to the perturbative uncertainty
 - Currently exploring how to reweight the base (Pythia-based) full event simulation samples

Experimental challenges

- Highly sensitive to detector misalignments
- Need to optimize (often re-run) the alignment using Z decays
- Some detector deformations do not modify the track quality or the momentum estimate of single muons

$$\chi^2_{ ext{align.}}(heta_j) = rac{1}{N}\sum_{i=1}^N \chi^2_i(heta_j)$$

- Different techniques adopted by different experiments:
 - \circ $\,$ CDF: using quarkonia to calibrate and cross-check with the $\,$ Z mass
 - ATLAS: mass-constrained momentum variations in Z decays [EPJC 74 (2014) 3130]
 - LHCb : pseudomass method with the Z [Phys. Rev. D 91, 072002]

Curvature biases

- The analysis relies highly on the detector alignment
 - \circ Misalignment of 10µm translates into a O(50MeV) shift
- Need to re-run the alignment and calibration offline using Z
- Avoid double bias from the momentum resolution using the pseudo-mass method

$$M^{\pm} = \sqrt{2p^{\pm}p_T^{\pm}\frac{p^{\mp}}{p_T^{\mp}}(1-\cos\theta)} \quad \text{Inspired by Phys. Rev. D 91, 072002}$$

• We encourage the other experiments to give this method a try

Corrections to simulation

Need to smear the momentum determined from simulation to account for:

- momentum scale
- multiple scattering

Revisiting the model and the systematic uncertainties:

- Decouple the curvature bias parameters from the smearing model
- Avoid overcoverage when considering variations of the smearing and momentum scaling

[JHEP 01 (2022) 036], [LHCB-PAPER-2021-024] (supplementary)

Events per GeV

Modelling misidentified hadrons

- In the 2016 analysis we used fast simulation using a parametrization from real data
- Charge asymmetry also obtained from a data-driven approach
- Misidentification rate assumed to be inversely proportional to the momentum

$$ext{decay probability} = 1 - e^{-rac{md}{ au p}} \sim rac{md}{ au p}$$

- Different systematic uncertainties covering composition, mismodelling, ... O(3 MeV)
- For the full Run 2 analysis we now profit from samples with the full detector simulation
 - The systematic uncertainty remains similar to the previous

Hagedorn PDF that accurately describes transverse momenta of hadrons at high energies [Riv. Nuovo Cim. 6N10 (1983) 1]

Fitting the transverse momentum

[LHCB-FIGURE-2022-003]

Expect different behaviours in the high transverse momentum region if using different generators

W mass workshop

Long-term plans

- The W mass determination at LHCb with full Run 2 data will allow to clarify the picture about this measurement
- Afterwards, LHCb can provide very useful data to further tune the generators and understand QCD and EW effects
 - Cross-sections at different energies (5 TeV, 13 TeV) of W and Z bosons
 - Drell-Yan studies
 - Weak mixing angle (forward-backward asymmetry)
- On Run 3, with a similar detector and analysis environment the precision will increase with the square root of the luminosity
- On Run 4 and beyond, an improved electromagnetic calorimeter system might open the door to study the electron mode at LHCb

Conclusions

- Analysis in good shape and progressing with no big surprises
- Currently tackling the major sources of systematic uncertainty
- Tentative next steps:
 - Finalize the optimization of the momentum scaling
 - Fully understand the composition and parametrizations of the QCD background
 - Improve the QED FSR modelling
- Feedback on the theoretical description is highly valuable (QCD, FSR, ...)
- Willing to provide any results that could facilitate combinations/cross-checks in the future

Thank you!

LHCb luminosities

[LHCb operation plots]

Analysis strategy at LHCb

- LHCb analysis included 2016 data and O(10⁶) candidates
- Measure the W mass by carefully studying the muon transverse momentum
 - \circ \quad Offline reprocessing of the alignment with Z decays
 - Determination of curvature biases and momentum scaling
 - Small variations on the physics modelling translate into O(MeV) changes in the W mass measurement
- Fit templates predominantly obtained from simulation to data

[JHEP 01 (2022) 036], [LHCB-PAPER-2021-024] (supplementary)

W mass measurement at LHCb except for A_3

Charge-dependent curvature biases

Fit the asymmetries to the pseudomass and translate this into shifts in q/p

[JHEP 01 (2022) 036], [LHCB-PAPER-2021-024]

Backgrounds from Pythia

Number of candidates per experiment

Experiment	Muon channel	Electron channel	Result (MeV)	Stat. Unc. (MeV)	Total Unc. (MeV)
ATLAS	7.8 x 10 ⁶	5.9 x 10 ⁶	80370	7	19
LHCb	2.4 x 10 ⁶	N/A	80354	23	32
CDF-II	2.4 x 10 ⁶	1.8 x 10 ⁶	80433.5	6.4	9.4

ATLAS: [EPJC 78 (2018) 110]

LHCb: [JHEP 01 (2022) 036], [LHCB-PAPER-2021-024] (supplementary)

CDF: [Science, 376, 6589, (136-136), (2022)]

W mass workshop