Probing extended Higgs sectors with the mass of the W boson

Georg Weiglein, DESY

Orsay 2023 W mass workshop, 02 / 2023

Introduction

Previous measurements of the W mass and recent CDF result:

[CDF Collaboration '22]

\Rightarrow CDF result: large deviation from the SM; very small experimental error Compatibility of the different M_W measurements? New world average?

W-mass measurement: past and present and future

- LEP: e+e⁻ → W+W⁻ in the continuum and at threshold (small amount of data); impact of fully hadronic final state suffered from uncertainties due to BE correlations, colour reconnections
- Tevatron, LHC: transverse mass / momentum distributions

PDG average (does not include new CDF result): $M_W^{exp}(PDG) = 80.377 + 0.012 \text{ GeV} (accuracy of 1.5 x 10^{-4})$

New CDF measurement: *M*_W^{exp} (CDF) 80.434 +- 0.009 GeV [CDF Collaboration '22]

Prospects for further experimental improvements of M_W from LHC (CMS, updates from ATLAS, LHCb), future e⁺e⁻ collider Tevatron: further D0 data?

Which parameter is actually measured?

- On the theory side M_W is a Lagrangian parameter. Its physical meaning, e.g. pole mass according to the real part of the complex pole, is determined by renormalisation order by order in perturbation theory
- On the experimental side masses of unstable particles are not directly physical observables (can only measure cross sections, branching ratios, kinematical distributions, ...): masses are "pseudo-observables" whose determination involves a deconvolution procedure (unfolding)
 Different parameterisations of the resonance: Breit-Wigner shape with running or constant width
 The experimental mass parameter is obtained from comparison data — Monte Carlo

\Rightarrow The experimental mass parameters M_W , M_Z , m_t , ... are not strictly model-independent

Theoretical uncertainties affecting the measurement of the mass of the W boson

See talks by Alessandro, Tobias, Raoul and Mauro yesterday

Not only the prediction for M_W in a particular model (SM and beyond, see below) but also its extraction from the experimental data is affected by theoretical uncertainties

Those theoretical uncertainties need to be taken into account as systematic uncertainties in the measurement of M_W together with pdf uncertainties, etc.

Theoretical prediction for the W-boson mass from muon decay: relation between M_W , M_Z , α , G_μ

 $M_{\rm W}: \text{Comparison of prediction for muon decay with experiment}$ (Fermi constant G_{μ}); QED corrections in Fermi model incl. in def. of G_{μ} $\Rightarrow M_{\rm W}^2 \left(1 - \frac{M_{\rm W}^2}{M_Z^2}\right) = \frac{\pi \alpha}{\sqrt{2}G_{\mu}} \left(1 + \Delta r\right),$ $\Rightarrow M_{W}^2 = M_Z^2 \left(\frac{1}{2} + \sqrt{\frac{1}{4} - \frac{\alpha \pi}{\sqrt{2}G_{\mu}M_Z^2}} (1 + \Delta r)\right) \quad \text{loop corrections}$ $\Rightarrow \text{Theo. prediction for } M_{\rm W} \text{ in terms of } M_{\rm Z}, \alpha, G_{\mu}, \Delta r(m_{\rm t}, m_{\tilde{\rm t}}, \ldots)$

Tree-level prediction: $M_W^{\text{tree}} = 80.939 \text{ GeV}$, $M_W^{\text{exp}} = 80.377 + 0.012 \text{ GeV}$ \Rightarrow Very high sensitivity to quantum effects in the SM and beyond

W-mass prediction in the SM

One-loop contribution:

$$\begin{split} \Delta r^{(\alpha)} &= \Delta \alpha - \frac{c_{\rm w}^2}{s_{\rm w}^2} \Delta \rho + \Delta r_{\rm rem} (\mathcal{M}_{\rm H}, \ldots) \\ &\approx 6\% \quad \approx -3\% \qquad < 1\% \\ \Delta \rho &= \frac{\Sigma_T^{ZZ}(0)}{M_Z^2} - \frac{\Sigma_T^{WW}(0)}{M_W^2} \end{split}$$

contribution from isospin splitting: $\sim \left(m_t^2 - m_b^2\right) \approx m_t^2$

custodial symmetry: $\rho=1\,$ at lowest order

W-mass prediction within the SM:

one-loop result vs. state-of-the-art prediction

[M. Berger, S. Heinemeyer, G. Moortgat-Pick, G. W. '22]

⇒Pure one-loop result would imply preference for heavy Higgs, $M_h > 500$ GeV Corrections beyond one-loop order are crucial for reliable prediction of M_W

$\Delta r^{(N)MSSM(h.o.)} = \Delta r^{SM(h.o.)} + \Delta r^{SUSY(h.o.)}$ *M*_W prediction in the Standard Model

Contributions beyond one-loop order:

$$\Delta r^{\text{SM(h.o.)}} = \Delta r^{(\alpha\alpha_s)} + \Delta r^{(\alpha\alpha_s^2)} + \Delta r_{\text{ferm}}^{(\alpha^2)} + \Delta r_{\text{bos}}^{(\alpha^2)} + \Delta r^{(G_{\mu}^2\alpha_s m_t^4)} + \Delta r^{(G_{\mu}^3m_t^6)} + \Delta r^{(G_{\mu}m_t^2\alpha_s^3)}$$

Chetyrkin, Kuhn, Steinhauser, Djouadi, Verzegnassi, Awramik, Czakon, Freitas, Weiglein, Faisst, Seidensticker, Veretin, Boughezal, Kniehl, Sirlin, Halzen, Strong, ...

Impact of different contributions to Δr (x 10⁴) for fixed $M_W = 80.385$ GeV and $M_H^{SM} = 125.09$ GeV:

[O. Stål, G. W., L. Zeune '15]

$$\frac{\Delta r^{(\alpha)}}{297.17} \frac{\Delta r^{(\alpha\alpha_s)}}{36.28} \frac{\Delta r^{(\alpha\alpha_s^2)}}{7.03} \frac{\Delta r^{(\alpha^2)}}{29.14} + \Delta r^{(\alpha^2)}}{\Delta r^{(G_{\mu}^2 \alpha_s m_t^4)} + \Delta r^{(G_{\mu}^3 m_t^6)}} \frac{\Delta r^{(G_{\mu} m_t^2 \alpha_s^3)}}{1.23}$$

Sources of theoretical uncertainties

From experimental errors of the input parameters $\delta m_t = 0.7 \text{ GeV}, \ \delta(\Delta \alpha_{had}) = 10^{-4}, \ \delta M_Z = 2.1 \text{ MeV}$

 $\delta M_W^{\mathsf{para},m_t} = 4 \text{ MeV}, \quad \delta M_W^{\mathsf{para},\Delta lpha_{\mathsf{had}}} = 2 \text{ MeV}, \quad \delta M_W^{\mathsf{para},M_Z} = 2.5 \text{ MeV}$

From unknown higher-order corrections ("intrinsic") SM: Complete 2-loop result + leading higher-order corrections known for $M_{\rm W}$ and $\sin^2 \theta_{\rm eff}$

⇒ Remaining uncertainties:
[M. Awramik, M. Czakon, A. Freitas, G.W. '03, '04]
[M. Awramik, M. Czakon, A. Freitas '06]

 $\Delta M_{\rm W}^{\rm intr} \approx 4 \,\,{\rm MeV}, \quad \Delta \sin^2 \theta_{\rm eff}^{\rm intr} \approx 5 \times 10^{-5}$

BSM prediction for MS, Standale: MSSSSNMSSM

 $\Delta r \text{ in the MSSM and the NMSSM, treatment of higher-order } \\ \Delta r (N) MSSM = \Delta r (N) MSSM (\alpha) + \Delta r (N) MSSM (h.o.) + \Delta r (N) + \Delta r (N)$

 $\Delta r^{(N)MSSM} = \Delta r^{(N)MSSM(\alpha)} + \Delta r^{(N)MSSM(h.o.)}$

$$\Delta r^{(\mathrm{N})\mathrm{MSSM(h.o.)}} = \Delta r^{\mathrm{SM(h.o.)}} + \Delta r^{\mathrm{SUSY(h.o.)}}$$

⇒ <u>State</u> Hehart SM oredletion recovered by the decoupling limit, all available higher-order corrections of SUSY-type included

For light SUSY particles: additional theoretical uncertainty from higher-order SUSY-loop corrections

Asign the Merson and Months Merson

One-loop $r^{(N)MSSM} = \Delta r^{(N)MSSM(\alpha)} + \Delta r^{(N)MSSM(h.o.)}$ leading contributions from the scalar superpartners of the top and bottom quarks via $\Delta \varrho$: additional source of isospin splitting

$$\Delta r^{(N)MSSM(h.o.)} = \Delta r^{SM(h.o.)} + \Delta r^{SUSY(h.o.)}$$

Two-loop:

leading reducible 2-loop corrections, gluon/gluino 2-loop corrections, higgsino 2-loop corrections

$$\Delta r^{\mathrm{SUSY(h.o.)}} = \Delta r_{\mathrm{red}}^{\mathrm{SUSY}(\alpha^2)} - \frac{c_W^2}{s_W^2} \Delta \rho^{\mathrm{SUSY},(\alpha\alpha_s)} - \frac{c_W^2}{s_W^2} \Delta \rho^{\mathrm{SUSY},(\alpha_t^2,\alpha_t\alpha_b,\alpha_b^2)}$$

$$\xrightarrow{\tilde{t},\tilde{b}}_{V_1} \xrightarrow{\tilde{t},\tilde{b}}_{V_2} \xrightarrow{\tilde{t},\tilde{b}}_{V_1} \xrightarrow{\tilde{t},\tilde{b}}_{V_2} \xrightarrow{\tilde{t},\tilde{b}}_{V_2}$$

Interpretation of the new CDF measurement?

- At present it seems neither justified to disregard the new CDF measurement nor any of the previous measurements
- New world average: how to deal with the tensions between the different measurements? Central value, systematic uncertainties?
- Ongoing effort:

Tevatron-LHC W-boson mass Combination Working Group https://twiki.cern.ch/twiki/bin/view/LHCPhysics/MWCOMB

See Maarten's talk yesterday

New world average?

[M. Boonekamp '23]

Conclusions

- The W boson mass is arguably the most difficult measurement in HEP
 - Partial event reconstruction, incomplete kinematics
 - Calibrations
 - Physics modelling
 - Precision goal
- First measurement ~2017, with 2011 data. Being updated
- Next measurement will use low-pile-up data collected in 2017,2018.
- Combination
 - At present, it is difficult to quote a conclusive "world average". The most precise measurement
 is also discrepant.
 - Still important work : comparing LEP, Tevatron, LHC measurement results forces to look deep into the modelling aspects, to "translate" the measurements into eachother, allowing quantitative comparisons and better studies of model dependence

Interpretation of the new CDF measurement?

Note: already the present world-average lies above the SM prediction and therefore gives rise to a certain preference for a non-zero BSM contribution. The inclusion of the new CDF measurement is expected to further move up the central value.

From the theory side one may ask the question whether a prediction for a larger M_W value (somewhere between the current world average and the new CDF measurement) in BSM models would be compatible with other experimental and theoretical constraints

Some examples are shown in the following

BSM predictions for the W-boson mass

Extended Higgs sectors consisting of doublets and singlets: custodial symmetry $\Rightarrow \varrho = 1$ at lowest order

Lowest-order charged Higgs exchange contribution: ~ $(m_{\mu}m_{e})/M_{W^{2}}$

 \Rightarrow BSM contributions enter at 1-loop level: $\Delta r(m_i^{SM}, m_j^{BSM}, ...)$

Extended Higgs sectors involving triplets: tree-level contribution from triplet v.e.v. v_T : $M_W^2 = 1/4 g_2^2 v^2 + g_2^2 v_T^2$

Example: MRSSM

[P. Diessner, G. W. '19]

New CDF value for M_W : preference for BSM contribution

Prediction for M_W in the SM and the MSSM vs. experimental results for M_W and m_t

 \Rightarrow Large upward shift in M_W possible, large sensitivity to BSM effects

Prediction for M_W in the MSSM depending on the lighter stop mass (parameter scan)

 \Rightarrow Sizeable enhancements possible even for relatively heavy SUSY

Muon g–2 and M_W: a hint for light BSM particles? [E. Bagnaschi, M. Chakraborti, S. Heinemeyer, I. Saha, G. W. '22]

Impact of light electroweak SUSY particles on $g_{\mu} - 2$, M_W (PDG average) and dark matter relic density (squarks assumed very heavy!)

\Rightarrow Improved precision on M_W can probe different dark matter mechanisms

 \Rightarrow Possible hints for light charginos can be probed with future searches Larger values for M_W possible if stops, sbottoms are close to the exp. bounds

Prediction for M_W and $\sin^2\theta_{eff}$ in the SM and MSSM vs. experimental accuracies (before new CDF result)

[S. Heinemeyer, W. Hollik, G. W., L. Zeune '18]

Results for the 2HDM (alignment limit)

 $\Delta \rho_{\text{non-SM}}^{(1)} = \frac{\alpha}{16\pi^2 s_{\text{W}}^2 M_{\text{W}}^2} \left\{ \frac{m_A^2 m_H^2}{m_A^2 - m_W^2} \ln \frac{m_A^2}{m_W^2} \right\}$

 $-\frac{m_A^2 m_{H^{\pm}}^2}{m_A^2 - m_{H^{\pm}}^2} \ln \frac{m_A^2}{m_{H^{\pm}}^2}$

 $-\frac{m_H^2 m_{H^{\pm}}^2}{m_{T}^2 - m_{T^{\pm}}^2} \ln \frac{m_H^2}{m_{T^{\pm}}^2} + m_{H^{\pm}}^2 \bigg\}$

Leading BSM one-loop contribution:
$$\Delta M_W \simeq \frac{1}{2} M_W \frac{c_W^2}{c_W^2 - s_W^2} \Delta \rho$$

⇒ Large contribution possible for sizeable splitting between the BSM Higgs bosons

⇒ Prediction for the electroweak precision observables in the 2HDM (alignment limit) at 2-loop order [H. Bahl, J. Braathen, G. W. '22] THDM_EWPOS [S. Hessenberger, W. Hollik '16, '22]

Plots on next slides: All displayed points are in agreement with other relevant experimental and theoretical constraints Red: points in the 1-sigma range of the CDF measurement

Large corrections to M_W in the 2HDM [H. Bahl, J. Braathen, G. W. '22]

Prediction for the electroweak precision observables at 2-loop order, 2HDM in the alignment limit; example: type I

⇒ Large effects on M_W arise from mass splitting between heavy Higgses 2-loop effects can be very important! No significant impact on results for trilinear Higgs coupling

Large corrections to M_W in the 2HDM

[H. Bahl, J. Braathen, G. W. '22]

N2HDM: a 95 GeV Higgs and the CDF value of M_W

Conclusions

Experimental results for M_W : preference for non-zero BSM contribution

Extended Higgs sectors: prediction for the mass of the W boson in agreement with the recent CDF measurement is possible in the 2HDM, N2HDM, ... without being in conflict with the relevant experimental and theoretical constraints

N2HDM: parameter region yielding large upward shift on M_W can also accommodate a light Higgs at 95 GeV that is compatible with the observed excesses

⇒ Further data will be crucial for probing the possible hints for new physics

W-mass measurement at the LHC

[ATLAS Collaboration '17]

WC

80356±8 MeV

Fit w/o m.

Probing extended Higgs sectors with the mass of the Electroweak Fit

What is meant by the mass of an unstable particle?

If $\Sigma(\mathcal{M}^2) \neq 0 \Rightarrow$ Pole shifted by higher-order contributions

Mass of an unstable (elementary) particle

For an unstable particle:

 $\Sigma(\mathcal{M}^2)$ is complex \Rightarrow Pole in the complex plane

$$\mathcal{M}^2 - m^2 + \Sigma(\mathcal{M}^2) = 0, \quad \mathcal{M}^2 = M^2 - iM\Gamma$$

M: physical mass, Γ : decay width of the unstable particle

 \Rightarrow The mass of an unstable (elementary) particle is defined according to the real part of the complex pole

Example:

resonant production

of the Z boson and its decay

Example: model dependence of the Z-boson mass, $M_Z^{exp} = 91.1876 \pm 0.0021 \text{ GeV}$

In order to obtain this experimental value the Standard Model has been assumed. As a consequence, the experimental value quoted for the Z-boson mass actually depends (slightly) on the Higgs-boson mass of the Standard Model!

 $\delta M_Z^{exp} \approx \pm 0.2$ MeV for 100 GeV < M_H < 1 TeV, corresponds to about 10% of the experimental error

 \Rightarrow A careful assessment of similar effects will be needed for high-precision analyses at the LHC and future colliders!

*M*_W: which parameter is actually measured?

Experimentally, a "Monte Carlo" mass parameter is measured. The problem of how to relate such a parameter to a theoretically well defined Lagrangian mass parameter is most apparent for the case of the top-quark mass (coloured object, renormalon ambiguities, ...).

However, for an accuracy at the level of 10^{-4} this issue may also be of relevance for M_W

Example: the shift in M_W between the fixed-width and the running-width parameterisation of the resonance is formally an electroweak two-loop effect that amounts to about 27 MeV!

Are the Monte Carlo codes that are used for the experimental determination of M_W sufficiently accurate?

 $M_T = \sqrt{2E_T E_T (1 - \cos \Delta \varphi_{ev})}$

Measurement of the W mass at hadron colliders

BSM predictions for the W-boson mass

S, T, U parameters: only BSM contributions taken into account that enter via gauge-boson self-energies (only one-loop contributions), external momentum neglected

$$M_W^2 = M_W^2 \Big|_{\rm SM} \left(1 + \frac{s_w^2}{c_w^2 - s_w^2} \Delta r' \right)$$
$$\Delta r' = \frac{\alpha}{s_w^2} \left(-\frac{1}{2}S + c_w^2 T + \frac{c_w^2 - s_w^2}{4s_w^2} U \right)$$

SM prediction for the experimental values of $M_{\rm H}$, $m_{\rm t}$, ...

Global fits to electroweak precision observables: SM, SM + S, T, U parameters: *GFitter*, ... BSM models (SUSY, ...): *MasterCode*, *Gambit*, ... EFT fits Effective leptonic weak mixing angle at the Z-boson resonance:

$$\sin^2 \theta_{\text{eff}} = \frac{1}{4} \left(1 - \operatorname{Re} \frac{g_V}{g_A} \right) = \left(1 - \frac{M_W^2}{M_Z^2} \right) \left(1 + \Delta \kappa \right)$$

Current experimental value from LEP and SLD: $\sin^2 \theta_{\text{eff}} = 0.23153 \pm 0.00016 \Rightarrow$ Accuracy of 0.07%

However: the small experimental error of the world-average is driven by two measurements that are not well compatible with each other: A_{LR} (SLD) and A_{FB} (LEP)

 $\sin^2 \theta_{\rm eff}(A_{\rm LR}) = 0.23098 \pm 0.00026, \quad \sin^2 \theta_{\rm eff}(A_{\rm FB}) = 0.23221 \pm 0.00029$

sin² θ_{eff} : unclear experimental situation

[LEPEWWG '07]

 $\sin^2 \theta_{\rm eff}$ has a high sensitivity to $M_{\rm H}$ and effects of new physics

But:

large discrepancy between $A_{\rm LR}$ (SLD) and $A_{\rm FB}$ (LEP),

has big impact on constraints on new physics

Interpretation of constraints from sin² θ_{eff} is complicated by the fact that the two most precise individual measurements differ from each other by more than 3 σ

Interface between experiment and theory

The effective weak mixing angle at the Z-resonance, $\sin^2\theta_{eff}$, is also a "pseudo observable", whose extraction from the actually measured quantities requires a certain amount of "unfolding"; as in the case of the W-boson mass not only its prediction within a certain model but also its extraction from the experimental data is affected by theoretical uncertainties

 $sin^2\theta_{eff}$ has a clear experimental prescription in terms of left-right and forward-backward asymmetries and a well-defined theoretical meaning; for higher precision more and more contributions have to be taken into account in the relation to the experimentally measured quantities in order to ensure that the measured quantity $sin^2\theta_{eff}$ indeed matches the theoretically predicted one

Extraction of $sin^2\theta_{eff}$ at LEP

Form factors implemented in ZFITTER: [M. Awramik, M. Czakon, A. Freitas '06]

$$\begin{split} \mathcal{A}[e^{+}e^{-} \to f\bar{f}] &= 4\pi i \, \alpha \, \frac{Q_{e}Q_{f}}{s} \, \gamma_{\mu} \otimes \gamma^{\mu} \\ &+ i \frac{\sqrt{2}G_{\mu}M_{Z}^{2}}{1 + i\Gamma_{Z}/M_{Z}} \, I_{e}^{(3)} \, I_{f}^{(3)} \, \frac{1}{s - \overline{M}_{Z}^{2} + i\overline{M}_{Z}\overline{\Gamma}_{Z}} \\ &\times \, \rho_{ef} \left[\gamma_{\mu}(1 + \gamma_{5}) \otimes \gamma^{\mu}(1 + \gamma_{5}) \\ &- 4|Q_{e}|s_{W}^{2} \, \kappa_{e} \, \gamma_{\mu} \otimes \gamma^{\mu}(1 + \gamma_{5}) \\ &- 4|Q_{f}|s_{W}^{2} \, \kappa_{f} \, \gamma_{\mu}(1 + \gamma_{5}) \otimes \gamma^{\mu} \\ &+ 16|Q_{e}Q_{f}|s_{W}^{4} \, \kappa_{ef} \, \gamma_{\mu} \otimes \gamma^{\mu} \right] \end{split} \qquad \kappa_{ef}(s) = \kappa_{e}(s)\kappa_{f}(s) - \frac{M_{Z}^{2} - s}{s} \, \frac{1}{(a_{e}^{(0)} - v_{e}^{(0)})(a_{f}^{(0)} - v_{f}^{(0)})} \\ &\times \left[q_{e}^{(1)}q_{1}^{(0)} + q_{f}^{(1)}q_{e}^{(0)} - p_{f}^{(1)}q_{e}^{(0)} \frac{v_{e}^{(0)}}{a_{f}^{(0)}} - p_{e}^{(1)}q_{f}^{(0)} \frac{v_{e}^{(0)}}{a_{e}^{(0)}} - q_{e}^{(0)}q_{f}^{(0)} \frac{\Sigma_{\gamma\gamma}}{s} + boxes \right] \\ &\times \left[q_{e}^{(1)}q_{1}^{(0)} + q_{f}^{(1)}q_{e}^{(0)} - p_{f}^{(1)}q_{e}^{(0)} \frac{v_{e}^{(0)}}{a_{f}^{(0)}} - p_{e}^{(1)}q_{f}^{(0)} \frac{v_{e}^{(0)}}{a_{e}^{(0)}} - q_{e}^{(0)}q_{f}^{(0)} \frac{\Sigma_{\gamma\gamma}}{s} + boxes \right] \\ &\times \left[q_{e}^{(1)}q_{1}^{(0)} + q_{f}^{(1)}q_{e}^{(0)} - p_{f}^{(1)}q_{e}^{(0)} \frac{v_{e}^{(0)}}{a_{f}^{(0)}} - p_{e}^{(1)}q_{f}^{(0)} \frac{v_{e}^{(0)}}{a_{e}^{(0)}} - q_{e}^{(0)}q_{f}^{(0)} \frac{\Sigma_{\gamma\gamma}}{s} + boxes \right] \right] \\ &+ 16|Q_{e}Q_{f}|s_{W}^{4} \, \kappa_{ef} \, \gamma_{\mu} \otimes \gamma^{\mu} \right]$$

Relation between $\sin^2\theta_{eff}$ determined from expansion around the complex pole and the one defined in *ZFITTER*:

$$\sin^2 \theta_{\text{eff,pole}}^f = \overline{s}_{\text{W}}^2 \operatorname{Re} \left\{ \overline{\kappa}_{\text{Z}}^{\text{f}}(M_{\text{Z}}^2) \right\} = \sin^2 \theta_{\text{eff,ZFITTER}}^f - \frac{\Gamma_{\text{Z}}}{M_{\text{Z}}} \frac{q_{\text{f}}^{(0)}}{a_{\text{e}}^{(0)}(a_{\text{f}}^{(0)} - v_{\text{f}}^{(0)})} \operatorname{Im} \left\{ p_{\text{e}}^{(1)} \right\}$$

$$= \left(1 - \frac{\overline{M}_{\text{W}}^2}{\overline{M}_{\text{Z}}^2} \right) = s_{\text{W}}^2 \left[1 + \frac{c_{\text{W}}^2}{s_{\text{W}}^2} \left(\frac{\Gamma_{\text{W}}^2}{M_{\text{W}}^2} - \frac{\Gamma_{\text{Z}}^2}{M_{\text{Z}}^2} \right) \right]^{-1} \cdot \begin{array}{c} \text{numerically} \\ \text{small, but} \\ \text{required at} \\ \text{this order} \\ s_{\text{H}} \\ \end{array}$$

PDG list of Z-pole observables:

Quantity	ty Value Standard Model		Pul
$M_Z \; [\text{GeV}]$	91.1876 ± 0.0021	91.1882 ± 0.0020	-0.3
$\Gamma_Z \; [\text{GeV}]$	2.4955 ± 0.0023	2.4941 ± 0.0009	0.6
$\sigma_{\rm had} \ [{\rm nb}]$	41.481 ± 0.033	41.482 ± 0.008	0.0
R_e	20.804 ± 0.050	20.736 ± 0.010	1.4
R_{μ}	20.784 ± 0.034	20.736 ± 0.010	1.4
R_{τ}	20.764 ± 0.045	20.781 ± 0.010	-0.4
R_b	0.21629 ± 0.00066	0.21582 ± 0.00002	0.7
R_c	0.1721 ± 0.0030	0.17221 ± 0.00003	0.0
$A_{FB}^{(0,e)}$	0.0145 ± 0.0025	0.01617 ± 0.00007	-0.7
$A_{FB}^{(0,\mu)}$	0.0169 ± 0.0013		0.6
$A_{FB}^{(0, au)}$	0.0188 ± 0.0017		1.5
$A_{FB}^{(0,b)}$	0.0996 ± 0.0016	0.1029 ± 0.0002	-2.0
$A_{FB}^{(0,c)}$	0.0707 ± 0.0035	0.0735 ± 0.0002	-0.8
$A_{FB}^{(0,s)}$	0.0976 ± 0.0114	0.1030 ± 0.0002	-0.4
$ar{s}_\ell^2$	0.2324 ± 0.0012	0.23155 ± 0.00004	0.7
	0.23148 ± 0.00033		-0.2
	0.23129 ± 0.00033		-0.8
A_e	0.15138 ± 0.00216	0.1468 ± 0.0003	2.1
	0.1544 ± 0.0060		1.3
	0.1498 ± 0.0049		0.6
A_{μ}	0.142 ± 0.015		-0.3
$A_{ au}$	0.136 ± 0.015		-0.7
	0.1439 ± 0.0043		-0.7
A_b	0.923 ± 0.020	0.9347	-0.6
A_c	0.670 ± 0.027	0.6677 ± 0.0001	0.1
A_s	0.895 ± 0.091	0.9356	-0.4

Note: the fit for the electroweak precision observables is dominated by M_W and $\sin^2\theta_{eff}$ (does not appear explicitly in the PDG list), the other Z-pole observables have only a relatively small impact

[PDG '22]

$M_{\rm W}$ and the Z-pole observables

1. Physical Constants

Table 1.1: Revised 2021 by D. Robinson (LBNL). Reviewed by P. Mohr (NIST). Mainly from "CODATA Recommended Values of the Fundamental Physical Constants: 2018," E. Tiesinga, D.B. Newell, P.J. Mohr, and B.N. Taylor, NIST SP961 (May 2019) [1]. The electron charge magnitude e, and the Planck, Boltzmann, and Avogadro constants h, k, and N_A , now join c as having defined values; the free-space permittivity and permeability constants ϵ_0 and μ_0 are no longer exact. These changes affect practically everything else in the Table. Figures in parentheses after the values are the 1-standard-deviation uncertainties in the last digits; the fractional uncertainties in parts per 10⁹ (ppb) are in the last column. The full 2018 CODATA Committee on Data for Science and Technology set of constants are found at https://physics.nist.gov/constants. The last set of constants (beginning with the Fermi coupling constant) comes from the Particle Data Group. See also "The International System of Units (SI)," 9th ed. (2019) of the International Bureau of Weights and Measures (BIPM), https://www.bipm.org/utils/common/pdf/si-brochure/SI-Brochure-9-EN.pdf.

Quantity	Symbol, equation	Value U	Incertainty (ppb)
speed of light in vacuum	с	$299\ 792\ 458\ {\rm m\ s^{-1}}$	exact
Planck constant	h	6.626 070 15×10 ⁻³⁴ J s (or J/Hz) §	exact
Planck constant, reduced	$\hbar \equiv h/2\pi$	$1.054\ 571\ 817 \times 10^{-34}$ J s	$exact^*$
,	,	$= 6.582 \ 119 \ 569 \times 10^{-22} \ MeV \ s$	$exact^*$
electron charge magnitude	e	$1.602\ 176\ 634 \times 10^{-19}\mathrm{C}$	exact
conversion constant	$\hbar c$	197.326 980 4 MeV fm	exact*
conversion constant	$(\hbar c)^2$	$0.389 \ 379 \ 372 \ 1 \ GeV^2 \ mbarn$	exact*
electron mass	m_e	$0.510\ 998\ 950\ 00(15)\ \mathrm{MeV}/c^2 = 9.109\ 383\ 7015(28) \times$	$(10^{-31} \text{ kg} 0.30)$
proton mass	m_p	938.272 088 16(29) MeV/ $c^2 = 1.672$ 621 923 69(51)×	$(10^{-27} \text{ kg} = 0.31)$
		$= 1.007\ 276\ 466\ 621(53)\ u = 1836.152\ 673\ 43(11)\ n$	$n_e = 0.053, 0.060$
neutron mass	m_n	939.565 420 52(54) MeV/ $c^2 = 1.008$ 664 915 95(49) 1	u 0.57, 0.48
deuteron mass	m_d 12	$1875.612 \ 942 \ 57(57) \ \mathrm{MeV}/c^2$	0.30
unified atomic mass unit ^{**}	$u = (\text{mass}\ ^{12}\text{C}\ \text{atom})/12$	931.494 102 42(28) MeV/ $c^2 = 1.66053906660(50) \times$	$(10^{-27} \text{ kg} 0.30)$
permittivity of free space	$\epsilon_0 = 1/\mu_0 c^2$	$8.854\ 187\ 8128(13)\ \times 10^{-12}\ \mathrm{F\ m^{-1}}$	0.15
permeability of free space	$\mu_0/(4\pi \times 10^{-7})$	1.000 000 000 55(15) N A ⁻²	0.15
fine-structure constant	$\alpha = e^2 / 4\pi\epsilon_0 \hbar c$	$7.297\ 352\ 5693(11) \times 10^{-3} = 1/137.035\ 999\ 084(21)^{\dagger}$	^{‡‡} 0.15
classical electron radius	$r_e = e^2/4\pi\epsilon_0 m_e c^2$	$2.817 \ 940 \ 3262(13) \times 10^{-15} \ \mathrm{m}$	0.45
$(e^- \text{ Compton wavelength})/2\pi$	$\lambda_e = \hbar/m_e c = r_e \alpha^{-1}$	$3.861\ 592\ 6796(12) \times 10^{-13} \text{ m}$	0.30
Bohr radius $(m_{\text{nucleus}} = \infty)$	$a_{\infty} = 4\pi\epsilon_0 \hbar^2 / m_e e^2 = r_e \alpha^{-2}$	$0.529\ 177\ 210\ 903(80) \times 10^{-10} \text{ m}$	0.15
wavelength of 1 eV/c particle	hc/(1 eV)	$1.239\ 841\ 984 \times 10^{-6}\ m$	exact*
Rydberg energy	$hcR_{\infty} = m_e e^4/2(4\pi\epsilon_0)^2\hbar^2 = m_e c^2\alpha^2/2$	13.605 693 122 994(26) eV	1.9×10^{-3}
Thomson cross section	$\sigma_T = 8\pi r_e^2/3$	0.665 245 873 21(60) barn	0.91
Bohr magneton	$\mu_B = e\hbar/2m_e$	$5.788 \ 381 \ 8060(17) \times 10^{-11} \ \text{MeV} \ \text{T}^{-1}$	0.30
nuclear magneton	$\mu_N = e\hbar/2m_p$	$3.152\ 451\ 258\ 44(96) \times 10^{-14}\ {\rm MeV}\ {\rm T}^{-1}$	0.31
electron cyclotron freq./field	$\omega_{\text{cycl}}^e/B = e/m_e$	$1.758\ 820\ 010\ 76(53) \times 10^{11}\ rad\ s^{-1}\ T^{-1}$	0.30
proton cyclotron freq./field	$\omega_{\text{cycl}}^{p}/B = e/m_p$	$9.578~833~1560(29) \times 10^7 \text{ rad s}^{-1} \text{ T}^{-1}$	0.31
gravitational constant [‡]	G_N	$6.674\ 30(15) \times 10^{-11}\ {\rm m}^3\ {\rm kg}^{-1}\ {\rm s}^{-2}$	2.2×10^{4}
5	1	$= 6.708 83(15) \times 10^{-39} \hbar c (\text{GeV}/c^2)^{-2}$	2.2×10^4
standard gravitational accel.	g_N	$9.806\ 65\ {\rm m\ s}^{-2}$	exact
Avogadro constant	NA	$6.022\ 140\ 76 \times 10^{23}\ \mathrm{mol}^{-1}$	exact
Boltzmann constant	k i i i i i i i i i i i i i i i i i i i	$1.380 \ 649 \times 10^{-23} \ J \ K^{-1}$	exact
		$= 8.617 \ 333 \ 262 \times 10^{-5} \ eV \ K^{-1}$	$exact^*$
molar volume, ideal gas at STP	N _A k (273.15 K)/(101 325 Pa)	$22.413 969 54 \times 10^{-3} \text{ m}^3 \text{ mol}^{-1}$	$exact^*$
Wien displacement law constant	$b = \lambda_{max}T$	$2.897~771~955 \times 10^{-3} \text{ m K}$	$exact^*$
Stefan-Boltzmann constant	$\sigma = \pi^2 k^4 / 60 \hbar^3 c^2$	$5.670 \ 374 \ 419 \times 10^{-8} \ W \ m^{-2} \ K^{-4}$	exact*
rermi coupling constant ^{‡‡}	$G_F/(\hbar c)^3$	$1.166\ 378\ 8(6) \times 10^{-5}\ {\rm GeV}^{-2}$	510
weak-mixing angle	$\sin^2 \widehat{\theta}(M_Z)$ (MS)	0.231 21(4) ^{††}	1.7×10^5
W^{\pm} boson mass	m_W	$80.377(12)$ GeV/ c^2 ¶	1.5×10^{5}
Z^0 boson mass	m_Z	$91.1876(21) \text{ GeV}/c^2$	2.3×10^4
strong coupling constant	$\alpha_s(m_Z)$	0.1179(9)	7.6×10^6
$\pi = 3.141\ 592\ 653\ 589$	793 238 $e = 2.718 \ 281 \ 828 \ 45$	$59\ 045\ 235\dots \qquad \gamma = 0.577\ 215\ 664\ 901\ 532\ 350 \ 350\ 550\ 550\ 550\ 550\ 550\ 55$	860
$1 \text{ in} \equiv 0.0254 \text{ m}$ $1 \text{ G} \equiv$	10^{-4} T 1 $eV = 1.602 \ 176 \ 634 \times$	10^{-19} J (exact) kT at 300 K = [38.681 727 0718.	\dots] ⁻¹ eV (exact [*])
$1 \text{ Å} \equiv 0.1 \text{ nm}$ 1 dyne	$a \equiv 10^{-5} \text{ N}$ (1 kg) $c^2 = 5.609 588 603$	$\dots \times 10^{35} eV(exact^*)$ $0 \ ^{\circ}C \equiv 273.15K$. ,
$1 \text{ barn} \equiv 10^{-28} \text{ m}^2$ 1 erg	$\equiv 10^{-7} \text{ J}$ 1 C = 2.997 924 58 × 1	10^9 esu 1 atmosphere $\equiv 760 \text{ Torr} \equiv 101 325 \text{Pa}$	

§CODATA recommends that the unit be J/Hz to stress that in $h = E/\nu$ the frequency ν is in cycles/sec (Hz), not radians/sec.

* These are calculated from exact values and are exact to the number of places given (*i.e.* no rounding).

 $^{**}{\rm The}$ molar mass of $^{12}{\rm C}$ is 11.999 999 9958(36) g. [†]At $Q^2 = 0$. At $Q^2 \approx m_W^2$ the value is ~ 1/128.

[‡]Absolute laboratory measurements of G_N have been made only on scales of about 1 cm to 1 m. ^{‡‡}See the discussion in Ch. 10, "Electroweak model and constraints on new physics."

^{††}The corresponding $\sin^2 \theta$ for the effective angle is 0.23153(4).

 \P See the "Mass and width of the W boson" review

Beware: this is not an independent experimental observable!

[PDG '22]

[J. Kretzschmar '22]

D0 (4.3+1.1 fb⁻¹) [Phys. Rev. **D89** (2014) 012005] $m_W = 80375 \pm 11$ (stat.) ± 20 (sys.) MeV

CDF (8.8 fb⁻¹) [Science **376** (2022) 170] $m_W = 80433.5 \pm 6.4$ (stat.) ± 6.9 (sys.) MeV

ATLAS (4.6 fb⁻¹) [*Eur. Phys. J.* **C78** (2018) 110] $m_W = 80370 \pm 7 \text{ (stat.)} \pm 18 \text{ (sys.) MeV}$

LHCb (1.7 fb⁻¹) [JHEP **01** (2022) 036] $m_W = 80354 \pm 23$ (stat.) ± 22 (sys.) MeV

- Sensitive probe for BSM physics
- Dominated by hadron collider measurements: difficult measurement with significant theory input, non-trivial correlations e.g. from PDFs
- New CDF result significantly away from the SM and prior measurements

Created in 2020 with ATLAS, CMS, CDF, D0; LHCb added more recently

- Primary goals:
 - Official combinations of measurements with treatment of correlations of systematic uncertainties
 - Publication signed by corresponding collaborations
- Established a methodology to combine existing and future measurements; can also be used to enable physics modelling updates of past measurements (i.e. PDFs, pTW) or e.g. correlate measurements of m_w and sin²theta_w
- Intermediate results presented at ICHEP2022
 + public note released

Towards a combination of LHC and TeVatron W-boson mass measurements

The LHC–TeVatron W-boson mass combination working group¹

In this note methodological and modelling considerations towards a combination of the ATLAS, CDF and D0 measurements of the *W*-boson mass are discussed. As they were performed at different moments in time, each measurement employed different assumptions for the modelling of *W*-boson production and decay, as well as different fits of the parton distribution functions of the proton (PDFs). Methods are presented to accurately evaluate the effect of PDFs and other modelling variations on existing measurements, allowing to extrapolate them to any PDF set and to evaluate the corresponding uncertainties. Based on this approach, the measurements can be corrected to a common modelling reference and to the same PDFs, and subsequently combined accounting for PDF correlations in a quantitative way.

https://cds.cern.ch/record/2815187

43

CERN-LPCC-2022-06 FERMILAB-TM-2779-V 7th July 2022

[J. Kretzschmar '22]

- Measurements performed at different times, using different baseline PDFs and QCD tools, two-step procedure : mw^{CDF} mw^{DD} mw^{ATLAS} mw^{LHCb}
 - correct to common PDF & QCD accuracy

• Full procedure, decomposed into generator and PDF effects

$$m_{W}^{updated} = m_{W}^{ref.} - \delta m_{W}^{QCD} - \delta m_{W}^{PDF}$$

published Improved predictions, PDF extrapolation for reference PDF

• Allows to improve existing experimental results for improved theory & PDFs

[J. Kretzschmar '22]

- Significant progress towards combination (and understanding) of existing m_w measurements
 - Detailed study of generator features such as decay angle/polarization effects
 - PDF archeology
- Close to having a fully final set of numbers for QCD corrections, PDF shifts and correlations and combinations
- In contrast to initial remit, the LHCb measurement will be fully incorporated
- Expecting a complete documentation with combinations using different PDFs sets and different subsets of experiments:
 - TeVatron, LHC, All (including LEP); N-1
 PDFs: ABMP16, CT18, NNPDF3.1, NNPDF4.0, MSHT20
 - Also expecting remaining incompatibilities between measurements even after applying relevant theory updates – iterating on how to present & discuss the results

On-going M_W combination (with previous CDF value)

- Accuracy of Resbos1, compared to modern generators?
 - Resbos1 distributions obtained from the CDF publication sample, and D0 event generation grids (thanks for sharing!)
 - Resbos1 was a semi-private generator, and it is difficult to reproduce these distributions externally
 - Comparisons to Powheg, MiNNLO, and "Resbos 2"
 - "Resbos 2" is an upgrade of Resbos1, with (among others) improved NNLO QCD corrections, and improved treatment of spin correlations

On-going M_W combination (with previous CDF value)

[LHC EW WG, M. Boonekamp '22]

PDF extrapolations (including generator dependence)

• Example, for CDF (defines reference PDF):

Generator Sample type	Powheg Reweighted	Powheg Direct	MiNNLO Reweighted	Resbos Direct	Resbos Direct	
PDF set	NLO+NLL	Shift				
CTEQ6M NLO	0	0	0	0	0	
CTEQ66 NLO	-15.4 ± 0.8	-15.8 ± 0.8	-14.0 ± 1.3	-17.8 ± 1.0	-16.6 ± 1.0	
CT10 NLO	-6.3 ± 0.8	-6.2 ± 0.8	-4.2 ± 1.3	_	_	
CT10nnlo NNLO	-16.2 ± 0.8	-16.6 ± 0.8	-16.8 ± 1.3	_	_	
CT14 NNLO	$-4,1 \pm 0.8$	-3.9 ± 0.8	-6.8 ± 1.3	-7.1 ± 1.0	-6.9 ± 1.0	
CT18 NNLO	-6.2 ± 0.8	-6.6 ± 0.8	-8.5 ± 1.3	-9.4 ± 1.0	-7.2 ± 1.0	
CJ15 NLO	7.7 ± 0.8	7.9 ± 0.8	10.1 ± 1.3	_	_	
MMHT14 NNLO	-6.2 ± 0.8	-6.4 ± 0.8	-6.9 ± 1.3	-8.1 ± 1.0	-3.5 ± 1.0	
MSHT20 NNLO	-5.0 ± 0.8	-4.9 ± 0.8	-4.9 ± 1.3	_	_	
ABMP16 NNLO	5.2 ± 0.8	5.0 ± 0.8	-0.2 ± 1.3	_	_	
NNPDF3.1 ^{NNLO}	-13.8 ± 0.8	-14.3 ± 1.4	-14.1 ± 1.3	-15.8 ± 1.0	-8.0 ± 1.0	

→ Significant difference between CTEQ6M and CTEQ6.6 (not accounted for this far)

eliminary combinations for CTEQ6M CTEQ6.1 CTEQ6.6 CT10nnlo MSTW2008

14

47/35

On-going M_W combination (with previous CDF value)

New combinations

Total

 $\chi^2/ndof$

- Preliminary combinations for ATLAS+CDF+D0.
 - Central values may need corrections : hidden for now!
 - Model-dependence of PDF extrapolations?
 - Impact of generator mismodellings?
 - Total (PDF) uncertainties : 11–13 MeV (3–7 MeV).
 - CT18, MSHT20, NNPDF4.0 now available too.

Table 1: Combination summary: Legacy PDFs

14

50/35

14

46/35

[LHC EW WG, M. Boonekamp '22]

14

48/35

12

60/35

	CT10	CJ15	CT14nlo	MMHT2014nlo	NNPDF3.1nlo
Central value					
PDF	11	2	9	6	4
Total	16	11	14	13	11
$\chi^2/ndof$	46/35	53/35	48/35	58/35	49/35

Table 2: Combination summary: NLO PDFs

	CT14nnlo	MMHT2014nnlo	ABMP16nnlo	NNPDF3.1nnlo
Central value				
PDF	10	7	3	4
Total	15	13	11	11
$\chi^2/ndof$	45/35	45/35	55/35	50/35

Table 3: Combination summary: NNLO PDFs

⇒On-going effort will hopefully soon result in a new world average for both the central value and the experimental uncertainty

Simple example of extended Higgs sector: 2HDM

- > 2 SU(2)_L doublets $\Phi_{1,2}$ of hypercharge $\frac{1}{2}$
- > CP-conserving 2HDM, with softly-broken Z₂ symmetry ($\Phi_1 \rightarrow \Phi_1, \Phi_2 \rightarrow -\Phi_2$) to avoid tree-level FCNCs $V^{(0)} = -m_1^2 |\Phi_1|^2 + m_2^2 |\Phi_2|^2 - m_2^2 (\Phi_2^{\dagger} \Phi_1 + \Phi_1^{\dagger} \Phi_2)$

$$\begin{split} \gamma_{2\text{HDM}}^{(0)} &= m_1^2 |\Phi_1|^2 + m_2^2 |\Phi_2|^2 - m_3^2 (\Phi_2^{\dagger} \Phi_1 + \Phi_1^{\dagger} \Phi_2) \\ &+ \frac{\lambda_1}{2} |\Phi_1|^4 + \frac{\lambda_2}{2} |\Phi_2|^4 + \lambda_3 |\Phi_1|^2 |\Phi_2|^2 + \lambda_4 |\Phi_2^{\dagger} \Phi_1|^2 + \frac{\lambda_5}{2} \Big((\Phi_2^{\dagger} \Phi_1)^2 + \text{h.c.} \Big) \end{split}$$

> m_1, m_2 eliminated with tadpole equations, and $v_1^2 + v_2^2 = v^2 = (246 \text{ GeV})^2$

- > 7 free parameters in scalar sector: m_3 , λ_i (i=1,...,5), tan $\beta \equiv v_2/v_1$
- Mass eigenstates: h, H: CP-even Higgses, A: CP-odd Higgs, H[±]: charged Higgs, α² CP²⁴⁶eff^{eV)²} Higgs mixing angle
- > λ_i (i=1,...,5) traded for mass eigenvalues m_h^2 , m_H^2 , $m_{H^\pm}^2$, $m_{H^\pm}^2$ and angle α

> m_3 replaced by a Z_2 soft-breaking mass scale

$$M^2 = \frac{2m_3^2}{s_{2\beta}}$$

▶ **BSM-scalar masses** take form $m_{\Phi}^2 = M^2 + \tilde{\lambda}_{\Phi}v^2$, $\Phi \in \{H, A, H^{\pm}\}$

In alignment limit, $\alpha = \beta - \pi/2$: h couplings are SM-like at tree level