SMEFT: The High, the Low and the Flat

Dedicated to Orsay 2023 W mass workshop

<u>A surprising interplay between physics</u> at different scales

directed by Tom Tong UNIVERSITÄT **SIEGEN**

50th ANNIVERSARY EDITION

Naturwissenschaftlich Technische Fakultät

Abstract for the impatient

"THAT'S THE END OF MY PRESENTATION, ANY QUESTIONS?"

Thanks tor watching !

- SMEFT global-fits including only high energy data will cause percent-level damage to the first-row CKM unitarity
- Low energy data can help by lifting some of the flat directions. It is important to include them in the global analyses
- Very often, the more observables you include, the more operators are relevant. Challenge accepted?

Well... you know

M

Ò

Visualizing a key step in cytokine signaling pp. 139 & 163

Schenced \$15 8 April 2022 science.org

Vie W boson mass measures higher than expected pp. 125, 136, & 170

6

La

Whenever a new ambulance in town

<u>Chasing the ambulance-chasers</u>

It's somebody's job to chase it

• What do people usually do?

Basically, in two ways

Good ol' way to explain an anomaly

- Step 1: Pick up a model you like, e.g. scalar triplet, 2HDM, yada yada
 - Step 2: Calculate relevant observables it predicts (the tedious part...)
 - Step 3: Compare them with the experiments including the new W mass
 - Step 4: If it works, then add it to your paper, else discard it
 - Step 5: Go to Step 1

LEGO Master Model Builder

Model-independent way

Step 1: Use the Standard Model EFT

$\mathcal{L}_{\rm SMEFT}^{\rm dim-6} = \mathcal{L}_{\rm SM} + \sum_{i} C_i \mathcal{O}_i^{\rm dim-6}$

SM fields **BSM** fields

A vehicle for interpreting LHC data in the post-Higgs era, as some would like to call it

Effective Operators

 Λ^n

Model-independent way

Step 1: Use the Standard Model EFT

• Step 2: Constrain all the Wilson coefficients with all the observables

 $\mathcal{L}_{\text{SMEFT}}^{\text{dim-6}} = \mathcal{L}_{\text{SM}} + \sum_{i} C_{i} \mathcal{O}_{i}^{\text{dim-6}}$

SM fields **BSM** fields

A vehicle for interpreting LHC data in the post-Higgs era, as some would like to call it

Effective Operators

 Λ^n

Model-independent way 2499 $\mathcal{L}_{\rm SMEFT}^{\rm dim-6} = \mathcal{L}_{\rm SM} + \sum C_i \mathcal{O}_i^{\rm dim-6}$ Step 2: Constrain all the Wilson coefficients with all the observables

Step 1: Use the Standard Model EFT

SM fields **BSM** fields

A vehicle for interpreting LHC data in the post-Higgs era, as some would like to call it

Effective Operators

 Λ^n

Model-independent, but a little bit tricky way

- Step 1: Use the Standard Model EFT
 - $\mathcal{L}_{ ext{SMEFT}}^{ ext{dim-6}} = \mathcal{L}_{ ext{SM}} + \sum_{i}^{ ext{249}} C_i \mathcal{O}_i^{ ext{dim-6}}$
- Step 2: Constrain all the Wilson coefficients with all the observables
- Step 2: Make some assumptions to simplify the SMEFT, say oblique, flavor universal, MFV, etc
- Step 3: Choose *relevant* Wilson coefficients and *relevant* observables
- Step 4: Global fit (with those assumptions)

Model-independent, but a little bit tricky way

- Step 1: Use the Standard Model EFT
 - $\mathcal{L}_{ ext{SMEFT}}^{ ext{dim-6}} = \mathcal{L}_{ ext{SM}} + \sum_{i}^{ ext{249}} C_i \mathcal{O}_i^{ ext{dim-6}}$
- Step 2: Constrain all the Wilson coefficients with all the observables
- Step 2: Make some assumptions to simplify the SMEFT, say oblique, flavor universal, MFV, etc
- Step 3: Choose *relevant* Wilson coefficients and *relevant* observables
- Step 4: Global fit (with those assumptions)
- But wait... relevant to what?

Relevant to the W mass

• W mass is one of the EWPO

	Measurement
$M_W \; [\text{GeV}]$	80.413 ± 0.015
$\Gamma_W \; [\text{GeV}]$	2.085 ± 0.042
$\sin^2 heta_{ m eff}^{ m lept}(Q_{ m FB}^{ m had})$	0.2324 ± 0.0012
$P^{ m pol}_{ au} = \mathcal{A}_{\ell}$	0.1465 ± 0.0033
$\Gamma_Z [{\rm GeV}]$	2.4955 ± 0.0023
$\sigma_h^0 \; [{ m nb}]$	41.480 ± 0.033
R^0_ℓ	20.767 ± 0.025
$A^{0,\ell}_{ m FB}$	0.0171 ± 0.0010
\mathcal{A}_{ℓ} (SLD)	0.1513 ± 0.0021
R_b^0	0.21629 ± 0.0006
R_c^0	0.1721 ± 0.0030
$A^{0,b}_{ m FB}$	0.0996 ± 0.0016
$A_{ m FB}^{ar 0, ar c}$	0.0707 ± 0.0035
$\hat{\mathcal{A}}_b^{\perp}$	0.923 ± 0.020
\mathcal{A}_{c}	0.670 ± 0.027
\mathcal{A}_{s}	0.895 ± 0.091
$\mathrm{BR}_{W \to \ell \bar{\nu}_{\ell}}$	0.10860 ± 0.0009
$\sin^2 \theta_{\text{eff}}^{\text{lept}}$ (HC)	0.23143 ± 0.0002
\widetilde{R}_{uc}	0.1660 ± 0.0090

Relevant to the W mass

In SMEFT @ dim-6, W mass is corrected by

• W mass is one of the EWPO

Measurement M_W [GeV] 80.413 ± 0.015 $\Gamma_W [\text{GeV}]$ 2.085 ± 0.042 $\frac{\sin^2 \theta_{\text{eff}}^{\text{lept}}(Q_{\text{FB}}^{\text{had}})}{P_{\tau}^{\text{pol}} = \mathcal{A}_{\ell}}$ 0.2324 ± 0.0012 0.1465 ± 0.0033 $\Gamma_Z \,\,[\text{GeV}]$ 2.4955 ± 0.0023 σ_h^0 [nb] R_ℓ^0 $A_{
m FB}^{0,\ell}$ 41.480 ± 0.033 20.767 ± 0.025 0.0171 ± 0.0010 \mathcal{A}_{ℓ} (SLD) 0.1513 ± 0.0021 $egin{aligned} R_b^0 \ R_c^0 \ A_{ ext{FB}}^{0,b} \ A_{ ext{FB}}^{0,c} \ \mathcal{A}_b^{0,c} \ \mathcal{A}_b \ \mathcal{A}_c \end{aligned}$ 0.21629 ± 0.00066 0.1721 ± 0.0030 0.0996 ± 0.0016 0.0707 ± 0.0035 $\frac{s_w}{c_w} \left(2 C_{Hl}^{(3)} - C_{ll} \right)$ 0.923 ± 0.020 0.670 ± 0.027 0.895 ± 0.091 \mathcal{A}_{s} $BR_{W \to \ell \bar{\nu}_{\ell}}$ 0.10860 ± 0.00090 GF $\sin^2 \theta_{\rm eff}^{\rm lept}$ (HC) 0.23143 ± 0.00025 0.1660 ± 0.0090 R_{uc}

Oblique/Universal corrections

Peskin-Takeuchi, PRL 65, 964 (1990) Barbieri-Pomarol-Rattazzi-Strumia hep-ph/0405040 Wells-Zhang, 1510.08462

Universal new physics

$$\frac{\delta m_W^2}{m_W^2} = v^2 \frac{s_w c_w}{s_w^2 - c_w^2} \left[2 C_{HWB} + \frac{c_w}{2s_w} C_{HD} + \frac{c_w}{s_w} C_{HD} + \frac{c_$$

Pred. M_W [GeV] Model Pullstandard average SM 80.3499 ± 0.0056 6.5σ ST 80.366 ± 0.029 1.6σ

"Universal theories"

- New physics couples to SM bosons, and / or to SM fermions through SM currents
- Consistent framework to analyze EW ٠ precision tests (oblique corrections, etc)
- Evade flavor constraints (Minimal Flavor Violation is automatic), scale can be low

New Heavy quark

Quite a few papers did this

Beyond Oblique: SMEFT analysis of EWPO

- There are 10 SMEFT operators relevant to the EWPO
- Only 8 linear combinations can be constrained
- 2 flat directions remain

Impact of the recent measurements of the top-quark and W-boson masses on electroweak precision fits J. de Blas (CAFPE, Granada and Granada U.), M. Pierini (CERN), L. Reina (Florida State U.), L. Silvestrini (INFN, Rome) (Apr 8, 2022) e-Print: 2204.04204 [hep-ph]

🔓 pdf 🛛 🖯 cite

 $U(3)_q \times U(3)_u \times U(3)_d \times U(3)_l \times U(3)_e$

$$\hat{C}_{\varphi f}^{(1)} = C_{\varphi f}^{(1)} - \frac{Y_f}{2} C_{\varphi D}, \quad f = l, q, e, u, d,$$
$$\hat{C}_{\varphi f}^{(3)} = C_{\varphi f}^{(3)} + \frac{c_w^2}{4s_w^2} C_{\varphi D} + \frac{c_w}{s_w} C_{\varphi WB}, \quad f = l, e$$

Beyond Oblique: SMEFT analysis of EWPO

	Result		
		(IC_S)	MEFT
$\hat{C}^{(1)}_{\varphi l}$	-0.007 ± 0.011	1.00	
$\hat{C}^{(3)}_{\varphi l}$	-0.042 ± 0.015	-0.68	1.0
$\hat{C}_{\varphi e}$	-0.017 ± 0.009	0.48	0.0
$\hat{C}^{(1)}_{\varphi q}$	-0.018 ± 0.044	-0.02	-0.0
$\hat{C}^{(3)}_{\varphi q}$	-0.113 ± 0.043	-0.03	0.0
$\hat{C}_{arphi u}$	0.090 ± 0.150	0.06	-0.0
$\hat{C}_{arphi d}$	-0.630 ± 0.250	-0.13	-0.0
\hat{C}_{ll}	-0.022 ± 0.028	-0.80	0.9

- Interpretation of data? Guide for model building?
- Try to build models consistent with these values

Correlation Matrix

 $/IC_{SM} = 31.8/80.2)$

00

1.00 $\mathbf{04}$ 06 - 0.13 - 1.0004 - 0.16 - 0.37 1.00 $0.04 \quad 0.04 \quad 0.61 \quad -0.77$ 1.00 $05 - 0.30 \quad 0.40 \quad 0.58 - 0.04 \quad 1.00$ 95 - 0.10 - 0.06 - 0.01 - 0.04 - 0.05 1.00

• The preferred **best-fit** is rather different than just S and T

Beyond Oblique: SMEFT analysis of EWPO

	\mathbf{Result}		
		(IC_S)	MEFT
$\hat{C}^{(1)}_{\varphi l}$	-0.007 ± 0.011	1.00	
$\hat{C}^{(3)}_{\varphi l}$	-0.042 ± 0.015	-0.68	1.0
$\hat{C}_{\varphi e}$	-0.017 ± 0.009	0.48	0.0
$\hat{C}^{(1)}_{\varphi q}$	-0.018 ± 0.044	-0.02	-0.0
$\hat{C}^{(3)}_{\varphi q}$	-0.113 ± 0.043	-0.03	0.0
$\hat{C}_{arphi u}$	0.090 ± 0.150	0.06	-0.0
$\hat{C}_{arphi d}$	-0.630 ± 0.250	-0.13	-0.0
\hat{C}_{ll}	-0.022 ± 0.028	-0.80	0.9

- Interpretation of data? Guide for model building?
- Try to build models consistent with these values
- But can we treat EWPO in isolation?

Correlation Matrix

 $/IC_{SM} = 31.8/80.2)$

)()

1.00|4|06 - 0.13 1.0004 - 0.16 - 0.37 1.00 $0.04 \quad 0.04 \quad 0.61 \quad -0.77$ 1.00 $05 - 0.30 \quad 0.40 \quad 0.58 - 0.04 \quad 1.00$ 95 - 0.10 - 0.06 - 0.01 - 0.04 - 0.05 1.00

• The preferred **best-fit** is rather different than just S and T

What's missing: First-row CKM unitarity

 $\Delta_{\rm CKM} \equiv |V_{ud}|^2 + |V_{us}|^2 - 1$

- V_{ud} and V_{us} are obtained from nuclear beta decay and Kaon decays
- Requires detailed understanding of radiative corrections
- Very precise determinations are in tension with CKM unitarity

 $\Delta_{CKM}^{PDG} \approx -(0.15 \pm 0.06)\%$

First-row CKM in SMEFT (under MFV)

Beta-decay implications for the W-boson mass anomaly

Vincenzo Cirigliano,^a Wouter Dekens,^a Jordy de Vries,^{b,c} Emanuele Mereghetti,^d Tom **Tong**^e

^aInstitute for Nuclear Theory, University of Washington, Seattle WA 91195-1550, USA ^bInstitute for Theoretical Physics Amsterdam and Delta Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands ^cNikhef, Theory Group, Science Park 105, 1098 XG, Amsterdam, The Netherlands ^d Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA ^eCenter for Particle Physics Siegen, University of Siegen, 57068 Siegen, Germany

08440 7204

where $C_{la}^{(3)}$ is irrelevant to the EWPO and does not play a role in the fit

 $\Delta_{\rm CKM} \equiv |V_{ud}|^2 + |V_{us}|^2 - 1$

- We combine the relevant Wilson coefficients into C_{Λ}
- Replace C_{ll} with C_{Λ} and re-do the fit

Oops!

• From the re-fit, we obtain a large, %-level, deviation from the first-row CKM unitarity

$\Delta_{CKM}^{fit} \approx -(1 \pm 0.5)\%$

• Based on up-to-date predictions of $0^+ \rightarrow 0^+$ nuclear beta-decays and Kaon decays, the PDG average indicates that

$\Delta_{CKM}^{PDG} \approx -(0.15 \pm 0.07)\%$

- A 2-sigma deviation per se, but much smaller than what indicated by the fit
- Refitting while including CKM shifts the values \bullet
- Would point to other models!

	Result	Result with (
$\hat{C}^{(1)}_{arphi l}$	-0.007 ± 0.011	$-0.013 \pm 0.$
$\hat{C}^{(3)}_{arphi l}$	-0.042 ± 0.015	$-0.034 \pm 0.$
$\hat{C}_{arphi e}$	-0.017 ± 0.009	$-0.021 \pm 0.$
$\hat{C}^{(1)}_{arphi q}$	-0.0181 ± 0.044	-0.048 ± 0
$\hat{C}^{(3)}_{arphi q}$	-0.114 ± 0.043	$-0.041 \pm 0.$
$\hat{C}_{arphi u}$	0.086 ± 0.154	$-0.12 \pm 0.$
$\hat{C}_{arphi d}$	-0.626 ± 0.248	$-0.38 \pm 0.$
C_{Δ}	-0.19 ± 0.09	$-0.027 \pm 0.$

SMEFT Analysis of m_W

Emanuele Bagnaschi,^a John Ellis,^{b,a,c} Maeve Madigan,^d Ken Mimasu,^b Veronica Sanz^{e,f} and Tevong You^{b,d,g}

^a Theoretical Physics Department, CERN, CH-1211 Geneva 23, Switzerland

- ^b Theoretical Particle Physics and Cosmology Group, Department of Physics, King's College London, London WC2R 2LS, UK
- ^cNational Institute of Chemical Physics & Biophysics, Rävala 10, 10143 Tallinn, Estonia
- ^dDAMTP, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK
- ^eInstituto de Física Corpuscular (IFIC), Universidad de Valencia-CSIC, E-46980 Valencia, Spain
- ^f Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH, UK

^gCavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, UK

More high energy data

- **EWPO + Diboson + Top + Higgs**
- More observables, more relevant operators
- Global-fit with 20 operators (flavor universal)
- Well, the same. Percent-level CKM unitarity violation
- Adding more high energy data does **not help!**
- Same for more general flavor assumptions (Zupan et al 2204.05992)

Model	Spin	SU(3)	SU(2)	U(1)	Parameters
S_1	0	1	1	1	(M_S, κ_S)
Σ	$\frac{1}{2}$	1	3	0	$(M_{\Sigma},\lambda_{\Sigma})$
Σ_1	$\frac{1}{2}$	1	3	-1	$(M_{\Sigma_1},\lambda_{\Sigma_1})$
N	$\frac{1}{2}$	1	1	0	(M_N, λ_N)
E	$\frac{1}{2}$	1	1	-1	(M_E, λ_E)
B	1	1	1	0	(M_B, \hat{g}_H^B)
B_1	1	1	1	1	(M_{B_1}, λ_{B_1})
[1]	0	1	3	0	(M_{Ξ},κ_{Ξ})
W_1	1	1	3	1	$(M_{W_1}, \hat{g}_{W_1}^{\varphi})$
W	1	1	3	0	(M_W, \hat{g}_W^H)

Model
S_1
Σ
Σ_1
N
E
B_1
B
[I]
W_1
W

Mass limits (in TeV)

C_{HD}	C_{ll}	$C_{Hl}^{(3)}$	$C_{Hl}^{(1)}$	C_{He}	$C_{H\square}$	$C_{ au H}$	C_{tH}	C_{bH}
	-1							
		$\frac{1}{16}$	$\frac{3}{16}$			$\frac{y_{\tau}}{4}$		
		$\frac{1}{16}$	$-\frac{3}{16}$			$\frac{y_{\tau}}{8}$		
		$-\frac{1}{4}$	$\frac{1}{4}$					
		$-\frac{1}{4}$	$-\frac{1}{4}$			$\frac{y_{\tau}}{2}$		
1					$-\frac{1}{2}$	$-\frac{y_{\tau}}{2}$	$-\frac{y_t}{2}$	$-\frac{y_b}{2}$
-2						$-y_{\tau}$	$-y_t$	$-y_b$
$-2\left(\frac{1}{M_{\Xi}}\right)^2$					$\frac{1}{2}\left(\frac{1}{M_{\Xi}}\right)^2$	$y_{\tau}\left(\frac{1}{M_{\Xi}}\right)^2$	$y_t \left(\frac{1}{M_{\Xi}}\right)^2$	$y_b\left(\frac{1}{M_{\Xi}}\right)^2$
$-\frac{1}{4}$					$-\frac{1}{8}$	$-\frac{y_{\tau}}{8}$	$-\frac{y_t}{8}$	$-\frac{y_b}{8}$
$\frac{1}{2}$					$-\frac{1}{2}$	$-y_{\tau}$	$-y_t$	$-y_b$

Model	Pull	Best-fit mass	1- σ mass	$2-\sigma$ mass	1- σ coupling
		(TeV)	range (TeV)	range (TeV)	range
W_1	6.4	3.0	[2.8, 3.6]	[2.6, 3.8]	[0.09, 0.13]
B	6.4	8.6	[8.0, 9.4]	[7.4, 10.6]	[0.011, 0.016]
Ξ	6.4	2.9	[2.8, 3.1]	[2.7, 3.2]	[0.011, 0.016]
N	5.1	4.4	[4.1,5.0]	[3.8, 5.8]	[0.040, 0.060]
	3.5	5.8	[5.1, 6.8]	[4.6, 8.5]	[0.022, 0.039]

These two models induce too large CKM unitarity violation

- percent-level damage to the first-row CKM unitarity
- for the global analyses

Conclusion

A SMEFT global-fit including only the high energy data will cause

Low energy physics such as the beta-decay data is very important

Unitarity

Damaged

W mass the perpetrator, really?

- If not, then the global-fit should be in bad tension with CKM even before the new CDF results
- So, what was Δ_{CKM} before 2022?
- We re-did the old EWPO fits
- It was only $-(0.4 \pm 0.4)\%$ in 0908.1754
- And a similar value indicated by 2012.02779 which is the old version of the 20-parameter fit
- It seems that roughly about half of the deviation was already there, and the CDF W mass has doubled that

THE PERPETRATORS

 $\Delta_{CKM}^{fit} \approx -(1 \pm 0.5)\%$

What happened'

? The Flat

$$\frac{s_w c_w}{s_w^2 - c_w^2} \left[2 C_{HWB} + \frac{c_w}{2s_w} C_{HD} + \frac{s_w}{c_w} \left(2 C_{Hl}^{(3)} - C_{ll} \right) \right]$$

- Fitting to the high energy data, there exists an almost flat direction involving C_{HD} and C_{II}
- It can only be lifted by the W mass
- The value of W mass largely dominates the constraints on $C_{\!H\!D}$ and $C_{\!ll}$ along this flat direction

The Flat is the Ugly

• Grey bars: Fitting results to the high energy data but *without* W mass

 Not even compatible with the real W mass at all, if both C_{HD} and C_{ll} are present

Finally, CKM comes to the rescue

- Δ_{CKM} is sensitive to C_{ll}
- It can help lift the flat direction
- We've been heard!
- And 2204.05260 is now V3

Horray /

 $\Delta_{\rm CKM} \equiv |V_{ud}|^2 + |V_{us}|^2 - 1$ $= 2\frac{v^2}{\Lambda^2} \left[C_{Hq}^{(3)} - C_{H\ell}^{(3)} + C_{\ell\ell} - C_{\ell q}^{(3)} \right]$

Take a closer look

- The old W mass has already deviated from the CKM and the Z-pole
- Corresponding to the 0.5% tension before CDF
- The new W mass drifted further away
- Worsening the tension into 1%

All good?

SM

 m_W world avg.

SMEFT+ Δ_{CKM} , no m_W

80500

- SMEFT 2022+ Δ_{CKM}
- So it seems. The Flat has been resolved

 Although some strong tension still remains between the High and the Low

$\Delta_{\rm CKM} \equiv |V_{ud}|^2 + |V_{us}|^2 - 1$

 $=2\frac{v^2}{\Lambda^2} \left[C_{Hq}^{(3)} - C_{H\ell}^{(3)} + C_{\ell\ell} - C_{\ell q}^{(3)} \right]$

Please don't forget me

- We may effectively decouple the CKM from EWPO by a non-zero $C_{lq}^{(3)}$
- $C_{lq}^{(3)}$ is constrained by the Drell-Yan $pp \rightarrow ll$ data at the LHC

66 HighPT *****

	EWPO	EWPO with low-energy	+ high-
$\hat{C}^{(1)}_{arphi l}$	-0.0092 ± 0.011	-0.0092 ± 0.011	-0.015 ± 0
$\hat{C}^{(3)}_{arphi l}$	-0.056 ± 0.015	-0.056 ± 0.015	-0.046 ± 0
$\hat{C}_{arphi e}$	-0.025 ± 0.0086	-0.025 ± 0.0086	-0.027 ± 0
$\hat{C}^{(1)}_{\varphi q}$	-0.029 ± 0.043	-0.029 ± 0.043	-0.043 ± 0
$\hat{C}^{(3)}_{\varphi q}$	-0.095 ± 0.032	-0.095 ± 0.032	-0.041 ± 0
$\hat{C}_{arphi u}$	-0.0050 ± 0.12	-0.0050 ± 0.12	-0.12 ± 0
$\hat{C}_{arphi d}$	-0.55 ± 0.25	-0.55 ± 0.25	-0.33 ± 0
C_{Δ}	-0.15 ± 0.068	-0.15 ± 0.068	-0.031 ± 0
$C_{lq}^{(3)}$	_	-0.064 ± 0.035	0.0003 ± 0.0003

To appear: 2303.XXXXX

Conclusion (for real)

- SMEFT global-fits including only high energy data will damage the CKM unitarity
- Low energy data is important because they can help lift some of the flat directions
- Model-independent global analyses could be tricky
- The operators are *intertwined* with the observables in a highly non-trivial way

Choosing the relevant operators and observables is some kind of art

In principle, one would like to include as many observables as possible

about new physics

- Key question: flavor assumptions
- Global analysis taking pheno constraints as guidance for flavor assumptions

Xmin SM1.

Coming soon...

hence many operators, too, and still be able to make useful statements

INNER /