## Monte Carlo event generators and electroweak corrections for charged-current Drell-Yan

Mauro Chiesa

**INFN** Pavia

*W mass workshop*, IJCLab, February 23<sup>rd</sup>-24<sup>th</sup>, 2023



From the theory point of view, DY is one of the hadron collider processes known with the highest accuracy:

- FO QCD corrs up to N<sup>3</sup>LO differential (X. Chen et al. 2205.11426)
- Resummation of ISR QCD logs up to N<sup>3</sup>LO+N<sup>3</sup>LL (T. Neumann et al. 2207.07056, X. Chen et al. 2203.01565)
- Full mixed QCD-EW corrections at  $(\alpha \alpha_S)$  (R. Bonciani et al. 2106.11953, F. Buccioni et al. 2203.11237)

<sup>(\*)</sup> just citing some very recent publications: NOT complete biblio

Event generators reach lower accuracy compared to fixed-order (or FO+resummation)

- up to NNLO-QCD+QCD-PS: UN<sup>2</sup>LOPS (1405.3607), MiNNLO (1908.06987), GENEVA (1311.0286) methods
- up to NLO-QCD+NLO-EW matched to QCD and EW PS (POWHEG framework 1202.0465, 1302.4606, 1906.11569)

here QCD (and QED) effectively perform  $LL^{(*)}$  resummation of QCD (QED) logs

 $^{(\ast)}$  ongoing studies to assess actual accuracy of different PS implementations available on the market

**Table 3** Tuned comparison of total cross sections (in pb) for  $pp \rightarrow W^+ \rightarrow l^+ v_l + X$  at the 8 TeV LHC, with ATLAS/CMS cuts and *bare* leptons. (×) indicates that although POWHEG\_BW provides NLO EW results also for *bare* electrons, due to the smallness of the electron mass

it would require very high-statistics to obtain per-mille level precision. Thus, we recommend to use the *bare* setup in POWHEG\_BW only for muons

| Code         | LO         | NLO QCD    | NLO EW $\mu$ | NLO EW e   |
|--------------|------------|------------|--------------|------------|
| HORACE       | 2897.38(8) | ×          | 2988.2(1)    | 2915.3(1)  |
| WZGRAD       | 2897.33(2) | ×          | 2987.94(5)   | 2915.39(6) |
| RADY         | 2897.35(2) | 2899.2(4)  | 2988.01(4)   | 2915.38(3) |
| SANC         | 2897.30(2) | 2899.9(3)  | 2987.77(3)   | 2915.00(3) |
| DYNNLO       | 2897.32(5) | 2899(1)    | ×            | ×          |
| FEWZ         | 2897.2(1)  | 2899.4(3)  | ×            | ×          |
| POWHEG-w     | 2897.34(4) | 2899.41(9) | ×            | ×          |
| POWHEG_BMNNP | 2897.36(5) | 2899.0(1)  | 2988.4(2)    | 2915.7(1)  |
| POWHEG_BW    | 2897.4(1)  | 2899.2(3)  | 2987.7(4)    | (×)        |

event generators including NLO EW: HORACE (NO QCD) and the two implementations in  $\ensuremath{\mathsf{POWHEG}}$ 

 $\sf NLO$  EW corrections at FO available in a bunch of different tools (mainly thanks to automation), for instance

MCFM, Madgraph\_aMG5, Sherpa+RECOLA

Resonance-improved treatment of FSR QED radiation implemented in W\_ew-BMNNP

Independent implementation of CC DY at NLO QCD+NLO EW plus matching to QCD and QED PS in 1612.04292

very first steps towards inclusion of NLO EW (and QED PS matching) in MC generators at NNLO QCD+QCD PS

## QED PS

- crucial to describe FSR effects
- ingredient in matched calculations
  - PHOTOS
  - PYTHIA
- more recently
  - HERWIG
  - SHERPA

QED PS for DY available in HORACE

## Comparisons for NC DY (CERN EWWG)

focus on pure weak corrections, FO, context:  $\sin\theta_W^{\rm eff}$  measurement codes involved

 $\bullet (G_{\mu}, M_W, M_Z)$ 

MCSANC, POWHEG\_EW, RADY, WZGRAD2

 $\bullet (\alpha_0, M_W, M_Z)$ 

MCSANC, POWHEG\_EW, RADY, WZGRAD2

•  $(G_{\mu}, \sin^2 \vartheta^{\ell}_{\text{eff}}, M_Z), \ (\alpha_0, \sin^2 \vartheta^{\ell}_{\text{eff}}, M_Z)$ 

 $\operatorname{POWHEG\_EW, RADY}$ 

 $\bullet (\alpha_0, G_\mu, M_Z)$ 

DIZET (used in TAUSPINNER+DIZET and KKMC\_HH)

\* POWHEG\_EW=Z\_ew-BMNNPV

# Event gen's at NLO QCD+ EW matched to QCD and QED PS

|                        | Z_ew-BMNNPV                            | W_ew-BMNNP             | VV_dec_ew                        | vbs-ssww-nloew                      |
|------------------------|----------------------------------------|------------------------|----------------------------------|-------------------------------------|
| Process                | $pp \rightarrow l^+ l^-$               | $pp \rightarrow l\nu$  | $pp \rightarrow 4l/2l2\nu/3l\nu$ | $pp \rightarrow l^+ \nu l^- \nu jj$ |
| FS leptons (*)         | massive $(l = e, \mu)$                 | massive $(l = e, \mu)$ | massless $(l = e, \mu, \tau)$    | massless $(l = e, \mu, \tau)$       |
| Identical <i>l</i>     |                                        |                        | in progress (§)                  | in progress (§)                     |
| Model                  | SM                                     | SM                     | SM (**)                          | SM (**)                             |
| POWHEG-BOX-            | V2                                     | V2                     | RES                              | RES                                 |
| Resonance-aware        |                                        |                        |                                  |                                     |
| PS matching (RES)      | Yes                                    | Yes                    | Yes                              | Yes                                 |
| Dedicated PS interface | Yes (Py8, Photos)                      | Yes (Py8, Photos)      | Yes (Py8) (¶)                    | Yes (Py8) (¶)                       |
| Matrix elements        | internal                               | internal               | Recola2                          | Recola2                             |
| PHPS restrictions      | None (‡)                               | None                   | None (‡)                         | VBS                                 |
| Approx. in Mat.els     | None                                   | None                   | None                             | None (†)                            |
| NLO QCD                | Yes                                    | Yes                    | Yes                              | No (†)                              |
| NLO EW                 | Yes                                    | Yes                    | Yes                              | Yes (†)                             |
| Unstable Z/W           | CMS/fact/pole (fix $\Gamma$ )          | CMS/CLA (fix Γ)        | CMS (fix Γ)                      | CMS (fix Γ)                         |
| Renorm schemes         | $G_{\mu}M_WM_Z$ (††)                   | $G_{\mu}M_WM_Z$        | $G_{\mu}M_WM_Z$                  | $G_{\mu}M_WM_Z$                     |
|                        | $\alpha_0 M_W M_Z$                     | $\alpha_0 M_W M_Z$     | $\alpha_0 M_W M_Z$               | -                                   |
|                        | $\alpha(M_Z)M_WM_Z$                    |                        | $\alpha(M_Z)M_WM_Z$              |                                     |
|                        | $\sin \theta^{\text{eff}} M_Z G \mu$   |                        |                                  |                                     |
|                        | $\sin\theta^{\text{eff}} M_Z \alpha_0$ |                        |                                  |                                     |
| $\gamma$ -induced (‡‡) | NLO (not on svn)                       | NLO (not on svn)       | No                               | No                                  |

(\*) massless: valid only for dressed lepton analyses.

(§) process-specific code is there, but fixes in the common POWHEG-BOX-RES code needed.

(\*\*) generalization to BSM feasible if the corresponding Recola2 model file exists.

 $(\P)$  Photos interface can be developed upon request.

(‡)  $M(l^+l^-) > M(\text{cut})$  to avoid on-shell  $\gamma$  propagators at LO.

(†) considering only LO  $\mathcal{O}(\alpha^6)$  (EW production) and NLO  $\mathcal{O}(\alpha^7)$ .

### NLO+PS matching with EW corrections

• NLO EW corrections:  $d\sigma = d\sigma_0 \left[1 + \delta_{\alpha}\right]$ 

**QED-PS:** all order  $\gamma$  radiation in leading log approx.

 $d\sigma = d\sigma_0 \left[ 1 + \sum_{n=1}^{\infty} \delta'_{\alpha^n} \right]$ 

• NLO EW+QED-PS:  $d\sigma = d\sigma_0 \left[1 + \delta_\alpha + \sum_{n=2}^{\infty} \delta'_{\alpha^n}\right]$ 

matching replaces first PS radiation with NLO real radiation

HORACE NLO EW+QED-PS:  $d\sigma = d\sigma_0 \left[1 + \delta_{\alpha} + \sum_{n=2}^{\infty} \delta'_{\alpha^n}\right]$ 

POWHEG NLO (QCD+EW)+(QCD+QED)-PS:

$$d\sigma = d\sigma_0 \left[ 1 + \delta_{\alpha_s} + \delta_{\alpha} + \sum_{m=1,n=1}^{\infty} \delta_{\alpha_s^m \alpha^n}' + \sum_{m=2}^{\infty} \delta_{\alpha_s^m}' + \sum_{n=2}^{\infty} \delta_{\alpha^n}' \right]$$

### POWHEG-BOX-V2 VS POWHEG-BOX-RES

#### POWHEG-BOX-V2

- try to generate one radiation from each  $\alpha_r (p_T^{\alpha_r})$
- find the hardest radiation  $(p_{\rm T}^{max})$
- $p_{\rm T}^{max}$  is the starting scale of the PS

#### POWHEG-BOX-RES

- try to generate one radiation from each  $\alpha_r \ (p_T^{\alpha_r})$
- for each resonance *r*, find the hardest radiation emitted by the resonance (*p*<sup>max</sup><sub>T,r</sub>)
- $p_{\mathrm{T},r}^{max}$  is the starting scale of the PS radiation from r
- POHWEG-BOX-RES (like) events contain up to one radiation from each resonance
- PS radiation from each resonance must be vetoed independently
- dedicated interface to PS unavoidable (no LHE accord for multiple scales, scalup works for one radiation only)

### POWHEG-BOX-RES (like) treatment of resonances



3 radiation regions:
 QCD ISR, QED ISR, QED FSR

2 resonances: IS, W

The events contain up to 2 radiations:

- **1** one ISR QED or QCD radiation setting the scale of the IS shower
- 2 one FSR QED radiation setting the scale of the FS shower

### POWHEG-BOX-RES (like) treatment of resonances (2)



Mauro Chiesa MC event generators and EW corrs for CC DY

### Theoretical uncertainties in $M_W$ measurement: strategy

Impact of different EW effects (an theory uncertainties from weak and mixed QCD-EW corrs) on *W*-mass measurement in: arXiv:1612.02841 (W\_ew-BMNNP)

### 1 pseudodata

- Monte Carlo samples with a given theoretical accuracy
- play the role of experimental data

### 2 templates

- $\blacksquare$  MC samples at NLO QCD+QCD-PS (or LO) generated for different values of  $M_W$
- will be fitted to the pseudodata
- 3  $\Delta M_W = M_W$ (pseudodata)  $M_W$ (fit output)

## Theory uncertainties in $M_W$ measurement: event generators

- HORACE (Carloni Calame et al. hep-ph/0303102, hep-ph/050626)
  - MC event generator for DY
  - can generate events at NLO EW+QED-PS, and NLO EW+QED-PS+unresolved l<sup>+</sup>l<sup>-</sup> radiation

- POWHEG-BOX-V2/W\_ew-BMNNP (Barze et al. arXiv:1202.0465)
  - MC event generator for charged DY
  - can generate events at NLO QCD+QCD-PS and NLO (QCD+EW)+(QCD+QED)-PS
  - relies on external shower MC programs (i.e. PYTHIA, PYTHIA+PHOTOS)

### Theory unc. in $M_W$ measurement: shower MC tools)

- PYTHIA (Sjostrand et al. hep-ph/0603175; arXiv:0710.3820)
  - general purpose shower MC generator
  - can generate multiple QCD and QED radiation
  - used for ISR multiple QCD (and QED) radiation AND non-perturbative QCD effects
  - in some runs used for QED FSR (see later)
- PHOTOS (Barberio et al. CPC 66 (1991), CPC 79 (1994), Golonka et al. hep-ph/0506026)
  - general purpose shower MC generator
  - can generate multiple QED radiation off fermions (from W decay)
  - in some runs used for QED FSR (see later)
- HORACE (has its own implementation of QED PS algorithm)

### Mixed QCD-EW corrections (1)

 $pp \rightarrow \mu^+ \nu_\mu$ , fit to  $M_{\rm T}(\mu^+ \nu_\mu)$ 

|   | Templates | Pseudodata                                                        | $M_W$ shifts (MeV)               |
|---|-----------|-------------------------------------------------------------------|----------------------------------|
| 1 | LO        | POWHEG(QCD) NLO                                                   | $56.0\pm1.0$                     |
| 2 | LO        | POWHEG(QCD)+PYTHIA(QCD)                                           | $74.4 \pm 2.0$                   |
| 3 | LO        | HORACE(EW) NLO                                                    | $-94.0 \pm 1.0$                  |
| 4 | LO        | HORACE (EW, QEDPS)                                                | $-88.0 \pm 1.0$                  |
| 5 | LO        | POWHEG(QCD,EW) NLO                                                | $-14.0 \pm 1.0$                  |
| 6 | LO        | ${\sf POWHEG(QCD,EW) two-rad}{+}{\sf PYTHIA(QCD)}{+}{\sf PHOTOS}$ | $\textbf{-5.6} \pm \textbf{1.0}$ |

|                                                                                                                                             | samples | $M_W$ shift (MeV)            |
|---------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------------|
| $\sum_{m=1,n=1}^{\infty} \delta'_{\alpha_s^m \alpha^n} + \sum_{m=2}^{\infty} \delta'_{\alpha_s^m} + \sum_{n=2}^{\infty} \delta'_{\alpha^n}$ | [6]-[5] | $8.4 \pm 1.4 \ \mathrm{MeV}$ |
| $\sum_{m=2}^{\infty} \delta'_{\alpha m}$                                                                                                    | [2]-[1] | $18.4~{\pm}2.2~{\rm MeV}$    |
| $\sum_{n=2}^{\infty} \delta'_{\alpha n}^{s}$                                                                                                | [4]-[3] | $6.0~{\pm}1.4~{\rm MeV}$     |

 $\sum_{m=1,n=1}^{\infty} \delta'_{\alpha_s^m \alpha^n} = ([6]-[5])-([2]-[1])-([4]-[3]) = -16.0 \pm 3.0 \text{ MeV}$ 

in agreement with the results of Dittmaier et al. 1511.08016 for the full  ${\cal O}(\alpha\alpha_{\cal S})$  corrections in pole approx. (-14 MeV)

• mixed QCD-EW corrections from POWHEG  $\sum_{m=1,n=1}^{\infty} \delta'_{\alpha_s^m \alpha^n}$ 

- factorized approx
- spurious H.O. effects  $(PS \times \Delta \times \overline{B})$
- Full  $\mathcal{O}(\alpha \alpha_S)$  (arXiv:2102.12539,arXiv:2201.01754): it would be nice to study their impact on  $M_W$  extraction

 to asses the uncertainties coming from the factorized approach in MC generator at NLO QCD+NLO EW with PS matching (e.g. W\_ew-BMNNP in POWHEG)

per se

### Theory uncertainties from QED PS (1)

| $pp  ightarrow W^+$ , $\sqrt{s} = 14$ TeV        |                                                                                    |                                         | $M_W$ shifts (MeV) |            |                |            |
|--------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------|--------------------|------------|----------------|------------|
| Templates accuracy: NLO-QCD+QCD $_{\mathrm{PS}}$ |                                                                                    | $W^+ \to \mu^+ \nu$ $W^+ \to e^+ \nu ($ |                    |            | $^+\nu$ (dres) |            |
|                                                  | Pseudodata accuracy                                                                | QED FSR                                 | $M_T$              | $p_T^\ell$ | $M_T$          | $p_T^\ell$ |
| 1                                                | NLO-QCD+(QCD+QED) $_{\rm PS}$                                                      | Рутніа                                  | -95.2±0.6          | -400±3     | -38.0±0.6      | -149±2     |
| 2                                                | $NLO\operatorname{-QCD}+(QCD\operatorname{+QED})_{\mathrm{PS}}$                    | Рнотоз                                  | -88.0±0.6          | -368±2     | -38.4±0.6      | -150±3     |
| 3                                                | $NLO\text{-}(QCD\text{+}EW)\text{+}(QCD\text{+}QED)_{\mathrm{PS}}\texttt{two-rad}$ | Pythia                                  | -89.0±0.6          | -371±3     | -38.8±0.6      | -157±3     |
| 4                                                | $NLO\text{-}(QCD\text{+}EW)\text{+}(QCD\text{+}QED)_{\mathrm{PS}}\texttt{two-rad}$ | Photos                                  | -88.6±0.6          | -370±3     | -39.2±0.6      | -159±2     |
|                                                  |                                                                                    |                                         |                    |            |                |            |

• difference between QED-PS in Photos and Pythia at  $\mathcal{O}(\alpha)$ 

• Photos  $\propto \frac{1}{1-\beta \cos \theta_{l\gamma}}$ 

- Pythia-QED  $\propto \frac{1}{p_{\rm T}^{\gamma}}$
- $\blacksquare$  32 MeV  $(p_{\rm T})/$  7 MeV  $(M_{\rm T})$  effect for bare  $\mu$

| $pp \rightarrow W^+$ , $\sqrt{s} = 14$ TeV |                                                                             |         |                   | $M_W$ shi   | fts (MeV)             |               |
|--------------------------------------------|-----------------------------------------------------------------------------|---------|-------------------|-------------|-----------------------|---------------|
|                                            | Templates accuracy: NLO-QCD+QCD $_{\mathrm{PS}}$                            | 5       | $W^+ \rightarrow$ | $\mu^+ \nu$ | $W^+ \rightarrow e^-$ | $^+ u$ (dres) |
|                                            | Pseudodata accuracy                                                         | QED FSR | $M_T$             | $p_T^\ell$  | $M_T$                 | $p_T^\ell$    |
| 1                                          | ${\sf NLO-QCD+(QCD+QED)}_{\rm PS}$                                          | Pythia  | -95.2±0.6         | -400±3      | -38.0±0.6             | -149±2        |
| 2                                          | ${\tt NLO-QCD+(QCD+QED)_{PS}}$                                              | Рнотоз  | -88.0±0.6         | -368±2      | -38.4±0.6             | $-150\pm3$    |
| 3                                          | $NLO	ext{-}(QCD	ext{+}EW)	ext{+}(QCD	ext{+}QED)_{\mathrm{PS}}	ext{two-rad}$ | Рутніа  | -89.0±0.6         | -371±3      | -38.8±0.6             | -157±3        |
| 4                                          | $NLO	ext{-}(QCD	ext{+}EW)	ext{+}(QCD	ext{+}QED)_{\mathrm{PS}}	ext{two-rad}$ | Рнотоз  | -88.6±0.6         | -370±3      | -39.2±0.6             | -159±2        |

■ first QED radiation generated by POWHEG

• difference between QED-PS in Photos and Pythia at  $\mathcal{O}(\alpha^2)$ 

- Theory uncertainties from QED PS estimated from the difference in the shifts from  $\ensuremath{\mathsf{PYTHIA}}$  and  $\ensuremath{\mathsf{PHOTOS}}$ 
  - might be an overestimate (photon spectrum suggests that PHOTOS is more accurate)
  - comparison should be extended to other QED PS: HERWIG, SHERPA, ...
  - how would the shifts charge if a QED PS beyond LL accuracy was used?

| $pp \rightarrow W^+$ , $\sqrt{s} = 14$ TeV |                                                                                         |         |                   | $M_W$ shi  | fts (MeV)             |                     |
|--------------------------------------------|-----------------------------------------------------------------------------------------|---------|-------------------|------------|-----------------------|---------------------|
|                                            | Templates accuracy: NLO-QCD+QCD $_{\mathrm{PS}}$                                        | 3       | $W^+ \rightarrow$ | $\mu^+\nu$ | $W^+ \rightarrow e^-$ | $^+\nu({\sf dres})$ |
|                                            | Pseudodata accuracy                                                                     | QED FSR | $M_T$             | $p_T^\ell$ | $M_T$                 | $p_T^\ell$          |
| 1                                          | $NLO\operatorname{-QCD}+(QCD\operatorname{+QED})_{\mathrm{PS}}$                         | Рутніа  | -95.2±0.6         | -400±3     | -38.0±0.6             | -149±2              |
| 2                                          | $NLO-QCD+(QCD+QED)_{PS}$                                                                | Рнотоз  | -88.0±0.6         | -368±2     | -38.4±0.6             | $-150\pm3$          |
| 3                                          | $NLO	ext{-}(QCD	ext{+}EW)	ext{+}(QCD	ext{+}QED)_{\mathrm{PS}}	ext{two}	ext{-}	ext{rad}$ | Рүтніа  | -89.0±0.6         | -371±3     | -38.8±0.6             | -157±3              |
| 4                                          | $NLO\text{-}(QCD\text{+}EW)\text{+}(QCD\text{+}QED)_{\mathrm{PS}}\texttt{two-rad}$      | Рнотоз  | -88.6±0.6         | -370±3     | -39.2±0.6             | -159±2              |
|                                            |                                                                                         |         |                   |            |                       |                     |

■ impact of non-log QED, weak and mixed EW-QCD contributions

■ different effects for PHOTOS or PYTHIA (different non-log QED terms)

• more stable results for  $M_{\rm T}$  (less sensitive to mixed EW-QCD corrections)

| $pp  ightarrow W^+$ , $\sqrt{s} = 14~{ m TeV}$ |                                                                             |         |                   | $M_W$ shi    | fts (MeV)             |               |
|------------------------------------------------|-----------------------------------------------------------------------------|---------|-------------------|--------------|-----------------------|---------------|
|                                                | Templates accuracy: NLO-QCD+QCD $_{\mathrm{PS}}$                            |         | $W^+ \rightarrow$ | $\mu^+\nu$   | $W^+ \rightarrow e^-$ | $^+\nu(dres)$ |
|                                                | Pseudodata accuracy                                                         | QED FSR | $M_T$             | $p_T^\ell$   | $M_T$                 | $p_T^\ell$    |
| 1                                              | NLO-QCD+(QCD+QED) <sub>DS</sub>                                             | Рутніа  | $-95.2\pm0.6$     | $-400 \pm 3$ | $-38.0\pm0.6$         | -149±2        |
| 2                                              | NLO(QCD + (QCD + QED)) = -                                                  | PHOTOS  | 88.0+0.6          | 368+2        | 38.4±0.6              | 150+3         |
| 2                                              | NLO-QCD+(QCD+QLD)PS                                                         | 1 H0105 | -00.0±0.0         | -300±2       | -30.4±0.0             | -150±5        |
| 3                                              | $NLO	ext{-}(QCD	ext{+}EW)	ext{+}(QCD	ext{+}QED)_{\mathrm{PS}}	ext{two-rad}$ | Рутніа  | -89.0±0.6         | -371±3       | -38.8±0.6             | -157±3        |
| 4                                              | $NLO-(QCD+EW)+(QCD+QED)_{\mathrm{PS}}\texttt{two-rad}$                      | Рнотоз  | -88.6±0.6         | -370±3       | -39.2±0.6             | -159±2        |

| uncertainties from |     |               | $\Delta M_W ({ m MeV})$          | bare muons  |
|--------------------|-----|---------------|----------------------------------|-------------|
| weak,              |     | QED FSR model | $M_T$                            | $p_T^\ell$  |
| mixed QCD-EW corr. | LHC | Pythia        | $+6.2\pm0.8$                     | $+29 \pm 4$ |
|                    |     | Photos        | $\textbf{-0.6} \pm \textbf{0.8}$ | $-2 \pm 4$  |

## non-log QED, weak and mixed EW-QCD contributions (3)

- QED, WEAK, and mixed effects inevitably have an interplay with IS QCD effects (e.g.  $PS \times \overline{B}$ )
- in our simulation we only used PYTHIA8 for ISR QED and QCD shower and non-perturbative effects with a default PYTHIA tuning
- how do the shifts change if we use another shower MC, say HERWIG?
- how do the estimates change when changing the PYTHIA tune? (having in mind the ATLAS procedure of tuning PYTHIA to reproduce the  $Z p_T$  data)
- how do the shifts change if we use another description of IS effects, say for instance RESBOS like in TEVATRON analyses?

- $\blacksquare$  Main progress in FO calculations for DY including EW effects: exact  $\alpha\alpha_{\mathcal{S}}$  corrections
- On the MC side, most accurate generators including EW effects still NLO QCD+NLO EW plus matching to QCD and QED PS
  - Some refinements of the existing codes
  - very first steps towards inclusion of NLO EW (and QED PS matching) in MC generators at NNLO QCD+QCD PS
- impact of weak, non-log QED, and mixed QCD-EW corrs (approximated, factorised assumption) in 1612.02841, but the estimate could be generalized in many ways

## **Backup Slides**

| $pp  ightarrow W^+$ , $\sqrt{s} = 14$ TeV        |                                                                  |                   | $M_W$ shifts (MeV)                     |            |           |            |  |
|--------------------------------------------------|------------------------------------------------------------------|-------------------|----------------------------------------|------------|-----------|------------|--|
| Templates accuracy: NLO-QCD+QCD $_{\mathrm{PS}}$ |                                                                  | $W^+ \rightarrow$ | $W^+ \to \mu^+ \nu$ $W^+ \to \epsilon$ |            |           |            |  |
|                                                  | Pseudodata accuracy                                              | QED FSR           | $M_T$                                  | $p_T^\ell$ | $M_T$     | $p_T^\ell$ |  |
| 1                                                | $NLO-QCD+(QCD+QED)_{\mathrm{PS}}$                                | Pythia            | -95.2±0.6                              | -400±3     | -38.0±0.6 | -149±2     |  |
| 2                                                | $NLO-QCD+(QCD+QED)_{PS}$                                         | Рнотоз            | -88.0±0.6                              | -368±2     | -38.4±0.6 | -150±3     |  |
| 3                                                | ${\sf NLO-({\sf QCD+EW})+({\sf QCD+QED})_{\rm PS}{\tt two-rad}}$ | Pythia            | -89.0±0.6                              | -371±3     | -38.8±0.6 | -157±3     |  |
| 4                                                | $NLO-(QCD+EW) + (QCD + QED)_{\mathrm{PS}} \texttt{two-rad}$      | Photos            | -88.6±0.6                              | -370±3     | -39.2±0.6 | -159±2     |  |

• dressed e: recombine  $\gamma$  with e if  $\Delta R(\gamma e) < 0.1$ 

**bare**  $\mu$ : corrections enhanced by logs  $\alpha \log(\frac{m_{\mu}^2}{Q^2})$ 

### Theory uncertainties from QED PS (1)

| $pp  ightarrow W^+$ , $\sqrt{s} = 14$ TeV        |                                                                                    |                                         | $M_W$ shifts (MeV) |            |                |            |
|--------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------|--------------------|------------|----------------|------------|
| Templates accuracy: NLO-QCD+QCD $_{\mathrm{PS}}$ |                                                                                    | $W^+ \to \mu^+ \nu$ $W^+ \to e^+ \nu ($ |                    |            | $^+\nu$ (dres) |            |
|                                                  | Pseudodata accuracy                                                                | QED FSR                                 | $M_T$              | $p_T^\ell$ | $M_T$          | $p_T^\ell$ |
| 1                                                | NLO-QCD+(QCD+QED) $_{\rm PS}$                                                      | Рутніа                                  | -95.2±0.6          | -400±3     | -38.0±0.6      | -149±2     |
| 2                                                | $NLO\operatorname{-QCD}+(QCD\operatorname{+QED})_{\mathrm{PS}}$                    | Рнотоз                                  | -88.0±0.6          | -368±2     | -38.4±0.6      | -150±3     |
| 3                                                | $NLO\text{-}(QCD\text{+}EW)\text{+}(QCD\text{+}QED)_{\mathrm{PS}}\texttt{two-rad}$ | Pythia                                  | -89.0±0.6          | -371±3     | -38.8±0.6      | -157±3     |
| 4                                                | $NLO-(QCD+EW) + (QCD + QED)_{\mathrm{PS}} \texttt{two-rad}$                        | Photos                                  | -88.6±0.6          | -370±3     | -39.2±0.6      | -159±2     |
|                                                  |                                                                                    |                                         |                    |            |                |            |

• difference between QED-PS in Photos and Pythia at  $\mathcal{O}(\alpha)$ 

• Photos  $\propto \frac{1}{1-\beta \cos \theta_{l\gamma}}$ 

- Pythia-QED  $\propto \frac{1}{p_{\rm T}^{\gamma}}$
- $\blacksquare$  32 MeV  $(p_{\rm T})/$  7 MeV  $(M_{\rm T})$  effect for bare  $\mu$

| $pp \rightarrow W^+$ , $\sqrt{s} = 14$ TeV |                                                                             |         |                   | $M_W$ shi  | fts (MeV)             |               |
|--------------------------------------------|-----------------------------------------------------------------------------|---------|-------------------|------------|-----------------------|---------------|
|                                            | Templates accuracy: NLO-QCD+QCD $_{\mathrm{PS}}$                            | 5       | $W^+ \rightarrow$ | $\mu^+\nu$ | $W^+ \rightarrow e^-$ | $^+ u$ (dres) |
|                                            | Pseudodata accuracy                                                         | QED FSR | $M_T$             | $p_T^\ell$ | $M_T$                 | $p_T^\ell$    |
| 1                                          | ${\sf NLO-QCD+(QCD+QED)}_{\rm PS}$                                          | Pythia  | -95.2±0.6         | -400±3     | -38.0±0.6             | -149±2        |
| 2                                          | ${\tt NLO-QCD+(QCD+QED)_{PS}}$                                              | Рнотоз  | -88.0±0.6         | -368±2     | -38.4±0.6             | $-150\pm3$    |
| 3                                          | $NLO	ext{-}(QCD	ext{+}EW)	ext{+}(QCD	ext{+}QED)_{\mathrm{PS}}	ext{two-rad}$ | Рутніа  | -89.0±0.6         | -371±3     | -38.8±0.6             | -157±3        |
| 4                                          | $NLO	ext{-}(QCD	ext{+}EW)	ext{+}(QCD	ext{+}QED)_{\mathrm{PS}}	ext{two-rad}$ | Рнотоз  | -88.6±0.6         | -370±3     | -39.2±0.6             | -159±2        |

■ first QED radiation generated by POWHEG

• difference between QED-PS in Photos and Pythia at  $\mathcal{O}(\alpha^2)$ 

- Theory uncertainties from QED PS estimated from the difference in the shifts from  $\ensuremath{\mathsf{PYTHIA}}$  and  $\ensuremath{\mathsf{PHOTOS}}$ 
  - might be an overestimate (photon spectrum suggests that PHOTOS is more accurate)
  - comparison should be extended to other QED PS: HERWIG, SHERPA, ...
  - how would the shifts charge if a QED PS beyond LL accuracy was used?

### Higher order effects: pair radiation (1)

June June

same order as 2  $\gamma$  radiation

Unresolved pair radiation can be included in the Sudakov through the running  $^1$  of  $\alpha$ 

$$\alpha \Longrightarrow \alpha(s) = \begin{cases} \alpha / \left( 1 - \frac{\alpha}{3\pi} \ln \frac{s}{m_e^2} \right) & \text{electrons only} \\ \alpha / \left( 1 - \frac{\alpha}{3\pi} \ln \frac{s}{m_e^2} - \theta(s - m_\mu^2) \frac{\alpha}{3\pi} \ln \frac{s}{m_\mu^2} \right) & \text{electrons + muons} \end{cases}$$

| $pp \rightarrow W^+$ , $\sqrt{s} = 14$ TeV<br>Templates accuracy: LO |                       | $ \begin{array}{c c} M_W \text{ shifts (MeV)} \\ W^+ \to \mu^+ \nu & W^+ \to e^+ \nu \end{array} $ |              |            |              |  |  |
|----------------------------------------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------|--------------|------------|--------------|--|--|
|                                                                      | Pseudo-data accuracy  | $M_T$                                                                                              | $p_T^\ell$   | $M_T$      | $p_T^\ell$   |  |  |
| 1                                                                    | HORACE FSR-LL         | -89±1                                                                                              | -97±1        | -179±1     | -195±1       |  |  |
| 2                                                                    | HORACE FSR-LL + Pairs | $-94 \pm 1$                                                                                        | $-102 \pm 1$ | $-182\pm2$ | $-199 \pm 1$ |  |  |

 $\Delta M_W(\mu^+\nu) \sim 5 \pm 1$  MeV (from  $\mu$ ) and  $\sim 3 \pm 2$  MeV (from e)

<sup>1</sup>alternative implementation: N. Davidson et al arXiv:1011.0937

| $pp \rightarrow W^+$ , $\sqrt{s} = 14 \text{ TeV}$<br>Templates accuracy: LO |                       | $\begin{array}{c c} M_W \text{ shifts (MeV)} \\ W^+ \to \mu^+ \nu & W^+ \to e^+ \nu \end{array}$ |            |        |            |  |  |
|------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------|------------|--------|------------|--|--|
|                                                                              | Pseudo-data accuracy  | $M_T$                                                                                            | $p_T^\ell$ | $M_T$  | $p_T^\ell$ |  |  |
| 1                                                                            | HORACE FSR-LL         | -89±1                                                                                            | -97±1      | -179±1 | -195±1     |  |  |
| 2                                                                            | HORACE FSR-LL + Pairs | -94±1                                                                                            | -102±1     | -182±2 | -199±1     |  |  |

- pair corrections estimated using HORACE: no interplay with QCD effects possible
- similar strategy can be implemented in POWHEG (actually is already there...)

 $\Longrightarrow$  one could repeat the study within POWHEG-BOX-V2/W\_ew-BMNNP to see what are the changes in the shifts due to the presence of QCD pert and non-pert effects

NNLO uncertainty: input parameter schemes (1)

### scheme choice = choice of the 3 independent EW params

- all choices formally equivalent at a given order in P.T.
- numerical differences in predictions from missing H.O. terms

 $\implies$  difference in predictions from different schemes at a given order can be taken as an estimate of the theory uncertainty from missing H.O.

However....

- not conclusive: basically impossible to consider all possible choices of IPS
- might be over-estimate: we might consider some schemes as "more precise" than others
  - parametric uncertainties
  - perturbative convergence
    - ...

### NNLO uncertainty: input parameter schemes (2)

- $\alpha(0)$ ,  $M_W$  and  $M_Z$
- $\blacksquare~G_{\mu},~M_{W}$  and  $M_{Z}$  to be preferred in the CC DY
- we can define

$$\begin{aligned} \alpha_{\mu}^{tree} &\equiv \frac{\sqrt{2}}{\pi} G_{\mu} M_W^2 \sin^2 \vartheta \\ \alpha_{\mu}^{1l} &\equiv \frac{\sqrt{2}}{\pi} G_{\mu} M_W^2 \sin^2 \vartheta \left(1 - \Delta r\right) \end{aligned}$$

The expressions for the cross section differ at  $\mathcal{O}(\alpha^2)$ 

$$\begin{aligned} \alpha_0 &: & \sigma = \alpha_0^2 \sigma_0 + \alpha_0^3 (\sigma_{SV} + \sigma_H), \\ G_\mu \ I &: & \sigma = (\alpha_\mu^{tree})^2 \sigma_0 + (\alpha_\mu^{tree})^2 \alpha_0 (\sigma_{SV} + \sigma_H) - 2\Delta r (\alpha_\mu^{tree})^2 \sigma_0, \\ G_\mu \ II &: & \sigma = (\alpha_\mu^{1l})^2 \sigma_0 + (\alpha_\mu^{1l})^2 \alpha_0 (\sigma_{SV} + \sigma_H) \end{aligned}$$

NNLO uncertainty: input parameter schemes (3)

• potentially effects on  $M_W$  because of the different sharing among different photon multiplicities

|                            | $p\bar{p} \rightarrow W^+$ , $\sqrt{s} = 1.96$<br>Templates accuracy: LC | $ \begin{array}{c c} M_W \text{ shifts (MeV)} \\ W^+ \to \mu^+ \nu \end{array} $             |                                                                                     |                                                                                     |
|----------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
|                            | Pseudodata accuracy                                                      | Input scheme                                                                                 | $M_T$                                                                               | $p_T^\ell$                                                                          |
| 1<br>2<br>3<br>4<br>5<br>6 | HORACE NLO-EW<br>Horace NLO-EW+QED-PS                                    | $\begin{array}{c} \alpha_0\\ G_\mu-I\\ G_\mu-II\\ \alpha_0\\ G_\mu-I\\ G_\mu-II \end{array}$ | $-101\pm 1$<br>$-112\pm 1$<br>$-101\pm 1$<br>$-70\pm 1$<br>$-72\pm 2$<br>$-72\pm 1$ | $-117\pm 2$<br>$-130\pm 1$<br>$-117\pm 1$<br>$-81\pm 1$<br>$-83\pm 1$<br>$-82\pm 2$ |

 differences present at NLO, after matching with higher orders, become much smaller

```
\Delta M_W \sim 2~{\rm MeV} \pm 1-2~{\rm MeV}
```

uncertainties from IPS choice evaluated with HORACE: no interplay with QCD

how do the shifts from different IPS change in the presence of QCD effects?

| order                           | Gμ    | α(0)  | $\delta(G_{\mu}-\alpha(0))$ (%) |
|---------------------------------|-------|-------|---------------------------------|
| NNLO-QCD                        | 55787 | 53884 | 3.53                            |
| NNLO-QCD+NLO-EW                 | 55501 | 55015 | 0.88                            |
| NNLO-QCD+NLO-EW+<br>NNLO QCD-EW | 55469 | 55340 | 0.23                            |
|                                 |       |       |                                 |

the LO + NLO-EW result would suffer of only 0.55% spread;

the NLO-QCD and NNLO-QCD corrections are only LO-EW and reintroduce a dependence ( $\rightarrow$ 0.88%)

 $\blacksquare$  one could estimate the H.O. corrections including the universal fermionic corrections connected to  $\Delta \alpha$  and  $\Delta \rho$ 





HORACE

$$d\sigma^{\infty} = F_{SV} \Pi(Q^2, \varepsilon) \sum_{n=0}^{\infty} \frac{1}{n!} \left( \prod_{i=0}^n F_{H,i} \right) |\mathcal{M}_{n,LL}|^2 d\Phi_n$$

POWHEG

$$d\sigma = \sum_{f_b} \bar{B}^{f_b}(\boldsymbol{\Phi}_n) d\boldsymbol{\Phi}_n \left\{ \Delta^{f_b}(\boldsymbol{\Phi}_n, p_T^{min}) + \sum_{\alpha_r \in \{\alpha_r | f_b\}} \frac{\left[ d\Phi_{rad} \theta(k_T - p_T^{min}) \Delta^{f_b}(\boldsymbol{\Phi}_n, k_T) R(\boldsymbol{\Phi}_{n+1}) \right]_{\alpha_r}^{\bar{\boldsymbol{\Phi}}_n^{\alpha_r} = \boldsymbol{\Phi}_n}}{B^{f_b}(\boldsymbol{\Phi}_n)} \right\}$$

#### taken from 1701.07240

| W-boson charge                                               |                         | $W^+$       |                         | <i>W</i> <sup>-</sup> |                         | Combined         |  |
|--------------------------------------------------------------|-------------------------|-------------|-------------------------|-----------------------|-------------------------|------------------|--|
| Kinematic distribution                                       | $p_{\mathrm{T}}^{\ell}$ | $m_{\rm T}$ | $p_{\mathrm{T}}^{\ell}$ | $m_{\rm T}$           | $p_{\mathrm{T}}^{\ell}$ | $m_{\mathrm{T}}$ |  |
| $\delta m_W$ [MeV]                                           |                         |             |                         |                       |                         |                  |  |
| Fixed-order PDF uncertainty                                  | 13.1                    | 14.9        | 12.0                    | 14.2                  | 8.0                     | 8.7              |  |
| AZ tune                                                      | 3.0                     | 3.4         | 3.0                     | 3.4                   | 3.0                     | 3.4              |  |
| Charm-quark mass                                             | 1.2                     | 1.5         | 1.2                     | 1.5                   | 1.2                     | 1.5              |  |
| Parton shower $\mu_{\rm F}$ with heavy-flavour decorrelation | 5.0                     | 6.9         | 5.0                     | 6.9                   | 5.0                     | 6.9              |  |
| Parton shower PDF uncertainty                                | 3.6                     | 4.0         | 2.6                     | 2.4                   | 1.0                     | 1.6              |  |
| Angular coefficients                                         | 5.8                     | 5.3         | 5.8                     | 5.3                   | 5.8                     | 5.3              |  |
| Total                                                        | 15.9                    | 18.1        | 14.8                    | 17.2                  | 11.6                    | 12.9             |  |

Table 3: Systematic uncertainties in the  $m_W$  measurement due to QCD modelling, for the different kinematic distributions and *W*-boson charges. Except for the case of PDFs, the same uncertainties apply to  $W^+$  and  $W^-$ . The fixed-order PDF uncertainty given for the separate  $W^+$  and  $W^-$  final states corresponds to the quadrature sum of the CT10nnlo uncertainty variations; the charge-combined uncertainty also contains a 3.8 MeV contribution from comparing CT10nnlo to CT14 and MMHT2014.