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Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  
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Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.
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Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.
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Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.
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2110.05505; see also 2108.11638

• the energy-momentum balance of the HFS, ⌃ = Eh � pz,h, and the inclusive angle of

the HFS �.

The HFS quantity ⌃ can be calculated as the sum of all HFS particles ⌃ =
P

HFS

i (Ei�pz,i),

and � is defined using the transverse momentum of the HFS, T , through tan �
2

= ⌃

T .

Together with the electron-beam energy E0, five observables are known, while three of

them su�ce to define a basic reconstruction method for Q2, y and x. Only for x one

further needs the proton beam energy Ep.

Table 1 summarizes some of the most common reconstruction methods, which use

derived quantities from the scattered electron and HFS including p2T,e = E2 sin2 ✓, pz,e =

E cos ✓, ⌃e = E � pz,e = E(1� cos ✓), tan ✓
2
= ⌃e

pT,e
and T 2 = p2x,h + p2y,h = (

P
HFS

i px,i)2 +

(
P

HFS

i py,i)2 = E2

h sin
2 � = ⌃2 cot2 �

2
= ⌃(2Eh � ⌃).

Method name Observables y Q2 x · Ep

Electron (e) [E0,E,✓] 1� ⌃e
2E0

E2 sin2 ✓
1�y

E(1+cos ✓)
2y

Double angle (DA) [6, 7] [E0,✓,�]
tan

�
2

tan
�
2 +tan

✓
2

4E2
0 cot

2 ✓
2 (1� y) Q2

4E0y

Hadron (h, JB) [4] [E0,⌃,�] ⌃
2E0

T2

1�y
Q2

2⌃

ISigma (I⌃) [9] [E,✓,⌃] ⌃
⌃+⌃e

E2 sin2 ✓
1�y

E(1+cos ✓)
2y

IDA [7] [E,✓,�] yDA
E2 sin2 ✓

1�y
E(1+cos ✓)

2y

E0E⌃ [E0,E,⌃] yh 4E0E � 4E2
0(1� y) Q2

2⌃

E0✓⌃ [E0,✓,⌃] yh 4E2
0 cot

2 ✓
2 (1� y) Q2

2⌃

✓⌃� [8] [✓,⌃,�] yDA
T2

1�y
Q2

2⌃

Double energy (A4) [7] [E0,E,Eh]
E�E0

(xEp)�E0
4E0y(xEp) E + Eh � E0

E⌃T [E,⌃,T ] ⌃

⌃+E±
p

E2+T2

T2

1�y
Q2

2⌃

E0ET [E0,E,T ]
2E0�E⌥

p
E2�T2

2E0

T2

1�y
Q2

4E0y

Sigma (⌃) [9] [E0,E,⌃,✓] yI⌃ Q2
I⌃

Q2

4E0y

eSigma (e⌃) [9] [E0,E,⌃,✓] 2E0⌃
(⌃+⌃e)2

2E0E(1 + cos ✓) E(1+cos ✓)(⌃+⌃e)
2⌃

Table 1. Summary of basic reconstruction methods that employ only three out of five quantities:
E0 (electron-beam energy), E and ✓ (scattered electron energy and polar angle), ⌃ and � (lon-
gitudinal energy-momentum balance, ⌃ =

P
HFS

(Ei � pz,i), and the inclusive angle of the HFS).
Alternatively, the A4 method makes use of the HFS total energy Eh. Shorthand notations are used
for the longitudinal energy-momentum balance of the electron, ⌃e, and for the transverse momen-
tum of the HFS, T . The E⌃T and E0ET methods are under-constrained and have two solutions,
referring to two possible electron polar angles, and several more are existent when using Eh (see
Ref. [7] for two examples). The two bottom rows provide the equations of the ⌃ and e⌃-methods,
which combine quantities of di↵erent basic reconstruction methods, while further methods (like the
PT (rD⌃), D⌃, re⌃ or mixed method) are found, e.g., in Ref. [9, 11].

Each of these methods has pros and cons, and yield good performance in limited

– 3 –

Inclusive DIS; not jets per se, but critical for all jet studies
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2110.05505; see also 2108.11638

ATHENA fast simulation (Rapgap+Delphes)
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Figure 7. Comparison of the mean of the resolution distributions of Q2, y and x (from left to
right) for NoR (top), ISR (middle), and FSR (bottom) events. The mean is calculated using events
with the measured-over-generated ratio within the interval 0 to 2.

Figure 8. Resolution for Q2 (left), y (middle), and x (right) for the DNN, electron, and double-
angle (DA) reconstruction methods for the full simulation of the H1 experiment. The top (bottom)
row is for events with ygen > 0.15 (ygen < 0.15). All distributions are normalized to the same area.

– 13 –
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H1 full simulation
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Figure 10. Resolution comparison of the Rapgap and Djangoh generators on the DNN re-
construction of Q2 (left), y (middle), and x (right) as a function of the generated y for the full
simulation of H1. The top (bottom) row shows the RMS (mean) of the measured-over-generated
distribution as a function of the generated y. The red (blue) curves show the results for the Rapgap

(Djangoh) event sample, while the DNN was trained with the Rapgap sample in both cases.

5 Impact of further acceptance and resolution e↵ects at low y

At low y, the HFS-based methods perform better than the electron method. The reason

is, that the ratio E(1 � cos ✓)/2E0 gets close to one and cannot be measured accurately

because of large values of E. Likewise, however, the HFS momentum balance ⌃ goes to

zero as y goes to zero. Although for kinematic reconstruction at low y the usage of ⌃

is preferred over ⌃e, the quantity ⌃ is particularly sensitive to resolution and acceptance

e↵ects. In particular HFS components that are more in the central region of the calorimeter

contribute more, such making ⌃ at low y especially sensitive resolution e↵ects or e�ciency

losses in the central part of the detector or fake components from calorimetric noise.

The Delphes fast simulation does not include calorimeter noise hits, nor does it

account in a full-fledged manner for single-particle acceptance e↵ects and e�ciency losses

as they can be present at the boundaries of calorimeter stacks or because of insensitive

material. To test the hypothesis that such detector e↵ects can be responsible for the

resolution decrease in x and y for hadronic reconstruction methods at low y (y . 0.15),

we have implemented the H1 experiment in Delphes. Figure 11 shows the x resolution

for the standard reconstruction methods for our fast simulation of H1 compared to the full

simulation. The agreement between the fast and full simulation at high y is fairly good.

At low y, however, there is a low-side tail for the ⌃, hadron and DA method for events

processed with the full H1 simulation, while that tail is absent in the fast simulation, and

also the mean value is shifted.

We apply an additional additive component with random sign to the HFS to the

fast simulated events, which mimics further detector e↵ects, like acceptance or e�ciency

– 15 –

Holds up to model variations!
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Claim: this is prior dependent !

All of the methods studied so far for DIS are of 
the form: predict true from measured via mean-

squared error (or similar)



10What goes wrong?

Suppose you have some features x and you want to predict y.

One way to do this is to find an f that 
minimizes the mean squared error (MSE):

f = argming
P

i(g(xi)� yi)2

Then, f(x) = E[y|x].

Why is this a problem?

detector energy true energy
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f(x) = E[y|x] =
R
dy y p(y|x)

E[f(x)|y] =
R
dxdy0 y0 ptrain(y0|x)ptest(x|y)

this need not be y even if ptrain = ptest (!)  

What goes wrong?

Suppose you have some features x and you want to predict y.
detector energy true energy

Why is this a problem?
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(a) (b)

FIG. 1. (a) 2D Histogram of the reconstructed value xD distribution versus the true value zT distribution, in the Gaussian
example with µ = 0, ‡ = 1, and ‘ = 2. The dashed line represents a linear fit to the data points. (b) For test values of xD,
the vertical axis is the calibrated target value ẑT (xD). The blue dots are the results from a numerical MSE fit fMSE(xD), and
the error bars correspond to the numerical point resolution �MSE(xD), with the analytic prediction in the red dotted line. For
comparison, the Gaussian Ansatz calibration is indicated by the red points fMLC(xD), with the error bars indicating the point
resolution �MLC(xD). For both fits, the colored lines and bands are the analytically expected results for the fits and resolutions,
respectively.

(a) (b)

FIG. 2. The same MSE results as Fig. 1b, but plotted in bins of true zT rather than xD. Points correspond to numerical fit
results with associated resolution �MSE(zT ), while the dashed lines and bands correspond to analytic results. Multiple values of
the prior parameters (a) µ and (b) ‡ are shown to illustrate the prior dependence of the bias. Though not shown, we verified
that the Gaussian Ansatz gives results consistent with the unbiased calibration in dashed red.

2205.05084 
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Maximum likelihood without 
full density estimation

Note that MLE is 
prior independent!

2205.05084 
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FIG. 4. The data-driven calibration functions corresponding
to Fig. 3. The blue points correspond to the calibration
function htrain derived from the training set and the red points
correspond to the ideal calibration htest one would derive from
the test set.

For the training set with µtrain = 0, we have

htrain(x) =


‡2 + ‘2
data

‡2 + ‘2
sim

x (43)

© – x.

The test set only di�ers in the value of µtest, so the correct
calibration function should be:

htest(x) = –(x ≠ µtest) + µtest (44)
= –x + µtest(1 ≠ –).

As long as – ”= 1, then htrain ”= htest and so the calibration
is not universal.

A numerical demonstration of this bias is presented in
Fig. 3, where histograms of the data and simulation are
presented along with the calibrated result. In Fig. 3a, we
see the calibration derived in the training sample, where
by construction, the calibrated simulation matches the
data. Since the truth distribution is di�erent in the test
set, however, the training calibration applied in the test
set is biased, as shown in Fig. 3b. The actual calibration
function is plotted in Fig. 4 and compared to the analytic
expectation from Eqs. (44) and (43). The fact that the
calibration derived on the train set is not the same as
the calibration derived on the test set shows that the
calibration derived in one and applied to the other will
lead to a residual bias.

FIG. 5. The mjj distributions for QCD (blue) and BSM (red)
events in the fast and full simulation. The shaded histograms
correspond to the zT = mtrue

jj truth-level distributions, whereas
the light triangles and dark circles correspond to xD = mreco

jj

for the fast (Delphes) and slow (Geant4) distributions re-
spectively.

V. CALIBRATING JET ENERGY RESPONSE

Jets are ubiquitous at the LHC and their calibration is
an essential input to a majority of physics analyses per-
formed by ATLAS and CMS. In this section, we consider
a simplified version of simulation-based and data-based
jet energy calibrations. To illustrate the impact of the
prior dependence, we use a realistic and also extreme
example where calibrations are derived in a sample of
generic quark and gluon jets and then applied to a test
sample of jets from the decay of a heavy new resonance.
To further simplify the problem, we consider a calibration
of the invariant mass mjj of the leading two jets. In prac-
tice, jet energy calibrations are derived for individual jets,
but this requires at least including calibrating the jet ra-
pidity in addition to the jet energy. We keep the problem
one-dimensional in order to ensure the problem is easy
to visualize and to mitigate the dependence on features
that are not explicitly modeled. For a high-dimensional
study of jet energy calibrations in a prior-independent
way, see Ref. [43].

A. Datasets

Our study is based on generic dijet production in quan-
tum chromodynamics (QCD). For these studies will con-
sider two di�erent datasets to demonstrate simulation-
based and data-based jet energy calibrations. The first
dataset is made with a full detector simulation. The full

QCD = quarks 
and gluons

BSM = new 
physics

Looking for new 
massive particles that 

produce jets 

2205.05084 
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(a) (b)

FIG. 6. The reconstructed mjj divided by the true mjj for the QCD and BSM samples, using (a) the MSE-based approach
and (b) the maximum likelihood approach with the Gaussian Ansatz. Shown are results with and without the simulation-based
calibration applied.

(a) (b)

FIG. 7. The reconstructed mjj for (a) QCD and (b) BSM events in the fast and full simulation, with and without the
data-based OT calibration. The calibration is performed on the QCD sample, which closes, and the same calibration is applied
to the BSM sample. Note that for the BSM sample, the ratio plot is in log-scale, indicating a very large bias.

functions. On the QCD sample, this calibration closes
by construction. In particular, as shown in Fig. 7a, the
blue dashed line in the ratio plot fluctuates around unity,
with deviations due to statistical fluctuations that di�er
between the two halves of the event samples.

When this calibration is applied to the BSM events,

however, the calibration overshoots, as shown with the
red dashed line in the ratio plot in Fig. 7b. While the
resulting dashed distribution agrees better with the data
histogram in dark red than does the fast sim histogram
in light red, the overall agreement is still rather poor.
This again highlights the issue of prior-dependence in

2205.05084 
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FIG. 1. Learned JER distribution for the four models, com-
pared to the CMS 2011 baseline. The dataset is the same
as in Table I. On average, the PFN-PID exhibits 15% better
resolution (i.e. smaller values) than the CMS default.

the measured PFC momenta, along with the PIDs, con-
tain useful information for jet energy calibration that is
lost when only considering the total jet momentum.

In this paper, we presented an extension of the MINE
framework, the Gaussian Ansatz, capable of simultane-
ously performing frequentist inference, extracting Gaus-
sian uncertainties, and quantifying mutual information
between random variables. All of these tasks are per-
formed in a single training, with no additional postpro-
cessing. Using this ML framework, we were able to take
advantage of the full jet particle information in the CMS
Open Simulation to improve the measured jet resolution
by approximately 15%. Studies by the ATLAS collab-
oration have used sequential calibration on a handful
of observables to improve their resolution [55–57], and
the Gaussian Ansatz may allow for further improvements
by allowing for simultaneous calibrations of any number
of input features. We look forward to further develop-
ments in ML-based calibration and correlations methods
in HEP and beyond.

CODE AND DATA

The code for the general-use Gaussian Ansatz frame-
work can be found at https://github.com/rikab/
GaussianAnsatz. The code and data for the jet energy
calibration study, in particular, are available at https://
github.com/rikab/GaussianAnsatz/tree/main/JEC.
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Figure 3. Examples of unfolding log10(y) for samples of 105 events. The response matrix (left),
unfolded and gen distributions (middle), and unfolding correlation matrix (right) are shown for the
electron (top), Sigma (middle), and DNN (bottom) methods.

Observable Reconstruction method
electron Sigma DNN

x 0.692 0.611 0.400
y 0.837 0.707 0.442

Table 1. Value of the average global correlation coe�cient ⇢avg for the unfolding of x and y when
using the electron, Sigma or DNN reconstruction method.

the unfolding results for the electron, Sigma, and DNN methods in greater detail. At low x

and high y, all three methods have good resolution, which results in similar size statistical

errors. However, the uncertainties of the DNN methods are still about 10% smaller at
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Figure 5. Generator model systematic uncertainties for the unfolding of x (top) and y (bottom)
for the electron (left), Sigma (middle) and DNN (right) method.

Figure 5 shows the results of unfolding a Rapgap event sample with a response matrix

obtained from the Djangoh event generator, and vice versa, for the electron, Sigma and

DNN reconstruction methods. We observe, that the electron method results show very

large fluctuations in areas where the resolution is poor, but without any systematic trends.

Also the results with the Sigma reconstruction method show large significant deviations.

In contrast, the DNN method results in an insignificant model dependence in large parts

of the x and y distributions. Only at highest x and lowest y some model dependence

is observed, albeit smaller than those of the classical reconstruction methods. Altogether,

the DNN reconstruction method results in reduced generator model systematic uncertainty

than the classical reconstruction methods, and such would yield a significantly less biased

physics result when used in analysis of real data.

3.2 Event Shapes

As another example of our method, we explore the global event shape observable 1-

jettiness [96, 97], ⌧ b
1
, which is defined as

⌧
b
1 =

2

Q2

X

i2HFS

min{xP · pi, (q + xP ) · pi} , (3.1)

where x is the DIS kinematic quantity from the last section, P is the proton beam four-

vector, and pi are the four-vectors of the HFS objects. The measurement of ⌧ b
1
is clearly
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Figure 5. Generator model systematic uncertainties for the unfolding of x (top) and y (bottom)
for the electron (left), Sigma (middle) and DNN (right) method.

Figure 5 shows the results of unfolding a Rapgap event sample with a response matrix

obtained from the Djangoh event generator, and vice versa, for the electron, Sigma and

DNN reconstruction methods. We observe, that the electron method results show very

large fluctuations in areas where the resolution is poor, but without any systematic trends.

Also the results with the Sigma reconstruction method show large significant deviations.

In contrast, the DNN method results in an insignificant model dependence in large parts

of the x and y distributions. Only at highest x and lowest y some model dependence

is observed, albeit smaller than those of the classical reconstruction methods. Altogether,

the DNN reconstruction method results in reduced generator model systematic uncertainty

than the classical reconstruction methods, and such would yield a significantly less biased

physics result when used in analysis of real data.
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jettiness [96, 97], ⌧ b
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, which is defined as

⌧
b
1 =

2

Q2

X
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vector, and pi are the four-vectors of the HFS objects. The measurement of ⌧ b
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Figure 5. Generator model systematic uncertainties for the unfolding of x (top) and y (bottom)
for the electron (left), Sigma (middle) and DNN (right) method.

Figure 5 shows the results of unfolding a Rapgap event sample with a response matrix

obtained from the Djangoh event generator, and vice versa, for the electron, Sigma and

DNN reconstruction methods. We observe, that the electron method results show very

large fluctuations in areas where the resolution is poor, but without any systematic trends.

Also the results with the Sigma reconstruction method show large significant deviations.

In contrast, the DNN method results in an insignificant model dependence in large parts

of the x and y distributions. Only at highest x and lowest y some model dependence

is observed, albeit smaller than those of the classical reconstruction methods. Altogether,

the DNN reconstruction method results in reduced generator model systematic uncertainty

than the classical reconstruction methods, and such would yield a significantly less biased

physics result when used in analysis of real data.
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As another example of our method, we explore the global event shape observable 1-

jettiness [96, 97], ⌧ b
1
, which is defined as

⌧
b
1 =
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Q2
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i2HFS

min{xP · pi, (q + xP ) · pi} , (3.1)

where x is the DIS kinematic quantity from the last section, P is the proton beam four-

vector, and pi are the four-vectors of the HFS objects. The measurement of ⌧ b
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is clearly
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6

order (NNLO) accuracy in QCD (up to O(↵2
s)) was obtained with the Poldis code [121, 122], which is based on the

Projection to Born Method [123]. These calculations are multiplied by hadronization corrections that are obtained with
Pythia 8.3 [124, 125] using its default set of parameters. These corrections are smaller than 10% for most kinematic
intervals and are consistent with corrections derived by an alternative generator, Herwig 7.2 [126, 127], using its
default parameters. The uncertainty of the calculations is given by the variation the factorization and renormalization
scale Q2 by a factor of two [121, 122] as well as NLOPDF4LHC15 variations [128].

The TMD calculation uses the framework developed in Refs. [33, 34] using the same jet radius and algorithm used in
this work3. The inputs are TMD PDFs and soft functions derived in Ref. [129], which were extracted from an analysis
of semi-inclusive DIS and Drell-Yan data. The calculation is performed at the next-to-leading logarithmic accuracy.
This calculation is performed within TMD factorization and no matching to the high qT region is included, where
the TMD approach is expected to be inaccurate. In contrast to pQCD calculations, the TMD calculations do not
require non-perturbative corrections, because such effects are already included. Calculations with the TMD framework
are available for the TMD sensitive cross sections, which are qjet

T /Q and ��jet. Uncertainties are not yet available
for the TMD predictions4. Additional TMD-based calculations are provided by the MC generator Cascade [131],
using matrix elements from KaTie [132] and parton branching TMD PDFs [133–135]. A first setup integrates to
HERAPDF2.0 [136] and a second setup uses angular ordering and pT as the renormalization scale [137, 138].

�1 0 1 20.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1/
�

je
t
d�

/d
�je

t

H1
Q2 > 150 GeV2

0.2 < y < 0.7

pjet
T > 10 GeV
kT, R = 1.0

Data

Pythia 8.3

Herwig 7.2

Djangoh

Rapgap

Cascade set 1

Cascade set 2

NNLO � NP

�1 0 1 2

�jet

0.5

1.0

1.5

M
od

el
/

D
at

a

artificial horizontal marker o�sets added for clarity
101 102

10�4

10�3

10�2

10�1

1/
�

je
t
d�

/d
pje

t
T

[1
/G

eV
]

H1
Q2 > 150 GeV2

0.2 < y < 0.7

pjet
T > 10 GeV
kT, R = 1.0

Data

Pythia 8.3

Herwig 7.2

Djangoh

Rapgap

Cascade set 1

Cascade set 2

NNLO � NP

101 102

pjet
T [GeV]

0.5

1.0

1.5

M
od

el
/

D
at

a

artificial horizontal marker o�sets added for clarity
10�2 10�1 100

10�2

10�1

100

1/
�

je
t
d�

/d
�

�
je

t

H1
Q2 > 150 GeV2

0.2 < y < 0.7

pjet
T > 10 GeV
kT, R = 1.0

Data

Pythia 8.3

Herwig 7.2

Djangoh

Rapgap

Cascade set 1

Cascade set 2

NNLO � NP

TMD (LO + NLL�)

10�2 10�1 100

��jet [rad]

0.5

1.0

1.5

M
od

el
/

D
at

a

artificial horizontal marker o�sets added for clarity
10�2 10�1 100

10�2

10�1

100

101

1/
�

je
t
d�

/d
qje

t
T

/Q H1
Q2 > 150 GeV2

0.2 < y < 0.7

pjet
T > 10 GeV
kT, R = 1.0

Data

Pythia 8.3

Herwig 7.2

Djangoh

Rapgap

Cascade set 1

Cascade set 2

NNLO � NP

TMD (LO + NLL�)

10�2 10�1 100

qjet
T /Q

0.5

1.0

1.5

M
od

el
/

D
at

a

artificial horizontal marker o�sets added for clarity
�1 0 1 20.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1/
�

je
t
d�

/d
�je

t

H1
Q2 > 150 GeV2

0.2 < y < 0.7

pjet
T > 10 GeV
kT, R = 1.0

Data

Pythia 8.3

Herwig 7.2

Djangoh

Rapgap

Cascade set 1

Cascade set 2

NNLO � NP

�1 0 1 2

�jet

0.5

1.0

1.5

M
od

el
/

D
at

a

artificial horizontal marker o�sets added for clarity
101 102

10�4

10�3

10�2

10�1

1/
�

je
t
d�

/d
pje

t
T

[1
/G

eV
]

H1
Q2 > 150 GeV2

0.2 < y < 0.7

pjet
T > 10 GeV
kT, R = 1.0

Data

Pythia 8.3

Herwig 7.2

Djangoh

Rapgap

Cascade set 1

Cascade set 2

NNLO � NP

101 102

pjet
T [GeV]

0.5

1.0

1.5

M
od

el
/

D
at

a

artificial horizontal marker o�sets added for clarity
10�2 10�1 100

10�2

10�1

100

1/
�

je
t
d�

/d
�

�
je

t

H1
Q2 > 150 GeV2

0.2 < y < 0.7

pjet
T > 10 GeV
kT, R = 1.0

Data

Pythia 8.3

Herwig 7.2

Djangoh

Rapgap

Cascade set 1

Cascade set 2

NNLO � NP

TMD (LO + NLL�)

10�2 10�1 100

��jet [rad]

0.5

1.0

1.5

M
od

el
/

D
at

a

artificial horizontal marker o�sets added for clarity
10�2 10�1 100

10�2

10�1

100

101

1/
�

je
t
d�

/d
qje

t
T

/Q H1
Q2 > 150 GeV2

0.2 < y < 0.7

pjet
T > 10 GeV
kT, R = 1.0

Data

Pythia 8.3

Herwig 7.2

Djangoh

Rapgap

Cascade set 1

Cascade set 2

NNLO � NP

TMD (LO + NLL�)

10�2 10�1 100

qjet
T /Q

0.5

1.0

1.5

M
od

el
/

D
at

a

artificial horizontal marker o�sets added for clarity

�1 0 1 20.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1/
�

je
t
d�

/d
�je

t

H1
Q2 > 150 GeV2

0.2 < y < 0.7

pjet
T > 10 GeV
kT, R = 1.0

Data

Pythia 8.3

Herwig 7.2

Djangoh

Rapgap

Cascade set 1

Cascade set 2

NNLO � NP

�1 0 1 2

�jet

0.5

1.0

1.5

M
od

el
/

D
at

a

artificial horizontal marker o�sets added for clarity
101 102

10�4

10�3

10�2

10�1

1/
�

je
t
d�

/d
pje

t
T

[1
/G

eV
]

H1
Q2 > 150 GeV2

0.2 < y < 0.7

pjet
T > 10 GeV
kT, R = 1.0

Data

Pythia 8.3

Herwig 7.2

Djangoh

Rapgap

Cascade set 1

Cascade set 2

NNLO � NP

101 102

pjet
T [GeV]

0.5

1.0

1.5

M
od

el
/

D
at

a

artificial horizontal marker o�sets added for clarity
10�2 10�1 100

10�2

10�1

100

1/
�

je
t
d�

/d
�

�
je

t

H1
Q2 > 150 GeV2

0.2 < y < 0.7

pjet
T > 10 GeV
kT, R = 1.0

Data

Pythia 8.3

Herwig 7.2

Djangoh

Rapgap

Cascade set 1

Cascade set 2

NNLO � NP

TMD (LO + NLL�)

10�2 10�1 100

��jet [rad]

0.5

1.0

1.5

M
od

el
/

D
at

a

artificial horizontal marker o�sets added for clarity
10�2 10�1 100

10�2

10�1

100

101

1/
�

je
t
d�

/d
qje

t
T

/Q H1
Q2 > 150 GeV2

0.2 < y < 0.7

pjet
T > 10 GeV
kT, R = 1.0

Data

Pythia 8.3

Herwig 7.2

Djangoh

Rapgap

Cascade set 1

Cascade set 2

NNLO � NP

TMD (LO + NLL�)

10�2 10�1 100

qjet
T /Q

0.5

1.0

1.5

M
od

el
/

D
at

a

artificial horizontal marker o�sets added for clarity
�1 0 1 20.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1/
�

je
t
d�

/d
�je

t

H1
Q2 > 150 GeV2

0.2 < y < 0.7

pjet
T > 10 GeV
kT, R = 1.0

Data

Pythia 8.3

Herwig 7.2

Djangoh

Rapgap

Cascade set 1

Cascade set 2

NNLO � NP

�1 0 1 2

�jet

0.5

1.0

1.5

M
od

el
/

D
at

a

artificial horizontal marker o�sets added for clarity
101 102

10�4

10�3

10�2

10�1

1/
�

je
t
d�

/d
pje

t
T

[1
/G

eV
]

H1
Q2 > 150 GeV2

0.2 < y < 0.7

pjet
T > 10 GeV
kT, R = 1.0

Data

Pythia 8.3

Herwig 7.2

Djangoh

Rapgap

Cascade set 1

Cascade set 2

NNLO � NP

101 102

pjet
T [GeV]

0.5

1.0

1.5

M
od

el
/

D
at

a

artificial horizontal marker o�sets added for clarity
10�2 10�1 100

10�2

10�1

100

1/
�

je
t
d�

/d
�

�
je

t

H1
Q2 > 150 GeV2

0.2 < y < 0.7

pjet
T > 10 GeV
kT, R = 1.0

Data

Pythia 8.3

Herwig 7.2

Djangoh

Rapgap

Cascade set 1

Cascade set 2

NNLO � NP

TMD (LO + NLL�)

10�2 10�1 100

��jet [rad]

0.5

1.0

1.5

M
od

el
/

D
at

a

artificial horizontal marker o�sets added for clarity
10�2 10�1 100

10�2

10�1

100

101

1/
�

je
t
d�

/d
qje

t
T

/Q H1
Q2 > 150 GeV2

0.2 < y < 0.7

pjet
T > 10 GeV
kT, R = 1.0

Data

Pythia 8.3

Herwig 7.2

Djangoh

Rapgap

Cascade set 1

Cascade set 2

NNLO � NP

TMD (LO + NLL�)

10�2 10�1 100

qjet
T /Q

0.5

1.0

1.5

M
od

el
/

D
at

a

artificial horizontal marker o�sets added for clarity

Figure 2. Measured cross sections, normalized to the inclusive jet production cross section, as a function of the jet transverse
momentum (top left) and jet pseudorapidity (top right), lepton-jet momentum balance (qjet

T
/Q) (lower left), and lepton-jet

azimuthal angle correlation (��jet) (lower right). Predictions obtained with the pQCD (corrected by hadronization effects,
“NP”) are shown as well. Predictions obtained with the TMD framework are shown for the qjet

T
/Q and ��jet cross sections. At

the bottom, the ratio between predictions and the data are shown. The gray bands represent the total systematic uncertainty
of the measurement; the bars represent the statistical uncertainty of the measurement, which is typically smaller than the
marker size. The error bar on the NNLO calculation represents scale, PDF, and hadronization uncertainties. The statistical
uncertainties on the MC predictions are smaller than the markers.

Results. The unfolded data and comparisons to predictions are presented in Fig. 2. The pjetT and ⌘jetlab cross sections
are described within uncertainties by the NNLO calculation. Note that while the QED corrections are mostly small,

3 This differs from the original paper [33] using the anti-kT algorithm. The difference is power suppressed at the accuracy of the calculation.
4 The scale variation procedure that is standard in the collinear framework does not translate easily to the TMD framework [130].
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27Conclusions and Outlook

Deep Convolutional Architectures for  
Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  

Jet Image

Convolution Max-Pool Convolution Max-Pool Flatten

Fully  
Connected 
ReLU Unit

ReLU Dropout ReLU Dropout
Local 

Response 
Normalization

W’→ WZ event

Convolutions
Convolved  

Feature Layers

Max-Pooling

Repeat

Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.

Difference in average 
image between signal 

and background

Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
Convolutions 
to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.

Luke de Oliveiraa, Michael Aaron Kaganb, Lester Mackeyc, Benjamin Nachmanb, Ariel Schwartzmanb 

 
aStanford University, Institute for Computational and Mathematical Engineering (ICME), bSLAC National Accelerator Laboratory,  cStanford University, Department of Statistics 

AI/ML has a great potential to 
enhance reconstruction and 

analysis at a future ep collider

We can take advantage of developments from pp and 
already start exploring applications at HERA/EIC
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