Modern jet physics with Al

Benjamin Nachman

Lawrence Berkeley National Laboratory

bpnachman.com bpnachman@lbl.gov

Future ep workshop Oct. 26, 2022

Data analysis in High Energy Physics

+ Machine Learning

Theory of everything

Fast simulation / phase space

Parameter estimation /

Physics simulators

Detector-level observables

Pattern recognition

unfolding

Nature

Experiment

Online processing & quality control

Detector-level observables

Pattern recogn

Data curation

Classification to enhance sensitivity

calibration clustering tracking noise mitigation particle identification

Data analysis in High Energy Physics

4

+ Machine Learning

Today: I'll only have time to cover two topics:

Part I: Reconstruction

Reconstruction

Inclusive DIS; not jets per se, but critical for all jet studies

75.7			22	
Method name	Observables	y	Q^2	$x \cdot E_p$
Electron (e)	$[E_0,E,\theta]$	$1 - \frac{\Sigma_e}{2E_0}$	$\frac{E^2 \sin^2 \theta}{1 - y}$	$\frac{E(1+\cos\theta)}{2y}$
Double angle (DA) [6, 7]	$[E_0, \theta, \gamma]$	$\frac{\tan\frac{\gamma}{2}}{\tan\frac{\gamma}{2} + \tan\frac{\theta}{2}}$	$4E_0^2 \cot^2 \frac{\theta}{2} (1-y)$	$\frac{Q^2}{4E_0y}$
Hadron (h, JB) [4]	$[E_0,\Sigma,\gamma]$	$rac{\Sigma}{2E_0}$	$\frac{T^2}{1-y}$	$rac{Q^2}{2\Sigma}$
ISigma (I Σ) [9]	$[E,\!\theta,\!\Sigma]$	$\frac{\Sigma}{\Sigma + \Sigma_e}$	$\frac{E^2\sin^2\theta}{1-y}$	$\frac{E(1+\cos\theta)}{2y}$
IDA [7]	$[E,\!\theta,\!\gamma]$	$y_{ m DA}$	$\frac{E^2\sin^2\theta}{1-y}$	$rac{E(1+\cos heta)}{2y}$
$E_0 E \Sigma$	$[E_0,E,\Sigma]$	y_h	$4E_0E - 4E_0^2(1-y)$	$rac{Q^2}{2\Sigma}$
$E_0 heta \Sigma$	$[E_0, \theta, \Sigma]$	y_h	$4E_0^2 \cot^2 \frac{\theta}{2} (1-y)$	$rac{Q^2}{2\Sigma}$
$\theta \Sigma \gamma$ [8]	$[\theta,\!\Sigma,\!\gamma]$	$y_{ m DA}$	$\frac{T^2}{1-y}$	$rac{Q^2}{2\Sigma}$
Double energy (A4) [7]	$[E_0, E, E_h]$	$\frac{E - E_0}{(xE_p) - E_0}$	$4E_0y(xE_p)$	$E + E_h - E_0$
$E\Sigma T$	$[E,\Sigma,T]$	$\frac{\Sigma}{\Sigma + E \pm \sqrt{E^2 + T^2}}$	$\frac{T^2}{1-y}$	$rac{Q^2}{2\Sigma}$
E_0ET	$[E_0,E,T]$	$\frac{2E_0 - E \mp \sqrt{E^2 - T^2}}{2E_0}$	$\frac{T^2}{1-y}$	$\frac{Q^2}{4E_0y}$
Sigma (Σ) [9]	$[E_0,E,\Sigma,\theta]$	$y_{ ext{I}\Sigma}$	$Q^2_{\mathrm{I}\Sigma}$	$\frac{Q^2}{4E_0y}$
e Sigma $(e\Sigma)$ [9]	$[E_0,E,\Sigma,\theta]$	$\frac{2E_0\Sigma}{(\Sigma+\Sigma_e)^2}$	$2E_0E(1+\cos\theta)$	$\frac{E(1+\cos\theta)(\Sigma+\Sigma_e)}{2\Sigma}$

DIS Reco with simple NN

2110.05505; see also 2108.11638

DIS Reco with simple NN

Holds up to model variations!

2110.05505; see also 2108.11638

Reconstruction - word of caution!

All of the methods studied so far for DIS are of the form: predict true from measured via meansquared error (or similar)

Claim: this is prior dependent!

What goes wrong?

Suppose you have some features x and you want to predict y.

detector energy true energy

One way to do this is to find an f that minimizes the mean squared error (MSE):

$$f = \operatorname{argmin}_g \sum_i (g(x_i) - y_i)^2$$

Then, f(x) = E[y|x].

Why is this a problem?

What goes wrong?

Suppose you have some features x and you want to predict y.

detector energy true energy

$$f(x) = E[y|x] = \int dy \, y \, p(y|x)$$

$$E[f(x)|y] = \int dx dy' y' p_{\text{train}}(y'|x) p_{\text{test}}(x|y)$$

this need not be y even if $p_{train} = p_{test}(!)$

Why is this a problem?

Gaussian Example

Gaussian Example

Gaussian Example

Collider Example

QCD = quarks and gluons

BSM = new physics

Looking for new massive particles that produce jets

Collider Example

Collider Example

Can do high-dimensional regression in this framework

PFN-ID: process all particles inside jets

2205.03413

Part II: Unfolding

Tailored Reco for Unfolding

Impact on inclusive DIS: better stat + syst

Full Phase via OmniFold

1911.09107; see other methods in 2109.13243

This is not a dream!

H1prelim-22-031

26

Conclusions and Outlook

AI/ML has a great potential to enhance reconstruction and analysis at a future *ep* collider

We can take advantage of developments from pp and already start exploring applications at HERA/EIC

Fin.