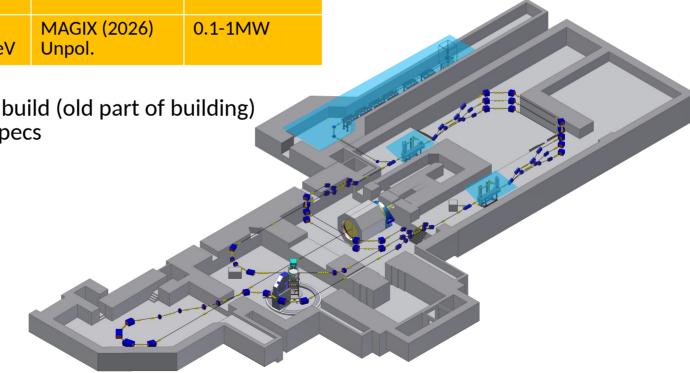
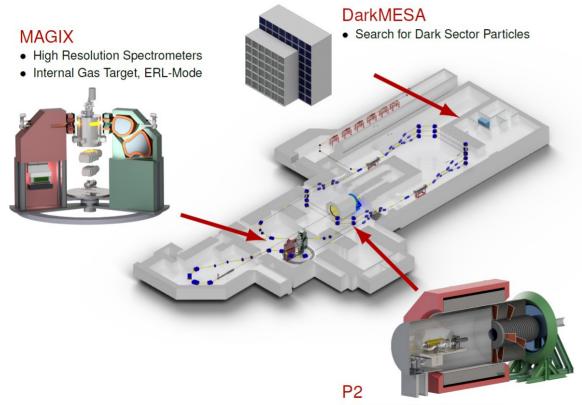
Comments on a possible physics program at PERLE

Disclaimer: comments only, very partial view mostly reflecting my ignorance

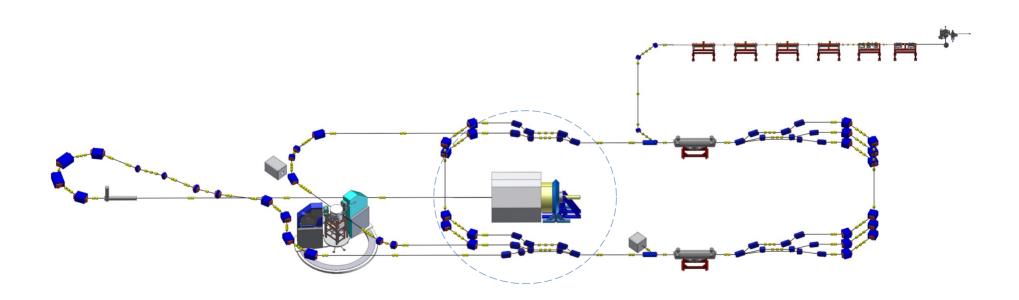

- Low-energy physics program at MESA and MAMI; comments for PERLE
 - Polarized and unpolarized scattering
 - Standard Model and BSM physics
 - "support" physics: application to neutrino physics, precision measurements

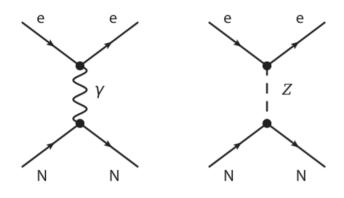
MESA Operational modes


Op-mode	Target	Current/ Energy	Experiment Beam pol.	Beam power@targe t
Ext. Beam (EB)	Solid/ Liquid	0-1mA/ 55-105 MeV	P2, unpol (2025)	0-25kW
Energy recovery (ERL)	Gas-jet	1-10mA/ 55-105MeV	MAGIX (2026) Unpol.	0.1-1MW

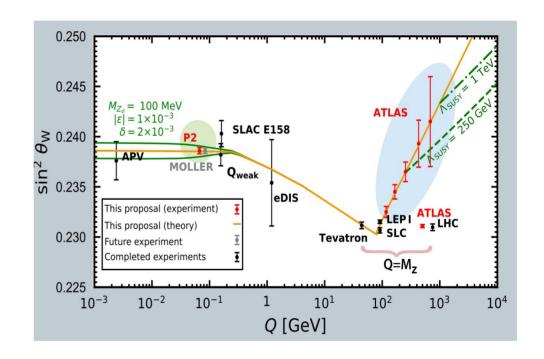
5 MeV Injector is currently being build (old part of building) Cryomodules tested and within specs Completion of building end 2022

Experiments begin in 2025

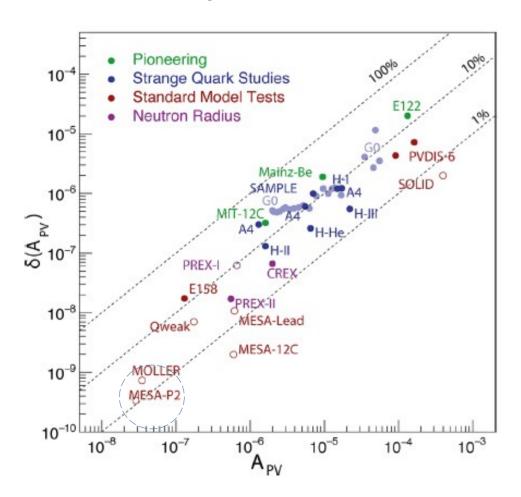

MESA- fixed target experiments



- Parity-Violating \vec{e} -scattering
- Extracted Beam (155 MeV, 150 μA)


- P2 experiment:
 High target density, 0.15mA
 External beam mode (EB)
 Luminosity >10³⁹ cm⁻²s⁻¹
- MAGIX experiment: low target density, 1mA Energy recovery mode (ERL) Luminosity >10³⁵ cm⁻²s⁻¹
- DarkMESA:
 beam-dump experiment
 measures recoil from elastic
 scattering of weakly-interacting
 particles

Physics in EB mode – P2



$$A^{\rm PV} \equiv \frac{\mathrm{d}\sigma_{\rm ep}^+ - \mathrm{d}\sigma_{\rm ep}^-}{\mathrm{d}\sigma_{\rm ep}^+ + \mathrm{d}\sigma_{\rm ep}^-}.$$

weak charge
$$Q_W(p) = 1 - 4\sin^2\theta_W$$

 Q_w to 1.4% \leftrightarrow $\sin^2(\theta_w)$ to 0.15%

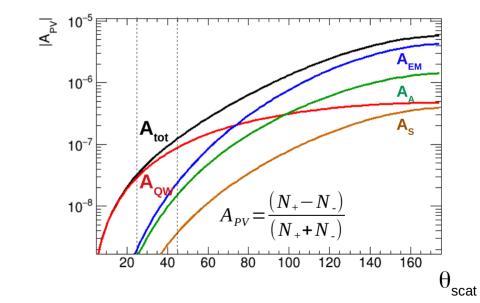
Beam current 150 μ A LH₂ target, 60 cm

- \rightarrow L = 2.4 10³⁹ /cm²/s
- → Rate ~100 GHz

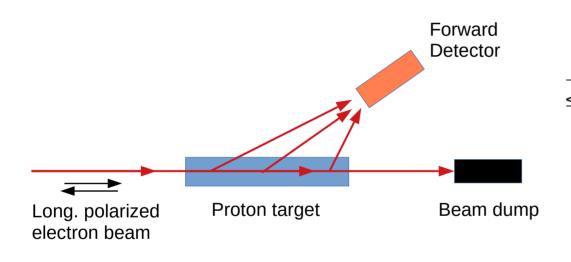
Integrating detectors

Quartz bars + PM tubes
10000 hours of running

- Parity-violating asymmetries, the weak mixing angle, and the proton form factors
- Measurement :


$$A_{PV}^{\exp} = \frac{N^+ - N^-}{N^+ + N^-}$$

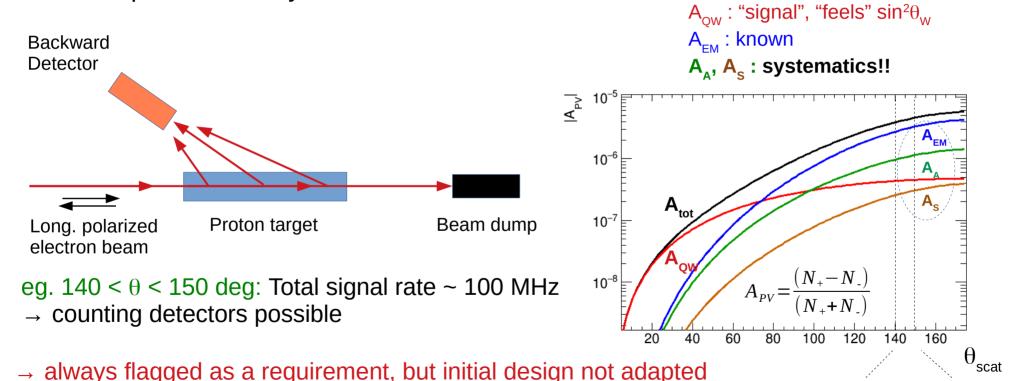
Prediction:


$$A_{PV} = \frac{-G_F Q^2}{4\pi\alpha_{em}\sqrt{2}} \left[Q_W^p - F(Q^2) \right]$$

$$Q_W^p = 1 - 4\sin\theta_W.$$

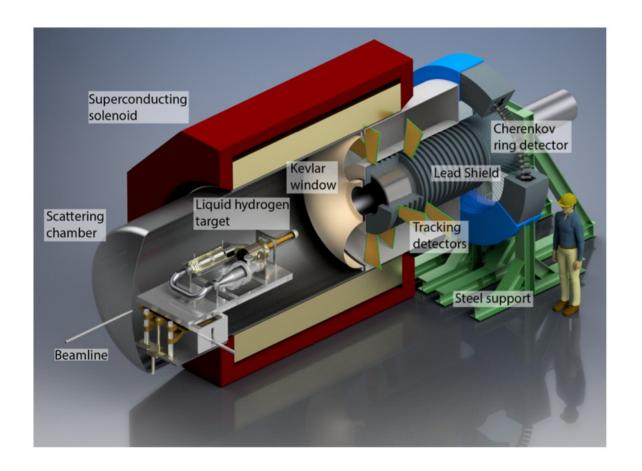
$$F(Q^2) = F_{FM}(Q^2) + F_A(Q^2) + F_S(Q^2)$$

An accepted project, in construction (Mainz):

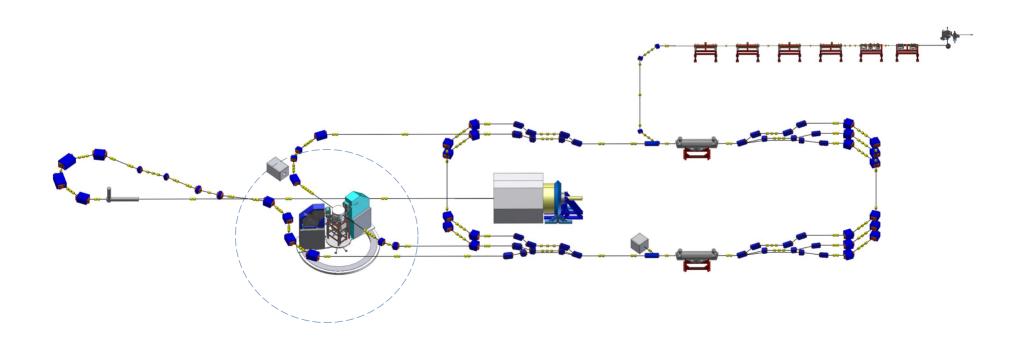

25 < θ < 45 deg.

Total signal rate ~ 100 GHz

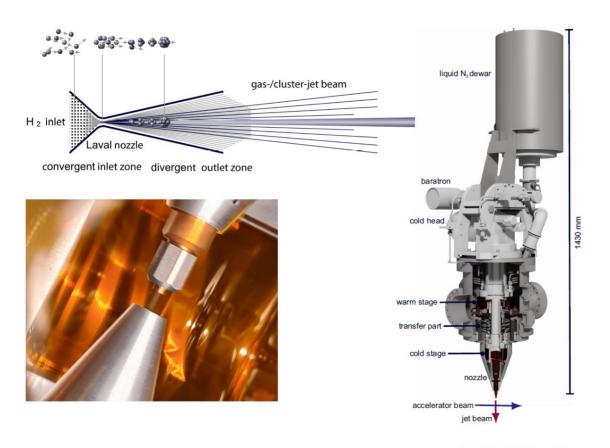
→ integrating detectors


Required ancillary measurements:

Bwd. detector (control)


→ keep in mind for future experiments

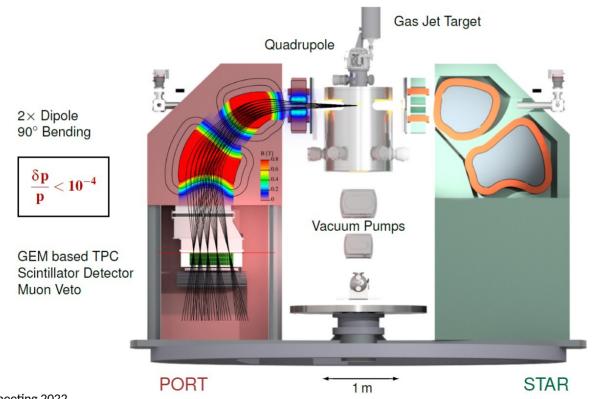
(target, vacuum chamber, background shielding)



$E_{ m beam}$	$155\mathrm{MeV}$
$ar{ heta}_{ m f}$	35°
$\delta heta_{ m f}$	20°
$\langle Q^2 \rangle_{L=600\mathrm{mm},\ \delta\theta_\mathrm{f}=20^\circ}$	$6 \times 10^{-3} ({\rm GeV/c})^2$
$\langle A^{\mathrm{exp}} \rangle$	$-39.94\mathrm{ppb}$
$(\Delta A^{ m exp})_{ m Total}$	$0.56 \mathrm{ppb} (1.40\%)$
$(\Delta A^{ m exp})_{ m Statistics}$	$0.51 \mathrm{ppb} (1.28\%)$
$(\Delta A^{\mathrm{exp}})_{\mathrm{Polarization}}$	$0.21 \mathrm{ppb} (0.53\%)$
$(\Delta A^{ m exp})_{ m Apparative}$	$0.10\mathrm{ppb}\ (0.25\%)$
$\langle s_{ m W}^2 \rangle$	0.23116
$(\Delta s_{ m W}^2)_{ m Total}$	$3.3 \times 10^{-4} \ (0.14 \%)$

Physics in ERL mode – Magix

Gas Jet target at MAMI A1/MAGIX



Gas jet target in operation at MAMI

Harald Merkel, DPG-Tagung Mainz 03/22

MAGIX spectrometers

MAGIX - MAinz Gas Injection Target EXperiment

Spectrometers are ordered, expected delivery
March 23

Experimental program at MAGIX

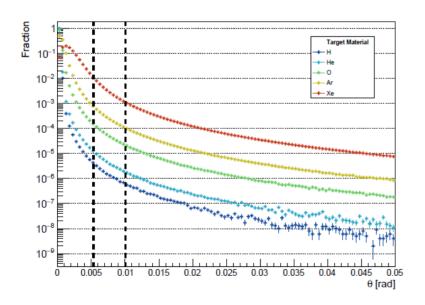
Hadron Structure

Topic	Reaction	Jet	Observables
p Formfactor	H(e,e')p	Н	$G_E(Q^2), G_M(Q^2), r_E, r_M$
d Formfactor	D(e,e')d	D	$A(Q^2), B(Q^2), r_d$
³ He Formfactor	$^{3}\text{He}(e,e')^{3}\text{He}$	³ He	r_E
⁴ He Formfactor	$^{4}\mathrm{He}(e,e')^{4}\mathrm{He}$	⁴ He	r_E

Few-Body Systems

d Breakup	D(e,e'p)	D	$\mathrm{d}\sigma/\mathrm{d}\Omega$, polarizabilities
³ He inclusive	3 He (e,e')	³ He	Structure functions, R_L
⁴ He inclusive	$^{4}\mathrm{He}(e,e')$	⁴ He	Structure functions, R_L
⁴ He monopole	$^{4}\text{He}(e,e')^{4}\text{He}^{*}$	⁴ He	Transition Formfactors $E(^4\text{He}^*)$, $\Gamma(^4\text{He}^*)$
¹⁶ O inclusive	$^{16}{ m O}(e,e')$	^{16}O	Structure functions, R_L
⁴⁰ Ar inclusive	40 Ar (e,e')	40 Ar	Structure functions, R_L
³ He exclusive	3 He $(e, e'p/d)d/p$	³ He	${ m d}\sigma/{ m d}\Omega$
⁴ He exclusive	$^{4}\mathrm{He}(e,e'p/d)$	⁴ He	${ m d}\sigma/{ m d}\Omega$

Dark Sector

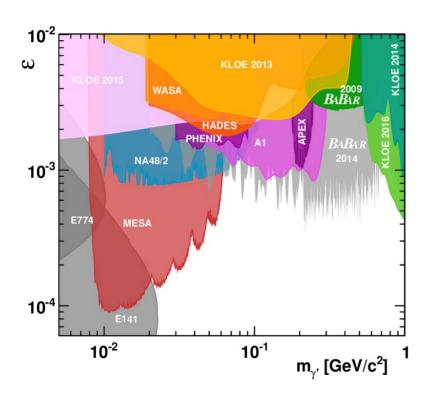

Leptonic Decay	$Ar(e,A' \rightarrow e^+e^-)$	⁴⁰ Ar, Xe	Lepton pair mass $m_{A'}$ peak search
Invisible Decay	p(e,e'p)A'	Н	Missing mass $m_{A'}$ peak search

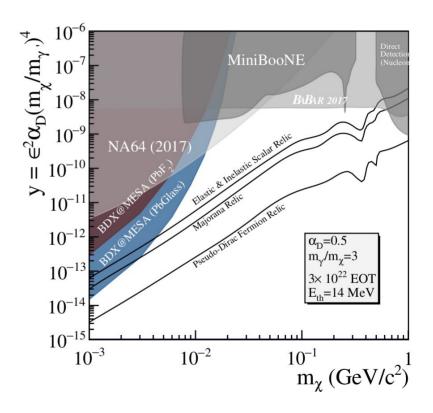
Astrophysical Reactions

S-Factor Phase 1	$^{16}O(e, e'\alpha)^{12}C$	^{16}O	$S_{E1}(E), S_{E2}(E)$
S-Factor Phase 2	$^{16}O(e, e'\alpha)^{12}C$	^{16}O	$S_{E1}(E), S_{E2}(E)$

Luminosity limitation ERL gas jet target

Coulomb scattering - expect for fixed power loss and geometry: Losses can be concentrated in collimator region separeted from experiment and accelerator

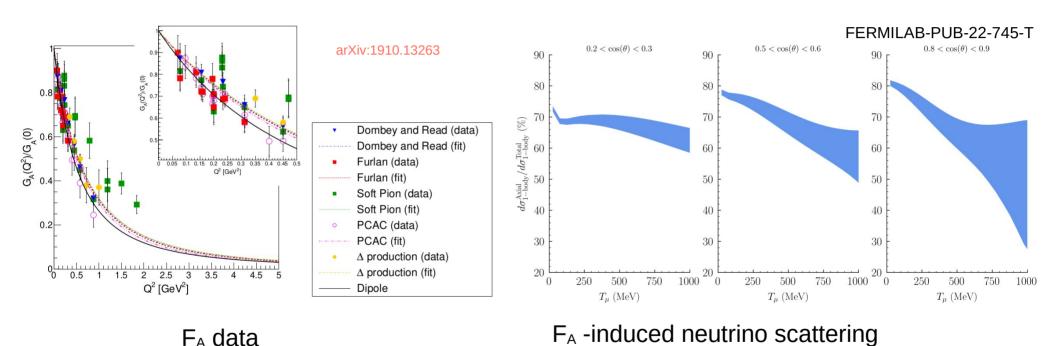



Results for "two collimator" system

Total loss < 100 Watt, loss in accelerator < 0.05 W.

Target	$n_{ m spoiler}$	$n_{ m col}$	$\mathcal{L}_{\mathrm{max}} \left[\mathrm{cm}^{-2} \mathrm{s}^{-1} \right]$
Н	13	13	7.595×10^{35}
He	13	13	2.505×10^{35}
O	14	14	2.408×10^{34}
Ar	18	18	7.916×10^{33}
Xe	18	20	5.959×10^{32}

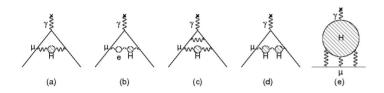
Dark sector



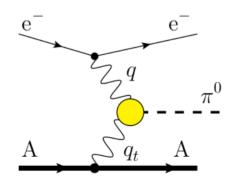
 $\gamma' \rightarrow e + e - in MAGIX$

 γ 'e- $\rightarrow \gamma$ 'e- in DarkMESA measurable recoil

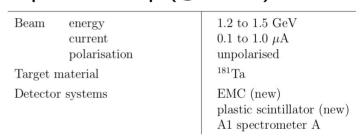
Applications – neutrino physics

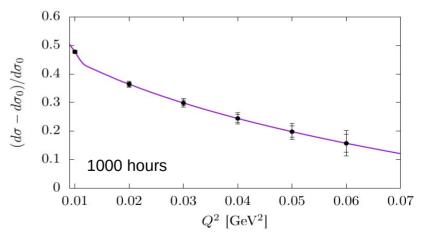


MESA, PERLE can help populate the low-Q² region, of particular importance for reactor neutrinos


cross section uncertainties (MiniBoone kin.)

Applications – Muon g-2


Muon anomaly (had. Contributions):



Experimental probe: Primakoff process

Proposed setup (@MAMI)

→ PERLE lower energy, but above threshold - can contribute

Comments and conclusions

- Described a small selection of experiments at a low-energy electron-proton or electron-atom scattering experiment
- Luminosities
 - Dense targets \leftrightarrow extracted beams. I_{max} ~ 0.1-0.2 mA L_{max} ~ 10⁴⁰ cm⁻²s⁻¹
 - EM backgrounds
 - Target design a challenge in itself (heat load, interactions with final state electron)
 - Physics in ERL mode \leftrightarrow gas targets $I_{max} \sim 10$ -20 mA $L_{max} \sim 10^{35}$ cm⁻²s⁻¹
- PERLE will gain a factor 2 4 in energy compared to MESA
 - Specific opportunities
 - Hadronic backgrounds

→ time to collect concrete ideas!