Mitigation of observational effects for galaxy clustering with photometric surveys

Martín Rodríguez Monroy

IJCLab, A2C Seminars, 19th September 2022

Laboratoire de Physique des 2 Infinis

THE DARK ENERGY SURVEY

Outline

- Standard cosmological model, ΛCDM
- Large-scale structure and galaxy clustering
- The Dark Energy Survey
- DES Y3 results on galaxy clustering and cosmological parameters
- Systematic effects on galaxy clustering
- Methods for observational systematics mitigation
- Validation of the weights and robustness tests
- Lessons learned

A long time ago, everywhere....

- ★ The Universe came into existence with a rapid expansion from a state of high density and temperature → the Big Bang
- ★ The Universe expands at an accelerated rate

- ★ The Universe came into existence with a rapid expansion from a state of high density and temperature → the Big Bang
- ★ The Universe expands at an accelerated rate
- ★ What is behind this acceleration?
 - Equation of state of the fluid: $p = w \cdot \rho$
 - Acceleration equation:

$$\frac{\ddot{a}}{a} = \frac{-4\pi G}{3}(\rho + 3p)$$

• Dark energy: w < -1/3

- ★ The Universe came into existence with a rapid expansion from a state of high density and temperature → the Big Bang
- ★ The Universe expands at an accelerated rate
- ★ What is behind this acceleration?
- ★ Several candidates:
 - Quintessence: -1 < w < -1/3
 - Phantom dark energy: w < -1
- ★ Other explanations:
 - Incompleteness of General Relativity at large scales
 - Primordial magnetic fields

- ★ The Universe came into existence with a rapid expansion from a state of high density and temperature → the Big Bang
- ★ The Universe expands at an accelerated rate
- ★ What is behind this acceleration?
- ★ Several candidates:
 - Quintessence: -1 < w < -1/3
 - Phantom dark energy: w < -1
- ★ Other explanations:
 - Incompleteness of General Relativity at large scales
 - Primordial magnetic fields

* All observations to date suggest that the dark energy is the cosmological constant, Λ :

 $= (4.24 \pm 0.11) \cdot 10^{-66} \text{ eV}^2$

The standard cosmological model, ΛCDM

- **Observational basis:**
 - Accelerated expansion
 - Cosmic microwave background Large-scale structure

- Abundances of light elements

The standard cosmological model, ΛCDM

- ★ Observational basis:
 - Accelerated expansion
 - Cosmic microwave background

★ Principal elements:

- Cold dark matter (CDM)
- Dark energy
- Cosmological parameters:
 - $\blacksquare \quad \text{Matter density,} \ \ \Omega_m = \Omega_b + \Omega_{cdm}$
 - Hubble parameter, *h*
 - Amplitude and scale dependence of primordial fluctuations, A_s and n_s
 - Optical depth at reionisation, au

- Abundances of light elements
- Large-scale structure

The standard cosmological model, ΛCDM

- **Observational basis:** \star
 - Accelerated expansion
 - Cosmic microwave background o Large-scale structure

Principal elements: \star

- Cold dark matter (CDM)
- Dark energy
- Cosmological parameters
- Rest of the parameters are derived from them \star

 $H^{2}(a) = H^{2}_{0}(\Omega_{m,0} a^{-3} + \Omega_{r,0} a^{-4} + \Omega_{\Lambda,0} + \Omega_{k,0} a^{-2})$

- Derived parameters: σ_8 \star
 - How clumpy is the Universe?

Observational basis:

- Abundances of light elements

Cosmological probes of dark energy

Dark energy and cosmological parameters can be probed in several ways:

- ★ Type la supernovae
- ★ Abundance of galaxy clusters
- ★ Baryon acoustic oscillations (BAO)
- ★ Galaxy clustering
- ★ Weak lensing
- ★ Strong lensing time delays
- ★ Multi-messenger GW astronomy

Two types of probes:

- Geometrical
- Evolution

Cosmological probes of dark energy

Galaxy clustering measurements, $w(\theta)$

- Correlates position position of lens galaxies
- Sensitive to Ω_m , but degeneracies with galaxy bias and σ_8

Idea: combine with weak lensing measurements:

- Cosmic-shear, $\xi_{\pm}(\theta)$: correlates shapes shapes of source galaxies
- Galaxy-galaxy lensing, $\gamma_t(\theta)$: correlates positions of lens galaxies shapes of source galaxies

Combinations:

- $w(\theta) + \gamma_t(\theta) \rightarrow 2 \times 2$ pt probe
- $w(\theta) + \gamma_t(\theta) + \xi_{\pm}(\theta) \rightarrow 3 \times 2pt$ probe

The large-scale structure of the Universe: galaxy clustering....

Two-point angular correlation function

- Photometric surveys \Rightarrow uncertainty in radial distance \rightarrow project in 2D bins
- Projected density contrast:

$$\tilde{\delta}_{G}\left(\vec{\theta}\right) = \int dz \,\phi^{i}(z) \,\delta_{G}\left(\vec{\theta}, z\right), \quad \delta(\vec{r}) \equiv \frac{\rho(\vec{r})}{\bar{\rho}} - 1$$

• Radial selection function:

$$\phi^{i}(z) = \frac{dN_{g}}{dz} \int dz_{survey} P(z|z_{survey}) W^{i}(z_{survey}) = n_{g}^{i}(z)$$

Two-point angular correlation function

- Photometric surveys \Rightarrow uncertainty in radial distance \rightarrow project in 2D bins
- Projected density contrast:

$$\tilde{\delta}_{G}\left(\vec{\theta}\right) = \int dz \,\phi^{i}(z) \,\delta_{G}\left(\vec{\theta}, z\right), \quad \delta(\vec{r}) \equiv \frac{\rho(\vec{r})}{\bar{\rho}} - 1$$

• Radial selection function:

$$\phi^{i}(z) = \frac{dN_{g}}{dz} \int dz_{survey} P(z|z_{survey}) W^{i}(z_{survey}) = n_{g}^{i}(z)$$

- Correlation on the 2D sphere $\rightarrow w(\theta) = \left\langle \tilde{\delta}_G(\vec{\theta}_1) \ \tilde{\delta}_G(\vec{\theta}_2) \right\rangle$
- Access to $\delta_G \rightarrow$ biased tracer of matter $\Rightarrow \delta_m = b \ \delta_G \rightarrow$ linear galaxy bias
- We measure the galaxy correlation function $\rightarrow w_m(\theta) = b^2 w_G(\theta)$

Two-point angular correlation function

Photometric surveys and the Dark Energy Survey....

Photometric surveys

- Two main ways of surveys:
 - Spectroscopic (eBOSS, DESI....): great redshifts but "lower" statistics (time consuming)
 - Photometric (DES, LSST, Euclid, PAUS, J-PAS....): only photometric redshift estimation but huge statistics
- In both cases, we observe the flux emitted by a source: $F_{v} = \left| \frac{erg}{s \cdot cm^{2} \cdot Hz} \right| = [Jy]$
- How bright is an object at a given λ ? \rightarrow Magnitudes: $m_{AB} = -2.5 \log(F_{\nu}) 48.6$
- In the case of photometry, we measure fluxes through filters:
 - Narrow band filters (PAUS, J-PAS)
 - Broad band filters (DES, LSST....)

Flux in # photons: $F_{filter}^{obs} \propto \int F_{\nu}(\lambda) \cdot S_{filter}(\lambda) \frac{d\lambda}{h\lambda} \rightarrow m_{filter}^{obs}$

The Dark Energy Survey (DES)

- Photometric galaxy survey
- Goal = tight constraints on the nature of dark energy
- Combination of techniques on the same experiment:
 - Expansion and geometry: type Ia SNe and BAO
 - Matter content and structure: galaxy clustering, weak lensing and counts of clusters

 $2 \times 2pt$

- Combination with external data (CMB and low-redshift)
- Main cosmology results $\rightarrow 3 \times 2pt = \xi_{\pm}(\theta) + w(\theta) + \gamma_t(\theta)$

DECam and the Victor Blanco 4 m Telescope

Dark Energy Camera (DECam):

- 570 megapixel camera
- 74 CCDs in hexagonal pattern
- CCDs optimised for red and NIR

- FoV ~ 3 deg^2 (~ 14 full Moons)
- Five broad band photometric filters: grizY

https://www.darkenergysurvey.org/ the-des-project/instrument/

DECam and the Victor Blanco 4 m Telescope

Victor Blanco 4 m Telescope:

- Placed at Cerro Tololo Inter-American Observatory (CTIO), Chile
- 4 m primary mirror and equatorial mount
- DECam mounted at prime focus

Survey strategy

Period	From	to	Area $[deg^2]$	Depth (<i>i</i> -band)	# objects
SV	Nov. 2012	Feb. 2013	~ 250	23.68	$25\mathrm{M}$
Y1	Aug. 2013	Feb. 2014	1800	23.29	$\sim 137 \mathrm{M}$
Y3	Aug. 2013	Feb. 2016	5000	23.44	$\sim 399 \mathrm{M}$
Y6	Aug. 2013	Jan. 2019	5000	23.80	691M

• Wide-area survey covers 5000 deg^2 of the Southern Hemisphere

- \odot Footprint \rightarrow avoid Milky Way plane + overlap with SPT and Stripe 82 (SDSS)
- Each part of the footprint observed 10 times in each band: 90 s griz and 45 s Y
- We use the first three years of data (DES-Y3) \rightarrow ~ 5000 deg² covered
- Deep survey (time domain):
 - $\odot~10$ regions of the sky $\rightarrow~27~deg^2$
 - Six-nights intervals in *griz* –bands
 - Greater depths and thousands of supernovae

Survey strategy

Sevilla-Noarbe et al. 2021

DES-Y3 data

The lens galaxy samples used in DES-Y3 are based on the Y3-Gold catalogue (Sevilla-Noarbe et al. 2021) $\rightarrow \sim 400$ M objects over $\sim 5000 \text{ deg}^2$ and depth i = 23.0

- MagLim sample \rightarrow fiducial sample (Porredon et al. 2021):
 - Magnitude limited sample. Optimised for cosmological analyses
 - \circ Photometric redshifts \rightarrow Directional Neighbourhood Fitting (DNF) photo-z code
 - Selection:
 - $i < 4 \cdot z_{photo} + 18$
 - *i* > 17.5

- $z_{photo} = [0.20, 0.40, 0.55, 0.70, 0.85, 0.95, 1.05]$ • ~ 11 M galaxies
- redMaGiC sample \rightarrow secondary sample (Rozo, Rykoff et al. 2016):
 - \circ Selection of LRGs $\circ \sim 3$ M galaxies
 - \circ High-quality photo-z \rightarrow redMaGiC algorithm
 - $\circ z_{photo} = [0.15, 0.35, 0.50, 0.65, 0.80, 0.90]$

DES-Y3 results on galaxy clustering and cosmological parameters....

DES-Y3 galaxy clustering and $3 \times 2pt$

- $w(\theta) \to 3 \times 2pt \Rightarrow \{w(\theta), \gamma_t(\theta), \xi_{\pm}(\theta)\} \text{ and } 2 \times 2pt \Rightarrow \{w(\theta), \gamma_t(\theta)\}$
- Covariance for $3\times 2pt$ and $2\times 2pt$ includes the systematic terms derived from the clustering analysis
- Two cosmological models are fitted:
 - Flat ΛCDM → $Ω_m$, $Ω_b$, $Ω_v h^2$, h, A_s , n_s
 - $\circ \text{ wCDM} \rightarrow \Omega_m, \Omega_b, \Omega_v h^2, h, A_s, n_s, w$
 - 25 nuisance parameters
- DES-Y3 fiducial results \Rightarrow MagLim first 4 bins
- Additional results with redMaGiC as a robustness check
- Small angular scales excluded to avoid non-linear effects

DES-Y3 results: galaxy clustering

Rodríguez-Monroy et al. 2021

DES-Y3 results: 3×2 pt

 DES-Y3 fiducial ΛCDM cosmology results (mean posterior ±68% C.L.):

 $\Omega_m = 0.339^{+0.032}_{-0.031}$ $\sigma_8 = 0.733^{+0.039}_{-0.049}$ $S_8 = 0.776^{+0.017}_{-0.017}$

- Compatibility of 2 × 2pt and $\xi_{\pm}(\theta)$ probes ensured before combining
- $S/N = 83 \Rightarrow$ factor 2.1 improvement w.r.t. Y1
- Goodness-of-fit PPD p-value = 0.04

DES-Y3 results: 3×2 pt

 DES-Y3 combined analysis with external data (Planck+SNe+BAO+RSD) in ΛCDM:

 $\Omega_m = 0.306^{+0.004}_{-0.005}$ $\sigma_8 = 0.804^{+0.008}_{-0.008}$ $S_8 = 0.812^{+0.008}_{-0.008}$

- Compatibility of the different data sets ensured \rightarrow 1.5 σ difference DES-Y3 Planck
- Most precise constraints to date on these parameters $\rightarrow 1\% 3\%$ in all cosmological parameters

DES-Y3 results: 3×2 pt

• DES-Y3 combined analysis with external data (Planck+SNe+BAO+RSD) in *w*CDM:

 $\Omega_m = 0.302^{+0.006}_{-0.006}$ $w = -1.031^{+0.030}_{-0.027}$ $S_8 = 0.812^{+0.008}_{-0.008}$

- Bayes factor, $R = 7.8 \Rightarrow$ full joint data analysis has no preference for wCDM over Λ CDM
- This is the most powerful and precise test for the standard cosmological model to date

Impact of observational systematics

Observing conditions can bias cosmological results remarkably

Systematic effects on galaxy clustering....

Systematic effects on galaxy clustering

- Systematic effects in cosmology surveys = non-cosmological fluctuations in n_{gal} and the galaxy properties
- Main sources of systematic uncertainty in galaxy clustering with DES data:
 - \circ Photometric redshift estimation
 - The width, shape and mean of $n_g^i(z)$ can alter the clustering signal
 - We marginalise over bias, Δz^i , and width, σ_z^i , uncertainties on $n_g^i(z)$:

$$n_g^i(z) \to n_g^i(z - \Delta z^i)$$
$$n_g^i(z) \to n_g^i(\sigma_z^i [z - \langle z \rangle] + \langle z \rangle)$$

• Observational systematics

Correcting for observing conditions

- Several ways of dealing with contamination:
 - Act at the $w(\theta)$ (or other statistics / estimators) level
 - Act at the map level (density field, shear field, etc)
 - $\,\circ\,$ Modify the randoms used by the estimators
- Many methods employ template maps of potential contaminants
 - $\ensuremath{\circ}$ Associated risks:
 - Using all maps can lead to overcorrection
 - Manually selecting them can exclude contaminants, leading to undercorrection
 - $\circ~$ Intermediate solution:
 - Study correlation between template maps
 - Data-driven selection \rightarrow take into account the preferences of the data
 - DES-Y3 methods: *ISD, ENet* (and *NN-weights*)

Observational systematics

- Three important sources of systematic:
 - o Observing conditions
 - Examples: seeing, airmass, sky brightness, error on the sky brightness
 - Survey properties
 - Examples: exposure time, survey depth, photometric calibrations
 - Astrophysical foregrounds
 - Stellar density:
 - □ Stars identified as galaxies
 - □ Bright stars causing obscuration
 - Dust extinction

SP map	Units	Statistics	
airmass	Ø	WMEAN, MIN, MAX	
fwhm	arcsec	WMEAN, MIN, MAX	
fwhm_fluxrad	arcsec	WMEAN, MIN, MAX	
exptime	seconds	SUM	
t_eff	Ø	WMEAN, MIN, MAX	
$t_eff_exptime$	seconds	SUM	
skybrite	electrons/CCD pixel	WMEAN	
skyvar	$(\text{electros/CCD pixel})^2$	WMEAN, MIN, MAX	
skyvar_sqrt	electrons/CCD pixel	WMEAN	
skyvar_uncert	electrons/ s \cdot coadd pixel		
sigma_mag_zero	mag	QSUM	
fgcm_gry	mag	WMEAN, MIN	
maglim	mag		
sof_depth	mag		
$magauto_depth$	mag		
stars_1620	$\# ext{ stars}$		
stellar_dens	$\# \text{ stars/deg}^2$		
sfd98	mag		

Observational systematics

- Three important sources of systematic:
 - Observing conditions
 - Survey properties
 - Astrophysical foregrounds
- Characterisation of systematic effects:
 - \circ Solution \rightarrow Survey property (SP) maps:
 - HEALPix maps
 - Track spatial variations of a statistic of the imaging conditions across the sky
 - $\circ~$ We work at $N_{side}=4096$ and 512, after applying the angular mask

Survey property maps and correlations

- Stacking of images ⇒ we need to use a summary statistic. Several statistics available for some quantities → 26 quantities
- We have 4 photometric bands: griz (not using Y band)
- 3 astrophysical foreground maps considered
- In total: $26 \times 4 + 3 = 107$ SP maps available for DES-Y3
- However, many of these maps are correlated
- We wish to reduce the number of SP maps
 - $\circ~$ Optimise the decontamination process
 - $\,\circ\,$ Using too many maps can lead to overcorrection

Survey property maps and correlations

- Stacking of images ⇒ we need to use a summary statistic. Several statistics available for some quantities → 26 quantities
- We have 4 photometric bands: griz (not using Y band)
- 3 astrophysical foreground maps considered
- In total: $26 \times 4 + 3 = 107$ SP maps available for DES-Y3
- However, many of these maps are correlated
- We wish to reduce the number of SP maps
- We use two different SP map bases
 - O Standard (STD) basis → STD maps (original maps)
 - Principal component (PC) basis \rightarrow PC maps
- We perform different dimensionality reductions in these two SP map bases

- STD maps = original SP maps
- How can we reduce their number?
 - We can automatically exclude some STD maps (*maglim*, *magauto_depth* and *stars_1620*)
 - \circ Idea \rightarrow identify SP map "families"
 - $\circ\,$ STD maps corresponding to the same physical magnitude form families
 - To define these families and to identify further correlations, we use the Pearson's correlation coefficient

Representative STD maps: *STD34*

43

PC maps selection: PC<50

- We use the 107 STD maps \Rightarrow 107 PC maps
- We verify that there are no significant diversions from linearity
- Now it is possible to reduce the number of PC maps

PC maps selection: PC<50

- We use the 107 STD maps \Rightarrow 107 PC maps
- We verify that there are no significant diversions from linearity
- Now it is possible to reduce the number of PC maps
- We retain the 50 first PC maps $\rightarrow \sim 98\%$ accumulated variance
- For DES-Y3 galaxy clustering and $3 \times 2pt$ analysis:
 - \odot PC<50 is the fiducial set of SP maps for systematics mitigation
 - STD34 maps are also used as a cross-check and as robustness test
 - Robustness of both SP map bases and selections is later tested on simulations and data

Methods for observational systematics mitigation...

Systematics mitigation methods

For the DES-Y3 galaxy clustering analysis we have considered three different methods for observational systematics mitigation:

- Iterative Systematics Decontamination, *ISD* (Elvin-Poole et al. 2017, Rodríguez-Monroy et al. 2021):
 - Fiducial method of DES-Y3 analysis
 - Thoroughly validated
- Elastic Net regularisation, *ENet* (Weaverdyck et al. 2020):
 - $\,\circ\,$ Alternative method for systematics decontamination
 - Employed for validation and systematic uncertainty estimation
 - Thoroughly validated (with Y1 data)
- Neural net weights, *NN-weights* (Rezaie et al. 2020):
 - Method employed as an additional cross-check
 - $\,\circ\,$ Less validated yet

Iterative Systematics Decontamination, *ISD*

- DES-Y3 fiducial method for systematics decontamination → ISD
- Organised as iterative pipeline
- Evaluates correlation between observed galaxy number density and SP map values
- Three main inputs:
 - Galaxy sample to be decontaminated
 - o List of SP maps
 - Set of mock galaxy catalogues: log-normal mocks
- Log-normal mocks:
 - $\,\circ\,$ Chance correlations can result in overcorrection
 - O Solution → compute the correlation between SP maps and simulated realisations of the same power spectrum
 - $\,\circ\,$ Also used for validation tests

ISD: iterative pipeline

- ISD identifies the most contaminant SP map and corrects for it step-wise
- Steps:
 - 1. Identify the SP map that causes the most significant impact
 - \succ Evaluate galaxy number density, n_{gal} , as function of SP map values
 - \succ We call this relation *1D relation*. For a given SP map, s_1 :
 - I. Bin its values. We employ an equal area binning scheme
 - II. Identify the pixels, p, on the sky such that $s_1^p \in bin_{SP}$
 - III. Calculate average number density, \bar{n}_{gal}^{i} , on those regions

SP map — Value distribution

Value distribution

Equal area SP bins on the sky

Galaxy number density Equal area SP bins on the sky

ISD: iterative pipeline

• ISD identifies the most contaminant SP map and corrects for it step-wise

• Steps:

- 1. Identify the SP map that causes the most significant impact
 - \succ Evaluate galaxy number density, n_{gal} , as function of SP map values
 - \succ We call this relation *1D relation*. For a given SP map, s_1 :
 - Bin its values. We employ an equal area binning scheme
 - II. Identify the pixels, p, on the sky such that $s_1^p \in bin_{SP}$
 - III. Calculate average number density, \bar{n}_{gal}^{i} , on those regions

Evaluate significance of the contamination

Significance of the impact of an SP map, S_{1D}

- We need to quantify the level of impact of an SP map, s_1 , on the data
- To do it, we compute the 1D relation $\frac{n_o^i(s_1^i)}{\langle n_o \rangle}$, $i = 1, ..., N_{bins}^{1D}$
- We fit this relation to: • Null test: $\frac{n_o^i(s_1^i)}{\langle n_o \rangle} = 1 \quad \forall \ s_1^i \rightarrow \chi^2_{null}$ • Model: $\frac{n_o^i(s_1^i)}{\langle n_o \rangle} = m \ s_1^i + c \rightarrow \chi^2_{model}$
- Level of impact on the data:

$$\Delta \chi^2 = \chi^2_{null} - \chi^2_{model}$$

Significance of the impact of an SP map, S_{1D}

- $\Delta \chi^2$ tells nothing about the significance of the contamination
- A non-zero signal can simply be due to chance correlations
- Compute $\Delta \chi^2_{mock}$ for s_1 with respect to 1000 mocks
- Obtain $\Delta \chi^2(68)$

Significance of the impact of an SP map, S_{1D}

- $\Delta \chi^2$ tells nothing about the significance of the contamination
- A non-zero signal can simply be due to chance correlations
- Compute $\Delta \chi^2_{mock}$ for s_1 with respect to 1000 mocks
- Obtain $\Delta \chi^2(68)$
- We define the significance of the contamination as

$$S_{1D} = \frac{\Delta \chi^2}{\Delta \chi^2 (68)}$$

- Then, an SP map is considered to be significantly contaminant if $S_{1D} > T_{1D}$
- The significance threshold, T_{1D} , is fixed beforehand
- Our fiducial value is $T_{1D} = 2$

ISD: iterative pipeline

• ISD identifies the most contaminant SP map and corrects for it step-wise

• Steps:

- 1. Identify the SP map that causes the most significant impact
- 2. Obtain a weight map to correct for the impact of that SP map
 - $\succ s_1$ identified as the most contaminant SP map

 \succ Calculate weight map, w_1 , defined as

$$w_1 \equiv \frac{1}{F(s_1)}$$

 \succ $F(s_1)$ is fitted to the 1D relation of s_1

 $F(s) = -\begin{cases} m\sqrt{s} + c & \text{if } s = t_eff_exptime, skybrite \text{ or } skyvar_uncert \\ ms + c & \text{if } s = any \text{ other STD map and all PC maps} \end{cases}$

 $\succ w_1$ is normalised such that $\overline{w}_1 = 1$

ISD: iterative pipeline

• ISD identifies the most contaminant SP map and corrects for it step-wise

• Steps:

- 1. Identify the SP map that causes the most significant impact
- 2. Obtain a weight map to correct for the impact of that SP map
- 3. Apply the weight map to the data
 - > The observed number of galaxies at pixel p, N_o^p , is re-scaled as

$$N_o^p \to N_d^p = w_1^p \cdot N_o^p$$

> We do this at $N_{side} = 4096$

Correction of the data

ISD: iterative pipeline

• ISD identifies the most contaminant SP map and corrects for it step-wise

• Steps:

- 1. Identify the SP map that causes the most significant impact
- 2. Obtain a weight map to correct for the impact of that SP map
- 3. Apply the weight map to the data
- 4. Re-evaluate until the contamination is lower than a pre-fixed threshold
 - > Iteration 0: evaluate S_{1D} of all SP maps + correct for s_1
 - ➢ Iteration 1: go back to step 1 ⇒ s_2 labelled as most contaminating SP map → obtain weight map w_2 → apply to the data
 - > Repeat N times (N iterations) until all SP maps have $S_{1D} \leq T_{1D}$

 \succ Final weight map, w_T , is

$$w_T = \prod_{i=1}^{N} w_i$$
, with $\overline{w}_T = 1$

ISD: iterative pipeline

Elastic Net regularisation, *ENet*

- 1D marginals \rightarrow contamination could be missed if weakly distributed across maps
- Multilinear fit \rightarrow fit all SP maps and obtained contamination amplitudes, α_i
- High number of SP maps ⇒ higher risk of overcorrection (overfitting)
- Solution \rightarrow Elastic net (ENet) regularisation (LASSO+ridge):
 - Minimise loss function: $Loss = \frac{1}{2N_{pix}} \|\delta_{obs} S\alpha\|_2^2 + \lambda_1 \|\alpha\|_1 + \frac{\lambda_2}{2} \|\alpha\|_2^2$
 - \circ LASSO (λ_1) → penalises non-zero α_i ⇒ favours reduction of SP maps
 - Ridge (λ_2) → penalises correlation between maps
- Multilinear fit \rightarrow less sensitive to SP basis
- Different configurations to both galaxy samples ($N_{side} = 512$). We use ENet for:
 - Weights to contaminate mocks
 - Evaluate difference between methods

Systematic terms to the covariance

Validation of the weights and robustness tests....

Weights validation

- Systematics mitigation ⇒ remove non-cosmological signal
- However, the correction methods can induce biases on the recovered $w(\theta)$
 - Undercorrection
 - Overcorrection
- Therefore, it is necessary to perform an exhaustive validation process
- Elements of the validation process:
 - Simulations:
 - Uncontaminated mocks: same log-normal mocks used for S_{1D}
 - Contaminated mocks: mocks that incorporate contamination detected on the data
 - Decontaminated mocks: mocks that undergo the decontamination process

Weights validation

- Systematics mitigation ⇒ remove non-cosmological signal
- However, the correction methods can induce biases on the recovered $w(\theta)$
 - Undercorrection
 - Overcorrection
- Therefore, it is necessary to perform an exhaustive validation process
- Elements of the validation process:
 - \circ Simulations
 - Criterion to quantify the impact of the bias: $\chi^2 > 3 \Rightarrow$ marginalise over it / account for it
 - $\,\circ\,$ Definition of the biases and tests to detect them
 - Procedure to account for the bias: systematic terms to the covariance

- We wish to have realisations of the Universe affected by contamination
- Idea \rightarrow use the weight maps to contaminate log-normal mocks:

$$N_t^p \to N_c^p = N_t^p \cdot \frac{1}{w_T^p}$$

- We generate contaminated log-normal mocks:
 - \circ We can run a decontamination method on them \Rightarrow Decontaminated mocks

- We wish to have realisations of the Universe affected by contamination
- Idea \rightarrow use the weight maps to contaminate log-normal mocks:

$$N_t^p \to N_c^p = N_t^p \cdot \frac{1}{w_T^p}$$

- We generate contaminated log-normal mocks
- Same method to contaminate and decontaminate ⇒ potential flaw of the validation:
 We test sensitivity to forms of contamination we know a priori we are sensitive to

- We wish to have realisations of the Universe affected by contamination
- Idea \rightarrow use the weight maps to contaminate log-normal mocks:

$$N_t^p \to N_c^p = N_t^p \cdot \frac{1}{w_T^p}$$

- We generate contaminated log-normal mocks
- Same method to contaminate and decontaminate \Rightarrow potential flaw of the validation
- Solution: contaminate with weights from ENet and decontaminate with ISD
 - $\,\circ\,$ Both methods determine the level of contamination in different ways
 - $\,\circ\,$ Avoid blind spots in the validation \rightarrow unveil biases

- We generate 400 ENet-STD107 contaminated mocks for both MagLim and redMaGiC
- Verify that the mocks reproduce the contamination of the data

False correction bias

- Chance correlations, i.e. the structure of an SP map resembling that of the data, can lead to overcorrection
- Large number of SP maps and strict T_{1D} increase probabilities of chance correlations
- Overcorrection ⇒ remove actual cosmological structure
- We use N = 400 uncontaminated mocks
- We run ISD on these mocks with configurations ISD-PC<50 and ISD-STD34
- False correction bias estimator:

$$w_{f.c.bias}^{T_{1D}}(\theta) = \frac{1}{N} \left(\sum_{i=1}^{N} w_{w,unc,i}^{T_{1D}} - \sum_{j=1}^{N} w_{unc,j} \right) (\theta)$$

False correction bias

Error bars contain systematic contribution (as we will explain)

Residual systematic bias

- Unidentified contaminating SP maps could lead to undercorrection. When using ISD:
 - \circ T_{1D} is too high (too relaxed)
 - Low-significance linear combinations of SP maps (due to marginalisation)
- We use N = 400 ENet contaminated mocks:
 - Aggressive level of contamination with ENet-STD107 weights
 - $\,\circ\,$ Imprint modes of contamination to which ISD may not be sensitive
 - $\,\circ\,$ Combining two methods \Rightarrow additional level of robustness, avoiding blind spots
- We run ISD on these mocks with configurations ISD-PC<50 and ISD-STD34
- Residual systematic bias estimator:

$$w_{r.s.bias}^{T_{1D}}(\theta) = \frac{1}{N} \left(\sum_{i=1}^{N} w_{dec,i}^{T_{1D}} - \sum_{j=1}^{N} w_{unc,j} \right) (\theta)$$

Residual systematic bias

Error bars contain systematic contribution (as we will explain)

Systematic terms to the covariance

Account for systematic uncertainties = modify covariance matrix \rightarrow systematic contribution to the error budget on $w(\theta)$

Rodríguez-Monroy et al. 2021

Impact on parameter estimation

- Finally, we wish to check the impact of the biases on the estimation of cosmological parameters
- We employ as data vectors the mean of three different sets of 400 $w(\theta)$:
 - $\circ \overline{w}_{unc}(\theta)$ (uncontaminated mocks)
 - $\circ \overline{w}_{w,unc}(\theta)$ (decontaminated mocks from false correction bias test)
 - $\circ \overline{w}_{dec}(\theta)$ (decontaminated mocks from residual systematic bias test)
- Systematic effects \rightarrow impact on galaxy clustering amplitude

Impact on parameter estimation

Additional robustness tests

- After unblinding of the redMaGiC sample an inconsistency between the corrected amplitude of $w(\theta)$ and that predicted by weak lensing
- This translates into a decorrelation of the galaxy bias measured by $w(\theta)$ and $\gamma_t(\theta)$
- Observational systematics raise $w(\theta) \Rightarrow$ further investigate from this point of view
- Additional tests:
 - \circ ISD-STD103
 - ISD-PC107 (results in overcorrection)
 - ENet-PC<50
 - NN-weights (only for redMaGiC)
 - Assumption of linearity $\rightarrow \chi^2_{null}$
 - ISD with Gaia EDR3 or Planck 2013 maps

- negligible effect on $w(\theta)$

Additional robustness tests

Lessons learned....

Lessons learned

DES-Y3 has been challenging from the point of view of observational systematics. We should apply the lessons learned not only to DES-Y6, but also to similar surveys:

- Know the potential limitations of the method you are employing: linearity assumption, marginalization vs multilinear fit, calibration with simulations
- It is advantageous to have different methods (relying on different assumptions) applied to the same data and to combine them. This allows to
 - $\,\circ\,$ avoid blind spots
 - $\circ\,$ ensure the robustness
 - $\,\circ\,$ obtain systematic uncertainties associated with the choice of method
- Validation on simulations: it is critical to be able to determine the level of different biases that the methods can introduce

Lessons learned

- Know well your SP maps: risk of tracing actual LSS from the data. Especially
 important when the maps are created from the data, e.g., the FWHM from PSF fitting,
 or sky-brightness maps
- Use data-driven methods to identify the contaminants
- Be careful and justify well any pre-selection of SP maps (e.g., correlations between them). More risk on excluding too many maps than on using to many of them
- Different SP bases can help to exclude potential problems with some methods
- External information/tracers as cross-check: other surveys, convergence maps, simulations....
- Use more than one lens galaxy sample: exact same methods, with exact same choices and exact same validation process applied to different galaxy samples
- Importance of a correct systematic mitigation, especially for surveys with a shrinking statistical error → DES-Y6, LSST, Euclid....

Merci beaucoup