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A long time ago, everywhere…. 



★ The Universe came into existence with a rapid expansion from a state of high 
density and temperature → the Big Bang 

★ The Universe expands at an accelerated rate 
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Accelerated expansion of the Universe: dark energy 



★ The Universe came into existence with a rapid expansion from a state of high 
density and temperature → the Big Bang 

★ The Universe expands at an accelerated rate 
★ What is behind this acceleration? 

○ Equation of state of the fluid:    𝑝 = 𝑤 ⋅ 𝜌

○ Acceleration equation:    
ሷ𝑎

𝑎
=

−4𝜋𝐺

3
𝜌 + 3𝑝

○ Dark energy:     𝑤 < −1/3
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Accelerated expansion of the Universe: dark energy 



★ The Universe came into existence with a rapid expansion from a state of high 
density and temperature → the Big Bang 

★ The Universe expands at an accelerated rate 
★ What is behind this acceleration? 
★ Several candidates: 

○ Quintessence:      −1 < 𝑤 < −1/3
○ Phantom dark energy:      𝑤 < −1

★ Other explanations: 
○ Incompleteness of General Relativity at large scales 
○ Primordial magnetic fields 
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Accelerated expansion of the Universe: dark energy 



★ The Universe came into existence with a rapid expansion from a state of high 
density and temperature → the Big Bang 

★ The Universe expands at an accelerated rate 
★ What is behind this acceleration? 
★ Several candidates: 

○ Quintessence:      −1 < 𝑤 < −1/3
○ Phantom dark energy: 𝑤 < −1

★ Other explanations: 
○ Incompleteness of General Relativity at large scales 
○ Primordial magnetic fields 

★ All observations to date suggest that the dark energy is the cosmological 
constant, Λ: 
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Accelerated expansion of the Universe: dark energy 

𝑅𝜇𝜈 −
1

2
𝑔𝜇𝜈𝑅 + 𝑔𝜇𝜈Λ =

8𝜋𝐺

𝑐4
𝑇𝜇𝜈

𝑤 = −1

Λ = 4.24 ± 0.11 ⋅ 10−66 eV2



★ Observational basis: 
○ Accelerated expansion 
○ Cosmic microwave background 

● Observational basis: 
○ Abundances of light elements 
○ Large-scale structure 
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The standard cosmological model, ΛCDM 



★ Observational basis: 
○ Accelerated expansion 
○ Cosmic microwave background 

★ Principal elements: 
○ Cold dark matter (CDM) 
○ Dark energy 
○ Cosmological parameters: 

■ Matter density,  Ω𝑚 = Ω𝑏 + Ω𝑐𝑑𝑚
■ Hubble parameter,  ℎ
■ Amplitude and scale dependence of primordial 

fluctuations, 𝐴𝑠 and  𝑛𝑠
■ Optical depth at reionisation, 𝜏

● Observational basis: 
○ Abundances of light elements 
○ Large-scale structure 
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The standard cosmological model, ΛCDM 

Ω𝑐𝑑𝑚

Ω𝑏

ΩΛ



★ Observational basis: 
○ Accelerated expansion 
○ Cosmic microwave background 

★ Principal elements: 
○ Cold dark matter (CDM) 
○ Dark energy 
○ Cosmological parameters 

★ Rest of the parameters are derived from them 

★ 𝐻2 𝑎 = 𝐻0
2 Ω𝑚,0 𝑎

−3 + Ω𝑟,0 𝑎
−4 + ΩΛ,0 + Ω𝑘,0 𝑎

−2

★ Derived parameters: 𝜎8
○ How clumpy is the Universe? 

● Observational basis: 
○ Abundances of light elements 
○ Large-scale structure 

8 Mpc
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The standard cosmological model, ΛCDM 



Dark energy and cosmological parameters can be probed in several ways: 

★ Type Ia supernovae 
★ Abundance of galaxy clusters 
★ Baryon acoustic oscillations (BAO) 
★ Galaxy clustering 
★ Weak lensing 
★ Strong lensing time delays 
★ Multi-messenger GW astronomy 

Two types of probes: 
★ Geometrical 
★ Evolution 
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Cosmological probes of dark energy 



Cosmological probes of dark energy 
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Galaxy clustering measurements, 𝑤(𝜃)
• Correlates position – position of lens galaxies 
• Sensitive to Ω𝑚 , but degeneracies with galaxy bias and 𝜎8
Idea: combine with weak lensing measurements: 
• Cosmic-shear, 𝜉±(𝜃): correlates shapes – shapes of source galaxies 
• Galaxy-galaxy lensing, 𝛾𝑡 𝜃 : correlates positions of lens galaxies – shapes of source 

galaxies 

Combinations: 
• 𝑤 𝜃 + 𝛾𝑡 𝜃 → 2 × 2pt probe 
• 𝑤 𝜃 + 𝛾𝑡 𝜃 + 𝜉± 𝜃 → 3 × 2pt probe 
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The large-scale structure of the 
Universe: galaxy clustering…. 



Two-point angular correlation function 

• Photometric surveys ⇒ uncertainty in radial distance → project in 2D bins 

• Projected density contrast: 

• Radial selection function: 
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𝜙𝑖 𝑧 =
𝑑𝑁𝑔

𝑑𝑧
න𝑑𝑧𝑠𝑢𝑟𝑣𝑒𝑦 𝑃 𝑧 𝑧𝑠𝑢𝑟𝑣𝑒𝑦 𝑊𝑖(𝑧𝑠𝑢𝑟𝑣𝑒𝑦) = 𝑛𝑔

𝑖 (𝑧)

ሚ𝛿𝐺 Ԧ𝜃 = න𝑑𝑧 𝜙𝑖 𝑧 𝛿𝐺 Ԧ𝜃, 𝑧 , 𝛿 Ԧ𝑟 ≡
𝜌 Ԧ𝑟

ҧ𝜌
− 1



Two-point angular correlation function 

• Photometric surveys ⇒ uncertainty in radial distance → project in 2D bins 

• Projected density contrast: 

• Radial selection function: 

• Correlation on the 2D sphere → 𝑤 𝜃 = ሚ𝛿𝐺( Ԧ𝜃1) ሚ𝛿𝐺( Ԧ𝜃2)

• Access to 𝛿𝐺 → biased tracer of matter ⇒ 𝛿𝑚 = 𝑏 𝛿𝐺 → linear galaxy bias

• We measure the galaxy correlation function → 𝑤𝑚 𝜃 = 𝑏2 𝑤𝐺(𝜃)
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𝜙𝑖 𝑧 =
𝑑𝑁𝑔

𝑑𝑧
න𝑑𝑧𝑠𝑢𝑟𝑣𝑒𝑦 𝑃 𝑧 𝑧𝑠𝑢𝑟𝑣𝑒𝑦 𝑊𝑖(𝑧𝑠𝑢𝑟𝑣𝑒𝑦) = 𝑛𝑔

𝑖 (𝑧)

ሚ𝛿𝐺 Ԧ𝜃 = න𝑑𝑧 𝜙𝑖 𝑧 𝛿𝐺 Ԧ𝜃, 𝑧 , 𝛿 Ԧ𝑟 ≡
𝜌 Ԧ𝑟

ҧ𝜌
− 1
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Two-point angular correlation function 
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Photometric surveys and 
the Dark Energy Survey…. 



• Two main ways of surveys: 
o Spectroscopic (eBOSS, DESI….): great redshifts but “lower” statistics (time consuming) 

o Photometric (DES, LSST, Euclid, PAUS, J-PAS….): only photometric redshift estimation but huge 
statistics 

• In both cases, we observe the flux emitted by a source: 𝐹𝜈 =
𝑒𝑟𝑔

𝑠⋅𝑐𝑚2⋅𝐻𝑧
= 𝐽𝑦

• How bright is an object at a given 𝜆? → Magnitudes: 𝑚𝐴𝐵 = −2.5 log 𝐹𝜈 − 48.6
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Photometric surveys 

• In the case of photometry, we measure fluxes 
through filters: 
o Narrow band filters (PAUS, J-PAS) 

o Broad band filters (DES, LSST….) 

Flux in # photons: 𝐹𝑓𝑖𝑙𝑡𝑒𝑟
𝑜𝑏𝑠 ∝ ∫ 𝐹𝜈 𝜆 ⋅ 𝑆𝑓𝑖𝑙𝑡𝑒𝑟 𝜆

𝑑𝜆

ℎ 𝜆
→ 𝑚𝑓𝑖𝑙𝑡𝑒𝑟

𝑜𝑏𝑠



The Dark Energy Survey (DES) 

• Photometric galaxy survey 

• Goal = tight constraints on the nature of dark energy 

• Combination of techniques on the same experiment: 
o Expansion and geometry: type Ia SNe and BAO 

o Matter content and structure: galaxy clustering, weak lensing and counts of clusters 

o Combination with external data (CMB and low-redshift) 

• Main cosmology results → 3 × 2pt = 𝜉± 𝜃 + 𝑤 𝜃 + 𝛾𝑡(𝜃)

19

2 × 2pt



DECam and the Victor Blanco 4 m Telescope 

Dark Energy Camera (DECam): 

• 570 megapixel camera 

• 74 CCDs in hexagonal pattern 

• CCDs optimised for red and NIR 
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https://www.darkenergysurvey.org/
the-des-project/instrument/

• FoV ∼ 3 deg2 (∼ 14 full Moons) 

• Five broad band photometric filters: grizY



DECam and the Victor Blanco 4 m Telescope 

Victor Blanco 4 m Telescope: 

• Placed at Cerro Tololo Inter-American Observatory (CTIO), Chile  

• 4 m primary mirror and equatorial mount 

• DECam mounted at prime focus 

21



Survey strategy 
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• Wide-area survey covers 5000 deg2 of the Southern Hemisphere 
o Footprint → avoid Milky Way plane + overlap with SPT and Stripe 82 (SDSS) 

o Each part of the footprint observed 10 times in each band: 90 s griz and 45 s Y 
o We use the first three years of data (DES-Y3) →∼ 5000 deg2 covered 

• Deep survey (time domain): 
o 10 regions of the sky → 27 deg2

o Six-nights intervals in griz –bands 

o Greater depths and thousands of supernovae 



Survey strategy 

23Sevilla-Noarbe et al. 2021 



DES-Y3 data 

The lens galaxy samples used in DES-Y3 are based on the Y3-Gold catalogue (Sevilla-Noarbe

et al. 2021) →∼ 400 M objects over ∼5000 deg2 and depth i = 23.0 

• MagLim sample → fiducial sample (Porredon et al. 2021): 
o Magnitude limited sample. Optimised for cosmological analyses 

o Photometric redshifts → Directional Neighbourhood Fitting (DNF) photo-z code 

o Selection: 
▪ i < 4 ⋅ 𝑧𝑝ℎ𝑜𝑡𝑜 + 18

▪ i > 17.5

• redMaGiC sample → secondary sample (Rozo, Rykoff et al. 2016): 
o Selection of LRGs 

o High-quality photo-z → redMaGiC algorithm 

o 𝑧𝑝ℎ𝑜𝑡𝑜 = [0.15, 0.35, 0.50, 0.65, 0.80, 0.90]
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o 𝑧𝑝ℎ𝑜𝑡𝑜 = [0.20, 0.40, 0.55, 0.70, 0.85, 0.95, 1.05]

o ∼ 11 M galaxies 

o ∼ 3 M galaxies 
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DES-Y3 results on galaxy 
clustering and cosmological 
parameters…. 



• 𝑤 𝜃 → 3 × 2pt ⇒ {𝑤 𝜃 , 𝛾𝑡 𝜃 , 𝜉± 𝜃 } and 2 × 2pt ⇒ {𝑤 𝜃 , 𝛾𝑡 𝜃 }

• Covariance for 3 × 2pt and 2 × 2pt includes the systematic terms derived from the 
clustering analysis 

• Two cosmological models are fitted: 
o Flat ΛCDM → Ω𝑚, Ω𝑏, Ω𝜈ℎ

2, ℎ, 𝐴𝑠, 𝑛𝑠
o 𝑤CDM → Ω𝑚, Ω𝑏, Ω𝜈ℎ

2, ℎ, 𝐴𝑠, 𝑛𝑠, 𝑤

o 25 nuisance parameters 

• DES-Y3 fiducial results ⇒ MagLim first 4 bins 

• Additional results with redMaGiC as a robustness check 

• Small angular scales excluded to avoid non-linear effects  

26

DES-Y3 galaxy clustering and 3 × 2pt



DES-Y3 results: galaxy clustering 

27Rodríguez-Monroy et al. 2021 



DES-Y3 results: 3 × 2pt 
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Ω𝑚 = 0.339−0.031
+0.032

𝜎8 = 0.733−0.049
+0.039

𝑆8 = 0.776−0.017
+0.017

• DES-Y3 fiducial ΛCDM cosmology results 
(mean posterior ±68% C.L.): 

• Compatibility of 2 × 2pt and 𝜉±(𝜃) probes 
ensured before combining

• Τ𝑆 𝑁 = 83 ⇒ factor 2.1 improvement w.r.t.
Y1 

• Goodness-of-fit PPD 𝑝-value = 0.04   

DES Collaboration et al. 2021 



DES-Y3 results: 3 × 2pt
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Ω𝑚 = 0.306−0.005
+0.004

𝜎8 = 0.804−0.008
+0.008

𝑆8 = 0.812−0.008
+0.008

• DES-Y3 combined analysis with external 
data (Planck+SNe+BAO+RSD) in ΛCDM: 

• Compatibility of the different data sets 
ensured → 1.5 𝜎 difference DES-Y3 – Planck 

• Most precise constraints to date on these
parameters → 1%− 3% in all cosmological
parameters

DES Collaboration et al. 2021 



DES-Y3 results: 3 × 2pt 
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Ω𝑚 = 0.302−0.006
+0.006

𝑤 = −1.031−0.027
+0.030

𝑆8 = 0.812−0.008
+0.008

• DES-Y3 combined analysis with external 
data (Planck+SNe+BAO+RSD) in 𝑤CDM: 

• Bayes factor, 𝑅 = 7.8 ⇒ full joint data 
analysis has no preference for 𝑤CDM over 
ΛCDM

• This is the most powerful and precise test 
for the standard cosmological model to date 

DES Collaboration et al. 2021 



Impact of observational systematics 

• Observing conditions can bias cosmological results remarkably

31
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Systematic effects on galaxy 
clustering…. 



Systematic effects on galaxy clustering 

• Systematic effects in cosmology surveys = non-cosmological fluctuations in 𝑛𝑔𝑎𝑙 and 

the galaxy properties 

• Main sources of systematic uncertainty in galaxy clustering with DES data: 

o Photometric redshift estimation 

▪ The width, shape and mean of 𝑛𝑔
𝑖 𝑧 can alter the clustering signal 

▪ We marginalise over bias, Δ𝑧𝑖 , and width, 𝜎𝑧
𝑖 , uncertainties on 𝑛𝑔

𝑖 𝑧 : 

o Observational systematics 

33

𝑛𝑔
𝑖 𝑧 → 𝑛𝑔

𝑖 𝑧 − Δ𝑧𝑖

𝑛𝑔
𝑖 𝑧 → 𝑛𝑔

𝑖 𝜎𝑧
𝑖 𝑧 − 𝑧 + 𝑧



Correcting for observing conditions 

• Several ways of dealing with contamination: 
o Act at the 𝑤(𝜃) (or other statistics / estimators) level 

o Act at the map level (density field, shear field, etc) 

o Modify the randoms used by the estimators 

• Many methods employ template maps of potential contaminants 
o Associated risks: 

▪ Using all maps can lead to overcorrection 

▪ Manually selecting them can exclude contaminants, leading to undercorrection

o Intermediate solution: 
▪ Study correlation between template maps 

▪ Data-driven selection → take into account the preferences of the data 

o DES-Y3 methods: ISD, ENet (and NN-weights ) 

34



Observational systematics 

• Three important sources of systematic: 
o Observing conditions 

▪ Examples: seeing, airmass, sky brightness, error 
on the sky brightness 

o Survey properties 
▪ Examples: exposure time, survey depth, 

photometric calibrations 

o Astrophysical foregrounds 
▪ Stellar density: 

❑ Stars identified as galaxies 

❑ Bright stars causing obscuration 

▪ Dust extinction 

35



Observational systematics 

• Three important sources of systematic: 
o Observing conditions 

o Survey properties 

o Astrophysical foregrounds 

• Characterisation of systematic effects: 
o Solution → Survey property (SP) maps: 

o HEALPix maps 

o Track spatial variations of a statistic of the 
imaging conditions across the sky

o We work at 𝑁𝑠𝑖𝑑𝑒 = 4096 and 512, after 
applying the angular mask 

36
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Survey property maps and correlations 

• Stacking of images ⇒ we need to use a summary statistic. Several statistics available 
for some quantities → 26 quantities 

• We have 4 photometric bands: griz (not using Y - band) 

• 3 astrophysical foreground maps considered 

• In total: 26 × 4 + 3 = 107 SP maps available for DES-Y3 

• However, many of these maps are correlated

• We wish to reduce the number of SP maps 
o Optimise the decontamination process 

o Using too many maps can lead to overcorrection 
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Survey property maps and correlations 

• Stacking of images ⇒ we need to use a summary statistic. Several statistics available 
for some quantities → 26 quantities 

• We have 4 photometric bands: griz (not using Y - band) 

• 3 astrophysical foreground maps considered 

• In total: 26 × 4 + 3 = 107 SP maps available for DES-Y3 

• However, many of these maps are correlated

• We wish to reduce the number of SP maps 

• We use two different SP map bases 
o Standard (STD) basis → STD maps (original maps) 

o Principal component (PC) basis → PC maps 

• We perform different dimensionality reductions in these two SP map bases
38



STD maps  

• STD maps = original SP maps 

• How can we reduce their number? 
o We can automatically exclude some STD maps (maglim, magauto_depth and stars_1620 )  
o Idea → identify SP map “families” 

o STD maps corresponding to the same physical magnitude form families 

o To define these families and to identify further correlations, we use the Pearson’s correlation 
coefficient 
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STD maps  
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STD maps  
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STD maps  
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Representative STD maps: STD34 
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PC maps selection: PC<50

• We use the 107 STD maps ⇒ 107 PC maps 

• We verify that there are no significant diversions from linearity 

• Now it is possible to reduce the number of PC maps 
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PC maps selection: PC<50

• We use the 107 STD maps ⇒ 107 PC maps 

• We verify that there are no significant diversions from linearity 

• Now it is possible to reduce the number of PC maps 

• We retain the 50 first PC maps →∼ 98% accumulated variance 

• For DES-Y3 galaxy clustering and 3 × 2pt analysis: 
o PC<50 is the fiducial set of SP maps for systematics mitigation 

o STD34 maps are also used as a cross-check and as robustness test 

o Robustness of both SP map bases and selections is later tested on simulations and data 
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Methods for observational 
systematics mitigation….  



Systematics mitigation methods 

For the DES-Y3 galaxy clustering analysis we have considered three different methods 
for observational systematics mitigation: 

• Iterative Systematics Decontamination, ISD (Elvin-Poole et al. 2017, Rodríguez-Monroy et al. 2021): 
o Fiducial method of DES-Y3 analysis 

o Thoroughly validated 

• Elastic Net regularisation, ENet (Weaverdyck et al. 2020): 
o Alternative method for systematics decontamination 

o Employed for validation and systematic uncertainty estimation 

o Thoroughly validated (with Y1 data) 

• Neural net weights, NN-weights (Rezaie et al. 2020): 
o Method employed as an additional cross-check 

o Less validated yet 
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Iterative Systematics Decontamination, ISD 

• DES-Y3 fiducial method for systematics decontamination → ISD 

• Organised as iterative pipeline 

• Evaluates correlation between observed galaxy number density and SP map values 

• Three main inputs: 
o Galaxy sample to be decontaminated 

o List of SP maps 

o Set of mock galaxy catalogues: log-normal mocks 

• Log-normal mocks: 
o Chance correlations can result in overcorrection 

o Solution → compute the correlation between SP maps and simulated realisations of the same 
power spectrum 

o Also used for validation tests 
48



ISD: iterative pipeline 

• ISD identifies the most contaminant SP map and corrects for it step-wise 

• Steps: 
1. Identify the SP map that causes the most significant impact 

➢ Evaluate galaxy number density, 𝑛𝑔𝑎𝑙 , as function of SP map values 

➢ We call this relation 1D relation. For a given SP map, 𝑠1 : 

I. Bin its values. We employ an equal area binning scheme 

II. Identify the pixels, 𝑝, on the sky such that 𝑠1
𝑝
∈ 𝑏𝑖𝑛𝑆𝑃

III. Calculate average number density, ത𝑛𝑔𝑎𝑙
𝑖 , on those regions 

49



1D relation visually 
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SP map Value distribution 



1D relation visually 
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Value distribution Equal area SP bins 
on the sky



1D relation visually 
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Galaxy number 
density 

Equal area SP bins 
on the sky



1D relation visually 
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ISD: iterative pipeline 

• ISD identifies the most contaminant SP map and corrects for it step-wise 

• Steps: 
1. Identify the SP map that causes the most significant impact 

➢ Evaluate galaxy number density, 𝑛𝑔𝑎𝑙 , as function of SP map values 

➢ We call this relation 1D relation. For a given SP map, 𝑠1 : 

I. Bin its values. We employ an equal area binning scheme 

II. Identify the pixels, 𝑝, on the sky such that 𝑠1
𝑝
∈ 𝑏𝑖𝑛𝑆𝑃

III. Calculate average number density, ത𝑛𝑔𝑎𝑙
𝑖 , on those regions 

➢ Evaluate significance of the contamination 

54



Significance of the impact of an SP map, 𝑆1𝐷
• We need to quantify the level of impact of an SP map, 𝑠1, on the data 

• To do it, we compute the 1D relation 
𝑛𝑜
𝑖 (𝑠1

𝑖 )

𝑛𝑜
, 𝑖 = 1, … , 𝑁𝑏𝑖𝑛𝑠

1𝐷

• We fit this relation to: 

o Null test:  
𝑛𝑜
𝑖 (𝑠1

𝑖 )

𝑛𝑜
= 1 ∀ 𝑠1

𝑖 → 𝜒𝑛𝑢𝑙𝑙
2

o Model:  
𝑛𝑜
𝑖 (𝑠1

𝑖 )

𝑛𝑜
= 𝑚 𝑠1

𝑖 + 𝑐 → 𝜒𝑚𝑜𝑑𝑒𝑙
2
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• Level of impact on the data: 

Δ𝜒2 = 𝜒𝑛𝑢𝑙𝑙
2 − 𝜒𝑚𝑜𝑑𝑒𝑙

2



Significance of the impact of an SP map, 𝑆1𝐷
• Δ𝜒2 tells nothing about the significance of the contamination 

• A non-zero signal can simply be due to chance correlations 

• Compute Δ𝜒𝑚𝑜𝑐𝑘
2 for 𝑠1 with respect to 1000 mocks 

• Obtain Δ𝜒2(68)

56



Significance of the impact of an SP map, 𝑆1𝐷
• Δ𝜒2 tells nothing about the significance of the contamination 

• A non-zero signal can simply be due to chance correlations 

• Compute Δ𝜒𝑚𝑜𝑐𝑘
2 for 𝑠1 with respect to 1000 mocks 

• Obtain Δ𝜒2(68)

• We define the significance of the contamination as 
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𝑆1𝐷 =
Δ𝜒2

Δ𝜒2(68)

• Then, an SP map is considered to be significantly contaminant if 𝑆1𝐷 > 𝑇1𝐷
• The significance threshold, 𝑇1𝐷 , is fixed beforehand 
• Our fiducial value is 𝑇1𝐷 = 2



ISD: iterative pipeline 

• ISD identifies the most contaminant SP map and corrects for it step-wise 

• Steps: 
1. Identify the SP map that causes the most significant impact 

2. Obtain a weight map to correct for the impact of that SP map 
➢ 𝑠1 identified as the most contaminant SP map 
➢ Calculate weight map, 𝑤1, defined as 

𝑤1 ≡
1

𝐹(𝑠1)
➢ 𝐹(𝑠1) is fitted to the 1D relation of 𝑠1

➢ 𝐹 𝑠 =

➢ 𝑤1 is normalised such that ഥ𝑤1 = 1
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𝑚 𝑠 + 𝑐 if  𝑠 = t_eff_exptime, skybrite or skyvar_uncert

𝑚 𝑠 + 𝑐 if  𝑠 = any other STD map and all PC maps 



ISD: iterative pipeline 

• ISD identifies the most contaminant SP map and corrects for it step-wise 

• Steps: 
1. Identify the SP map that causes the most significant impact 

2. Obtain a weight map to correct for the impact of that SP map 

3. Apply the weight map to the data 

➢ The observed number of galaxies at pixel 𝑝, 𝑁𝑜
𝑝
, is re-scaled as 

➢ We do this at 𝑁𝑠𝑖𝑑𝑒 = 4096
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𝑁𝑜
𝑝
→ 𝑁𝑑

𝑝
= 𝑤1

𝑝
⋅ 𝑁𝑜

𝑝



Correction of the data 
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ISD: iterative pipeline 

• ISD identifies the most contaminant SP map and corrects for it step-wise 

• Steps: 
1. Identify the SP map that causes the most significant impact 

2. Obtain a weight map to correct for the impact of that SP map 

3. Apply the weight map to the data 

4. Re-evaluate until the contamination is lower than a pre-fixed threshold 

➢ Iteration 0: evaluate 𝑆1𝐷 of all SP maps + correct for 𝑠1
➢ Iteration 1: go back to step 1 ⇒ 𝑠2 labelled as most contaminating SP map → obtain weight 

map 𝑤2 → apply to the data 

➢ Repeat 𝑁 times (𝑁 iterations) until all SP maps have 𝑆1𝐷 ≤ 𝑇1𝐷
➢ Final weight map, 𝑤𝑇 , is  
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𝑤𝑇 =ෑ

𝑖=1

𝑁

𝑤𝑖 , with ഥ𝑤𝑇 = 1



ISD: iterative pipeline 

62



Elastic Net regularisation, ENet
• 1D marginals → contamination could be missed if weakly distributed across maps 

• Multilinear fit → fit all SP maps and obtained contamination amplitudes, 𝛼𝑖
• High number of SP maps ⇒ higher risk of overcorrection (overfitting) 

• Solution → Elastic net (ENet) regularisation (LASSO+ridge): 

o Minimise loss function: 𝐿𝑜𝑠𝑠 =
1

2 𝑁𝑝𝑖𝑥
𝛿𝑜𝑏𝑠 − 𝑆𝛼 2

2 + 𝜆1 𝛼 1 +
𝜆2

2
𝛼 2

2

o LASSO (𝜆1) → penalises non-zero 𝛼𝑖 ⇒ favours reduction of SP maps 

o Ridge (𝜆2) → penalises correlation between maps 

• Multilinear fit → less sensitive to SP basis 

• Different configurations to both galaxy samples (𝑁𝑠𝑖𝑑𝑒 = 512). We use ENet for: 
o Weights to contaminate mocks 

o Evaluate difference between methods 
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Systematic terms 
to the covariance 
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Validation of the weights and 
robustness tests…. 



Weights validation 

• Systematics mitigation ⇒ remove non-cosmological signal 

• However, the correction methods can induce biases on the recovered 𝑤(𝜃)
o Undercorrection

o Overcorrection 

• Therefore, it is necessary to perform an exhaustive validation process 

• Elements of the validation process: 
o Simulations: 

▪ Uncontaminated mocks: same log-normal mocks used for 𝑆1𝐷
▪ Contaminated mocks: mocks that incorporate contamination detected on the data  

▪ Decontaminated mocks: mocks that undergo the decontamination process  
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Weights validation 

• Systematics mitigation ⇒ remove non-cosmological signal 

• However, the correction methods can induce biases on the recovered 𝑤(𝜃)
o Undercorrection

o Overcorrection 

• Therefore, it is necessary to perform an exhaustive validation process 

• Elements of the validation process: 
o Simulations 

o Criterion to quantify the impact of the bias: 𝜒2 > 3 ⇒ marginalise over it / account for it 

o Definition of the biases and tests to detect them 

o Procedure to account for the bias: systematic terms to the covariance 
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Contaminated mocks 
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𝑁𝑡
𝑝
→ 𝑁𝑐

𝑝
= 𝑁𝑡

𝑝
⋅
1

𝑤𝑇
𝑝

• We generate contaminated log-normal mocks: 
o We can run a decontamination method on them ⇒ Decontaminated mocks 

• We wish to have realisations of the Universe affected by contamination 

• Idea → use the weight maps to contaminate log-normal mocks: 



Contaminated mocks 

68

𝑁𝑡
𝑝
→ 𝑁𝑐

𝑝
= 𝑁𝑡

𝑝
⋅
1

𝑤𝑇
𝑝

• We generate contaminated log-normal mocks 

• Same method to contaminate and decontaminate ⇒ potential flaw of the validation: 
o We test sensitivity to forms of contamination we know a priori we are sensitive to 

• We wish to have realisations of the Universe affected by contamination 

• Idea → use the weight maps to contaminate log-normal mocks: 



Contaminated mocks 
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𝑁𝑡
𝑝
→ 𝑁𝑐

𝑝
= 𝑁𝑡

𝑝
⋅
1

𝑤𝑇
𝑝

• We generate contaminated log-normal mocks 

• Same method to contaminate and decontaminate ⇒ potential flaw of the validation 

• Solution: contaminate with weights from ENet and decontaminate with ISD 
o Both methods determine the level of contamination in different ways 

o Avoid blind spots in the validation → unveil biases 

• We wish to have realisations of the Universe affected by contamination 

• Idea → use the weight maps to contaminate log-normal mocks: 



Contaminated mocks 

• We generate 400 ENet-STD107 contaminated mocks for both MagLim and redMaGiC

• Verify that the mocks reproduce the contamination of the data 
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𝝌𝟐 = 𝟓. 𝟐𝟕,𝑵𝒅𝒐𝒇 = 𝟏𝟎 𝝌𝟐 = 𝟑. 𝟔𝟓,𝑵𝒅𝒐𝒇 = 𝟏𝟎



False correction bias 

• Chance correlations, i.e. the structure of an SP map resembling that of the data, can 
lead to overcorrection 

• Large number of SP maps and strict 𝑇1𝐷 increase probabilities of chance correlations 

• Overcorrection ⇒ remove actual cosmological structure 

• We use 𝑁 = 400 uncontaminated mocks 

• We run ISD on these mocks with configurations ISD-PC<50 and ISD-STD34 

• False correction bias estimator: 
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𝑤𝑓.𝑐.𝑏𝑖𝑎𝑠
𝑇1𝐷 𝜃 =

1

𝑁
෍

𝑖=1

𝑁

𝑤𝑤,𝑢𝑛𝑐,𝑖
𝑇1𝐷 −෍

𝑗=1

𝑁

𝑤𝑢𝑛𝑐,𝑗 (𝜃)



False correction bias 
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Error bars contain systematic contribution (as we will explain) 



Residual systematic bias 

• Unidentified contaminating SP maps could lead to undercorrection. When using ISD: 
o 𝑇1𝐷 is too high (too relaxed) 

o Low-significance linear combinations of SP maps (due to marginalisation) 

• We use 𝑁 = 400 ENet contaminated mocks: 
o Aggressive level of contamination with ENet-STD107 weights 

o Imprint modes of contamination to which ISD may not be sensitive 

o Combining two methods ⇒ additional level of robustness, avoiding blind spots 

• We run ISD on these mocks with configurations ISD-PC<50 and ISD-STD34 

• Residual systematic bias estimator: 
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𝑤𝑟.𝑠.𝑏𝑖𝑎𝑠
𝑇1𝐷 𝜃 =

1

𝑁
෍

𝑖=1

𝑁

𝑤𝑑𝑒𝑐,𝑖
𝑇1𝐷 −෍

𝑗=1

𝑁

𝑤𝑢𝑛𝑐,𝑗 (𝜃)



Residual systematic bias 
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Error bars contain systematic contribution (as we will explain) 



Systematic terms to the covariance 

75Rodríguez-Monroy et al. 2021 

Account for systematic uncertainties = modify covariance matrix → systematic contribution to the 
error budget on 𝑤(𝜃)



Impact on parameter estimation 

• Finally, we wish to check the impact of the biases on the estimation of cosmological 
parameters 

• We employ as data vectors the mean of three different sets of 400 𝑤(𝜃): 
o ഥ𝑤𝑢𝑛𝑐(𝜃) (uncontaminated mocks) 

o ഥ𝑤𝑤,𝑢𝑛𝑐(𝜃) (decontaminated mocks from false correction bias test) 

o ഥ𝑤𝑑𝑒𝑐(𝜃) (decontaminated mocks from residual systematic bias test) 

• Systematic effects → impact on galaxy clustering amplitude 
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Impact on parameter estimation 
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Bin = 1 Bin = 1



Additional robustness tests 

• After unblinding of the redMaGiC sample an inconsistency between the corrected 
amplitude of 𝑤(𝜃) and that predicted by weak lensing 

• This translates into a decorrelation of the galaxy bias measured by 𝑤 𝜃 and 𝛾𝑡(𝜃)

• Observational systematics raise 𝑤 𝜃 ⇒ further investigate from this point of view 

• Additional tests: 
o ISD-STD103 

o ISD-PC107 (results in overcorrection) 

o ENet-PC<50 

o NN-weights (only for redMaGiC) 

o Assumption of linearity → 𝜒𝑛𝑢𝑙𝑙
2

o ISD with Gaia EDR3 or Planck 2013 maps
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negligible effect on 𝑤(𝜃)



Additional robustness tests 
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Lessons learned…. 



Lessons learned 

DES-Y3 has been challenging from the point of view of observational systematics. We
should apply the lessons learned not only to DES-Y6, but also to similar surveys:

• Know the potential limitations of the method you are employing: linearity assumption,
marginalization vs multilinear fit, calibration with simulations

• It is advantageous to have different methods (relying on different assumptions) applied
to the same data and to combine them. This allows to
o avoid blind spots
o ensure the robustness
o obtain systematic uncertainties associated with the choice of method

• Validation on simulations: it is critical to be able to determine the level of different
biases that the methods can introduce
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Lessons learned 

• Know well your SP maps: risk of tracing actual LSS from the data. Especially
important when the maps are created from the data, e.g., the FWHM from PSF fitting,
or sky-brightness maps

• Use data-driven methods to identify the contaminants
• Be careful and justify well any pre-selection of SP maps (e.g., correlations between

them). More risk on excluding too many maps than on using to many of them
• Different SP bases can help to exclude potential problems with some methods
• External information/tracers as cross-check: other surveys, convergence maps,

simulations….
• Use more than one lens galaxy sample: exact same methods, with exact same

choices and exact same validation process applied to different galaxy samples
• Importance of a correct systematic mitigation, especially for surveys with a shrinking

statistical error → DES-Y6, LSST, Euclid….
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Merci beaucoup 
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