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Motivation



Motivation

e Quantum algorithms may facilitate the solution to physical problems
that scale exponentially in a classical computer. The shell-model is a
textbook example.
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e Implementation in quantum devices comes with other challenges.



Specifics of the pr

e Variational quantum eigensolvers (VQE) are a promising tool for the
description of nuclear structure with quantum circuits.

1J Tilly, et al., The variational quantum eigensolver: a review of methods and best
practices. Phys. Reports 986, 1-128 (2022)
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Specifics of the pr

e Variational quantum eigensolvers (VQE) are a promising tool for the
description of nuclear structure with quantum circuits.
e In its implementation, different strategies are to be pursued for the
following challenges!:
e State preparation
e Fermionic operator encoding
e [terative optimization and convergence
e Measurement
e Error mitigation

e Our algorithm of choice is the recent Adaptive Derivative-Assemled

Problem-Tailored Variational Quantum Eigensolver (ADAPT-VQE).
Adequate for the NISQ era.

1J Tilly, et al., The variational quantum eigensolver: a review of methods and best
practices. Phys. Reports 986, 1-128 (2022)



Simulation



Adaptive variational quantum eigensolver (ADAPT-VQE) !

1Grimsley, H.R., Economou, S.E., Barnes, E. et al. Nat Commun 10, 3007 (2019).
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Adaptive variational quantum eigensolver (ADAPT-VQE) !

Algorithm:
(o) = [Wrer)
0,) = oi01 A1 W) Hybrid Implementation
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Quantum circuit

Measurement

for U(91 ..... 9N)
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Operators A,, selected according to Classical update of 6; «~———
the largest gradient
OE k) ' = Courtesy of Jon Engel
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Parameters 6,,, obtained minimizing the energy surface at every iteration.

1Grimsley, H.R., Economou, S.E., Barnes, E. et al. Nat Commun 10, 3007 (2019).



Good scaling!

Previous work with ADAPT-VQE in the Lipkin and shell-model?:

Lipkin model of N particles with USDB, KB3G phenomenological
interaction strength y interactions
350 o
150 300 A Calcium
250
L]
” A
= Method 0 = 200
=f— Method HF E
~%— Method HF-PAV : L]
—~0— Method HF-VAP £ 150
—_— A N
50 100 A
X
50
(c)
0 o *
1 5 6 7 8 9 10 1 12 2 3 4 5 6 7 8 9 10
N Valence neutrons

2A. M. Romero, J. Engel, Ho Lun Tang, and Sophia E. Economou. Phys. Rev. C
105, 064317
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Implementation in um devices: fermionic mapping
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Jordan-Wigner mapping is used for convenience:

i—1 i—1
T = _ +
a; = HZk o, , a;= HZk o,
k=0 k=0

but leads to unnecessarily large matrices and number of qubits



Choice of ansatz

We simply chose the lowest-energy Slater determinant. Straightforward
to implement



Choice of ansatz

We simply chose the lowest-energy Slater determinant. Straightforward
to implement

Example: Two particles in a four-state space
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Variational part: pool operators

Implementation of ADAPT pool operators is straightforward. We chose
all the possible two-body excitations
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Implementation of ADAPT pool operators is straightforward. We chose
all the possible two-body excitations
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Figure 2: Quantum circuit to implement e~ 0X0%1YaZs
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But this is not the problem!



Measurement: minimum clique problem

Dimension of two-body excitation operators increases quartically with
space dimensionality and can not be measured simultaneously. We need
to find the minimum partition group of commuting operators
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Measurement: minimum clique problem

Dimension of two-body excitation operators increases quartically with
space dimensionality and can not be measured simultaneously. We need
to find the minimum partition group of commuting operators

X1
XX 17

XYy 1y

XZ X

YI 11

YX Y4

YY zy

YZ zZX
zZI

NP-hard problem! We used a greedy algorithm for approximate solutions 9



Results




um simulation of ADAPT-VQE

e Number of CNOTS grows
linearly with the number of

iterations!

e In lower dimensionality spaces,
results converge quickly

e Different convergence behavior
for different nuclei

Num. ansatz layers

A. Perez-Obiol, A. M. Romero et al, Nuclear shell-model simulation in a quantum
device, TBP

10



Quantum simulation of ADAPT-VQE

shell | Ny | Nsp nucleus | Niters | €- bound

6 5 5He 2 10~°
10 6L 9 1077

p > 51 8Be 48 10-°
51 10Be 48 107°

42 e 17 107°

14 5@ 5 106

5 74 10 32 106
81 200 70 106

sd 142 220 119 1076

640 20Ne 167 | 2 x 1072
24 | 4206 22Ne 236 | 2x 1072
7562 24Ne 345 | 2x 1072
30 2Ca 9 10-8
565 i@ 132 102
pf | 20 | 3952 | “6Ca 124 10~2
12022 | “8Ca 101 102
17276 | 59Ca 221 102
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Quantum simulation of ADAPT-VQE

shell | Ny | Nsp nucleus | Niters | €- bound
6 5 SHe 2 107°

p > 51 8Be 48 10-°
51 10Be 48 107°
42 e 17 107°

| w | ® | 5 | 10°
5 74 26 32 1076
81 200 70 1076
sd 142 220 119 1076

640 2ONe 167 | 2 x 1072
24 | 4206 22Ne 236 | 2x 1072
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A. Perez-Obiol, A. M. Romero et al, Nuclear shell-model simulation in a quantum 14
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Model circuit
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Figure 3: Quantum circuit to prepare the exact ground state for the sd-shell
with two neutrons, '20. X gates prepare the reference state and FSWAPS are
used to change basis so that exponentials of pool operators operate on
adjacent qubits. Multiqubit gates in the boxes are defined as U"I(G) S
and 0y = —0.157263, 6, = —0.437238, 02 = 0.604663, 03 = 0.214431,

04 = —0.785469.
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Number of circuits for measurement

shell | N, | N, Non Total
6 | 2 10 (9) 13 (12)
P24 | 100 (44) 114 (49)
o |12 8 | 203(s0) 212 (95)
24 | 16 | 1389 (518) | 1406 (535)
- [207[ 20 | 1507 (570) | 1528 (591)
P 1740 [ 40 | 10572 (3459) | 10613 (3500)

Table 1: Number of different circuits needed to measure the expectation value
of the Hamiltonian. IV, indicates the number of qubits used, corresponding to
the number of orbitals in the shell. N, and Ny, are the number of single and
double hopping terms in the Hamiltonian, defining the number of different
circuits needed to measure these parts. The values in parenthesis correspond to
the minimum number of groups containing hEJh:l) terms found such that all
operators in the group commute with each other and can be measured with the
same circuit. In the last column, we list the total number of circuits
corresponding to Ny + Nih + 1, accounting also for the single circuit needed to

measure (h;). 16
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Conclusions

e Promising results were obtained using ADAPT-VQE applied with
phenomenological shell-model interactions in the classical and
quantum simulation of the algorithm.

3A. Perez-Obiol, A. M. Romero et al, Nuclear shell-model simulation in a quantum
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Conclusions

e Promising results were obtained using ADAPT-VQE applied with
phenomenological shell-model interactions in the classical and
quantum simulation of the algorithm.

e The quantum implementation of VQE carries challenges of its own
that hopefully are easier to solve than the exponential scaling.

e We developed a baseline code with the quantum implementation of
the nuclear shell-model to explore and study these upcoming
challenges3.

e Barcelona Supercomputing Center will host one of the first
European quantum computers®.

3A. Perez-Obiol, A. M. Romero et al, Nuclear shell-model simulation in a quantum

device, TBP
4Selection of six sites to host the first European quantum computers
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Fermionic mappi example and potential alternative

The general Hamiltonian:

1
H = Zsiajai + 1 Zﬁijkla;(a;alak , (1)
i ijkl

under a JW mapping, the corresponding matrix representation will have
2dim ¢ odim glements.

SRMN Pesce, PD Stevenson: H2ZIXY, arXiv:2111.00627
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Fermionic mapping: example and potential alternative

The general Hamiltonian:

HE= Zs a;a; + — ZUUMU a;aiar , (1)

zgkl
under a JW mapping, the corresponding matrix representation will have
2dim ¢ odim glements.
Example:

Take the case of SLi in the M-scheme: ground-state is formed with 10
M = 0 states, but with JW the Hamiltonian matrix is 212 x 2121

Compact encoding of the Hamiltonian®:
H =0.5981T1T —0.0881IIX + ... —0.037Z2ZZX — 0.059Z2ZZ 7. (2)

Only 4 qubits are needed! But what do projections 0 and 1 represent?

SRMN Pesce, PD Stevenson: H2ZIXY, arXiv:2111.00627
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Why ADAPT and not Unitary Coupled Clusters approach?

. (V(0)|H[¥(0)) 3)
(w(0)[w(6))

6. Stetcu et al. Phys. Rev. C 105, 064308
70. Kiss et al, Phys. Rev. C 106, 034325
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Why ADAPT and not Unitary Coupled Clusters approach?

(V(0)|H|v(6))

9(6)) = ™®@0) — Buco = min — D (3)
o (¥(0)¥(0))
e ADAPT requires no Trotter approximation
A+B _ 1; A/n _ B/n "
A = i (AmeP) *)

Good results are obtained with only one Trotter step®. Although
symmetries can be broken in the wavefunction and be more crucial
in strongly-correlated systems

e ADAPT does not depend on the cluster operator order
e However, it is possible that ADAPT leads to deeper circuits’

6. Stetcu et al. Phys. Rev. C 105, 064308
70. Kiss et al, Phys. Rev. C 106, 034325
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