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Fall 2019: 

Google claims 
quantum “supremacy” 

+ others! 

Closing the supremacy gap
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Today:

Even larger machines…

But no useful quantum
advantage (yet).

Arute et al ‘20

What do we (really) need to beat to reach advantage?



Execute circuit (53 qubits, 230 two-qubit gates)

The Google ‘supremacy’ game
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Return bitstrings 𝑥 = 00101, …

Arute et al ‘19



Execute circuit (53 qubits, 230 two-qubit gates)

Expectations

The Google ‘supremacy’ game

4
Probability 𝒑
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probabilities
(averaged
over random
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Completely random
computer: 𝑝𝑈 𝑥 =

1
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Expectations

The Google ‘supremacy’ game
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Execute circuit (53 qubits, 230 two-qubit gates)

Expectations

Quantum task: Compute “Cross Entropy Benchmarking”

XEB = ෍

𝑥=0

2𝑛−1

𝑄𝑈 𝑥 (𝑃𝑈(𝑥) − 1)

𝑈

(~ ‘distance’ to perfect distribution)

In practice: sample bitstrings 𝑥𝑖

XEB ≈
1

𝑁samples
෍

𝑖=1

𝑁samples

𝑃𝑈 𝑥𝑖 − 1

𝑈

(need lots of samples when XEB ≪ 1!)

Classical task: Draw 𝑁samples with same XEB

The Google ‘supremacy’ game
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Probability 𝒑

Histogram of 
bitstrings
probabilities
(averaged
over random
circuits) Perfect computer

Porter Thomas P 𝒑 = 𝟐𝒏𝒆−𝟐
𝒏𝒑

1/2𝑛

Completely random
computer: 𝑝𝑈 𝑥 =

1

2𝑛
, ∀𝑥

Return bitstrings 𝑥 = 00101, …

averaged over 
random circuits

Perfect (𝑄 = 𝑃) 
XEB = 1

Random: XEB = 0

Arute et al ‘19



In random circuits,

𝐹 = ෑ

𝑘∈operations

𝑓𝑘 ≈ 1 − 𝜖1
𝑛1 1 − 𝜖2

𝑛2 1 − 𝜖𝑅𝑂
𝑛RO = 0.15% !

What to expect?
The product law for the fidelity
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1116 430 53

0.16% 0.62% 3.8%

Exponential decay!

Zhou et al ‘20



In random circuits,

𝐹 = ෑ

𝑘∈operations

𝑓𝑘 ≈ 1 − 𝜖1
𝑛1 1 − 𝜖2

𝑛2 1 − 𝜖𝑅𝑂
𝑛RO = 0.15% !

+ with depolarizing noise:                XEB ≈ 𝐹

Experimentally, Google ‘measured’          XEB = 0.2%

• How did Google measure XEB? XEB ≈
1

𝑁samples
σ
𝑖=1

𝑁samples
𝑃𝑈 𝑥𝑖 − 1

𝑈

What to expect?
The product law for the fidelity

8

1116 430 53

0.16% 0.62% 3.8%

???

Exponential decay!

Quite a low fidelity! Arute et al ‘19

Zhou et al ‘20



Previous classical 
simulation strategies

1.



Goal: compute 𝑃𝑈 𝑥 = 𝑥 Ψ 2 = 𝑥 𝑈 0 2

Tensor network primer: 
Matrix:                  Vector:             Tensor: 

Matrix-matrix:

Contraction:

Classical simulation of quantum circuits
From a tensor-network perspective
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A v T

A B
𝑖 𝑗 𝑘

= 𝐴𝑖𝑗𝐵𝑗𝑘

C = 𝐶𝑖𝑘𝑖 𝑘



Goal: compute 𝑃𝑈 𝑥 = 𝑥 Ψ 2 = 𝑥 𝑈 0 2

Tensor network primer: 
Matrix:                  Vector:             Tensor: 

Matrix-matrix:

Contraction:

Order matters:

• Naive contraction: 

𝑠 = σ𝑖𝑗𝑘𝑙𝐴𝑙𝑖𝐵𝑖𝑗𝐶𝑗𝑘𝐷𝑘𝑙 , 𝑶(𝑵
𝟒)

• Clever contraction:

𝑠 = σ𝑙[σ𝑘 σ𝑗(σ𝑖𝐴𝑙𝑖𝐵𝑖𝑗) 𝐶𝑗𝑘 𝐷𝑘𝑙], 𝑶(𝑵𝟑)

Classical simulation of quantum circuits
From a tensor-network perspective
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Goal: compute 𝑃𝑈 𝑥 = 𝑥 Ψ 2 = 𝑥 𝑈 0 2

Tensor network primer: 
Matrix:                  Vector:             Tensor: 

Matrix-matrix:

Contraction:

Order matters:

• Naive contraction: 

𝑠 = σ𝑖𝑗𝑘𝑙𝐴𝑙𝑖𝐵𝑖𝑗𝐶𝑗𝑘𝐷𝑘𝑙 , 𝑶(𝑵
𝟒)

• Clever contraction:

𝑠 = σ𝑙[σ𝑘 σ𝑗(σ𝑖𝐴𝑙𝑖𝐵𝑖𝑗) 𝐶𝑗𝑘 𝐷𝑘𝑙], 𝑶(𝑵𝟑)

Computing ⟨𝑥|𝑈|0⟩

• Corresponding tensor network

• Find ⟨𝑥|𝑈|0⟩: contract the tensor network.

Note: storage cost

• 3 qubits: 2x2x2 = 8

• 𝑛 qubits: 2𝑛!

Classical simulation of quantum circuits
From a tensor-network perspective

12

𝒙𝟏
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𝒙𝟑

𝑎1 𝑎2

𝑏1
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𝑏2 𝑏3

𝑐1 𝑐2

H

+
+

|0⟩ |Ψ⟩

𝑈

A v T

A B
𝑖 𝑗 𝑘

= 𝐴𝑖𝑗𝐵𝑗𝑘

C = 𝐶𝑖𝑘𝑖 𝑘

A B

CD

𝑖

𝑗
𝑘

𝑙

ሚ𝐴

CD

𝑗
𝑘

𝑙 መ𝐴

D

𝑘𝑙

𝑥 = (𝑥1, 𝑥2, 𝑥3)



1. Schrödinger

• CPU cost: 𝑁gatesexp(𝑛)

• Storage cost: exp(𝑛)

All amplitudes at once: “strong”

Three main classical simulation methods
… as three contraction strategies!

13

𝒙𝟏

𝒙𝟐

𝒙𝟑

𝒙𝟏

𝒙𝟐

𝒙𝟑

𝒙𝟏

𝒙𝟐

𝒙𝟑

𝒙𝟏

𝒙𝟐

𝒙𝟑

𝑥 𝑈 0 =

width



1. Schrödinger

• CPU cost: 𝑁gatesexp(𝑛)

• Storage cost: exp(𝑛)

All amplitudes at once: “strong”

Three main classical simulation methods
… as three contraction strategies!
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𝒙𝟏

𝒙𝟐

𝒙𝟑

𝒙𝟏

𝒙𝟐

𝒙𝟑

𝒙𝟏

𝒙𝟐

𝒙𝟑

𝒙𝟏

𝒙𝟐

𝒙𝟑

𝑥 𝑈 0 =

width

2. “Tensor network”

1. Find (close to) optimal 
contraction strategy (NP 
hard problem!)

2. Contract (GPUs, TPUs…)

• CPU : exp(Treewidth)

• Storage: exp(Treewidth)

One amplitude: “closed”

𝒙𝟏

𝒙𝟐

𝒙𝟑

𝑎1 𝑎2

𝑏1

𝑎3

𝑏2 𝑏3

𝑐1 𝑐2

min(depth, width)

Markov & Shi ‘08



1. Schrödinger

• CPU cost: 𝑁gatesexp(𝑛)

• Storage cost: exp(𝑛)

All amplitudes at once: “strong”

3. Feynman (sum over paths)

𝑥 𝑈 0

= ෍

𝑎1,𝑎2,…𝑐1,𝑐2

𝜓0 𝑎1𝑏1𝑐1 𝑢1 𝑎1𝑎2

𝑢2 𝑎2𝑏1,𝑎3𝑏2 𝑢3 𝑏2𝑐1,𝑏3𝑐2

𝛿𝑎3𝑥1𝛿𝑏3𝑥2𝛿𝑐2𝑥3

• CPU: ∝ 𝑁path𝑠 ∼ exp(𝑁gates)

• Storage: const.

One amplitude: “closed”

Three main classical simulation methods
… as three contraction strategies!
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𝜓0

𝑢1
𝑢2

𝑢3

𝒙𝟏

𝒙𝟐

𝒙𝟑

𝑎1 𝑎2

𝑏1

𝑎3

𝑏2 𝑏3

𝑐1 𝑐2

𝒙𝟏

𝒙𝟐

𝒙𝟑

𝒙𝟏

𝒙𝟐

𝒙𝟑

𝒙𝟏

𝒙𝟐

𝒙𝟑

𝒙𝟏

𝒙𝟐

𝒙𝟑

𝑥 𝑈 0 = paths

width depth

2. “Tensor network”

1. Find (close to) optimal 
contraction strategy (NP 
hard problem!)

2. Contract (GPUs, TPUs…)

• CPU : exp(Treewidth)

• Storage: exp(Treewidth)

One amplitude: “closed”

𝒙𝟏

𝒙𝟐

𝒙𝟑

𝑎1 𝑎2

𝑏1

𝑎3

𝑏2 𝑏3

𝑐1 𝑐2

min(depth, width)

Markov & Shi ‘08



STEP 1: Compute experimental XEB

Need 𝑃𝑈 𝑥 !

Trick: simplified circuit 

• easier contraction

• … but same XEB!

How did Google ‘prove’ supremacy?
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𝑎1 𝑎2

𝑏1

𝑎3

𝑏2 𝑏3

𝑐1 𝑐2

Test: full=simplified for smaller depths For the true depth: simplified

XEB = 0.2%

Arute et al ‘19



STEP 1: Compute experimental XEB

Need 𝑃𝑈 𝑥 !

Trick: simplified circuit 

• easier contraction

• … but same XEB!

STEP 2: Estimate classical time to get 0.2% 
XEB

• Essentially: Feynman approach.

Claim: 

sum only fraction 𝑭 of all paths => fidelity 𝑭

𝑡one path × 𝑁path𝑠 × 𝐹 = 10’000 years

… compare to: 200 secs to sample bitstrings

Goal: can we close this gap?

How did Google ‘prove’ supremacy?
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𝒙𝟏

𝒙𝟐

𝒙𝟑

𝑎1 𝑎2

𝑏1

𝑎3

𝑏2 𝑏3

𝑐1 𝑐2

Test: full=simplified for smaller depths For the true depth: simplified

XEB = 0.2%

Arute et al ‘19



Pednault et al ’19: Schrödinger, 2.5 days (est.)

Previous attempts to catch up with Google
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Pednault et al ’19: Schrödinger, 2.5 days (est.)

Gray & Kourtis ’20, Huang et al ’20: Index slicing: tensor network+ Feynman:

𝑥 𝑈 0 =෍

𝑏2

𝑇1 𝑥1; 𝑏2 𝑇2(𝑥2, 𝑥3; 𝑏2)

… 19.3 days (massively parallel)! 

Previous attempts to catch up with Google
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Pednault et al ’19: Schrödinger, 2.5 days (est.)

Gray & Kourtis ’20, Huang et al ’20: Index slicing: tensor network+ Feynman:

𝑥 𝑈 0 =෍

𝑏2

𝑇1 𝑥1; 𝑏2 𝑇2(𝑥2, 𝑥3; 𝑏2)

… 19.3 days (massively parallel)! 

See also Pan & Zhang ’21 (5 days [GPUs]), Pan et al ’21.

• … down to 304 seconds (Liu et al ’21)… on a very large HPC system (42 million cores)!

Main issue: exponential scaling! Very expensive to add a few qubits / gates…

Previous attempts to catch up with Google
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𝒙𝟏

𝒙𝟐

𝒙𝟑

𝑎1 𝑎2

𝑏1

𝑎3

𝑏2 𝑏3

𝑐1 𝑐2



Leveraging 
(low) entanglement

2.



• Previous attempts: 

Surrender fidelity by summing 
fewer Feynman paths.

• New idea: use key quantum 
property: entanglement

Trivial case: Product states

Beating the exponential with a finite fidelity
Matrix Product States (MPS)

22

=

𝜓0 𝑎1𝑏1𝑐1 = 𝜓0
1
𝑎1 𝜓0

2
𝑏1 𝜓0

3
𝑐1

See e.g
Schollwöck ‘11



• Previous attempts: 

Surrender fidelity by summing 
fewer Feynman paths.

• New idea: use key quantum 
property: entanglement

Trivial case: Product states

• Example: an entangled state: 

= “Matrix product state”. 

Beating the exponential with a finite fidelity
Matrix Product States (MPS)
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=

𝜓0 𝑎1𝑏1𝑐1 = 𝜓0
1
𝑎1 𝜓0

2
𝑏1 𝜓0

3
𝑐1

𝜓0 𝑎1𝑏1𝑐1 =
1

2
𝜓0
1
𝑎1 𝜓0

2
𝑏1 𝜓0

3
𝑐1 + 1

2
𝜒0
1
𝑎1 𝜒0

2
𝑏1 𝜒0

3
𝑐1

=

See e.g
Schollwöck ‘11



• Previous attempts: 

Surrender fidelity by summing 
fewer Feynman paths.

• New idea: use key quantum 
property: entanglement

Trivial case: Product states

• Example: an entangled state: 

= “Matrix product state”. 

Compressing any state? Singular value decomposition (SVD)

Beating the exponential with a finite fidelity
Matrix Product States (MPS)
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=

𝜓0 𝑎1𝑏1𝑐1 = 𝜓0
1
𝑎1 𝜓0

2
𝑏1 𝜓0

3
𝑐1

𝜓0 𝑎1𝑏1𝑐1 =
1

2
𝜓0
1
𝑎1 𝜓0

2
𝑏1 𝜓0

3
𝑐1 + 1

2
𝜒0
1
𝑎1 𝜒0

2
𝑏1 𝜒0

3
𝑐1

=

𝐴𝑖𝑗 = 𝑈𝑖𝛼𝑠𝛼𝑉𝛼𝑗
+= 𝒔

𝛼

𝒔𝜶 Truncation of
singular values

Key result:

𝑓 = 𝜓 𝜓compressed
2
= ෍

𝛼<𝜒

𝑠𝛼
2

Can estimate fidelity!
𝝌: bond dimension

See e.g
Schollwöck ‘11



Algorithm to compute 𝑥 𝑈 0 :

A first step towards reproducing the experiment
with “grouped” Matrix Product States

25
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Algorithm to compute 𝑥 𝑈 0 :

A first step towards reproducing the experiment
with “grouped” Matrix Product States
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Algorithm to compute 𝑥 𝑈 0 :

A first step towards reproducing the experiment
with “grouped” Matrix Product States
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Algorithm to compute 𝑥 𝑈 0 :

• Final fidelity: 𝐹 = 𝑓1𝑓2

• Works… but not enough to reproduce Google

A first step towards reproducing the experiment
with “grouped” Matrix Product States
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Algorithm to compute 𝑥 𝑈 0 :

• Final fidelity: 𝐹 = 𝑓1𝑓2

• Works… but not enough to reproduce Google

Improvement: Schrödinger + MPS

• “Group tensors together”

Useful for 2D qubit grids:

• Vertical gates: “exact”

• Horizontal gates: “compressed”

Improves fidelity… but still not enough!

A first step towards reproducing the experiment
with “grouped” Matrix Product States
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Previous approach: apply 1 gate and compress

Here: apply several layers of gates, 

… and find “optimal” MPS:

This work: a triply hybrid strategy
MPS + Schrödinger + tensor networks via a Density Matrix Renormalization Group method

31
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Previous approach: apply 1 gate and compress

Here: apply several layers of gates, 

… and find “optimal” MPS:

How to find optimal MPS?

• DMRG: find MPS with maximal overlap

• Tensor-by-tensor optimization: 𝑛𝑠 “sweeps”

This work: a triply hybrid strategy
MPS + Schrödinger + tensor networks via a Density Matrix Renormalization Group method

32

Overlap: Best 𝑀(2) tensor:

? ∝∗

A tensor network!

Initial 
(grouped) 
MPS

𝐾 layers of 
gates

TA, Louvet, Zhou, Lambert, Stoudenmire, Waintal, 2207.05612 



Mix of automatic contraction with “manual” guidance:

Contracting the tensor network

33



Results3.



Reminder: in noisy random circuits:

𝑭 ≈ 𝐗𝐄𝐁

In our method: 

𝐗𝐄𝐁 ≈ 𝑭

• Strange? 

A different relation between 𝑭 and XEB

35
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In our method: 
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• Strange? 

In the chaotic limit (infinite depth):

𝐹 =
1
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Reminder: in noisy random circuits:

𝑭 ≈ 𝐗𝐄𝐁

In our method: 

𝐗𝐄𝐁 ≈ 𝑭

• Strange? 

In the chaotic limit (infinite depth):

𝐹 =
1

2𝑛

XEB =
1

2𝑛/2

Numerical evidence for finite depths:

A different relation between 𝑭 and XEB

37

1/2𝑛

1/ 2𝑛

ෑ𝑓𝑘

𝐹
XEB

𝐹

Atos QLM



Closing the supremacy gap

38

Better XEB error rate than 
Google Sycamore

Error per gate: 𝜀 = 1 − ෨𝐹1/𝑁2𝑔



Closed (one amplitude) vs open (all): 

• Open: most powerful. Strong simulation.

• Closed: can contract from “both sides”. 
Lower compression losses!

“Closed” easily usable for “weak” simulation: 
Bravyi et al ’21.

Here (near-chaotic distribution): Could use 
Metropolis-Hastings: 70% acceptance rate. 

Closing the supremacy gap
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Better XEB error rate than 
Google Sycamore

Error per gate: 𝜀 = 1 − ෨𝐹1/𝑁2𝑔



The supremacy sequency An easier sequence

The influence of the type of circuit
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The supremacy sequency An easier sequence A “useful” sequence 

The influence of the type of circuit
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Fixed depth 𝐷: 

• Error per gate increases… then stagnates:

But more gates, XEB decreases…: must increase 
𝑁samples to reduce variance.

Keep 𝒏𝑫 fixed (fixed XEB: fixed experimental time!): 

• better and better error per gate!

A scalable method: what happens when increasing the qubit count?
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Fixed depth 𝐷: 

• Error per gate increases… then stagnates:

But more gates, XEB decreases…: must increase 
𝑁samples to reduce variance.

Keep 𝒏𝑫 fixed (fixed XEB: fixed experimental time!): 

• better and better error per gate!

How to understand the stagnation?

Can compute “optimal” error rate after SVD 
compression:

𝜀opt =
1

𝐷
log2 −

log4𝜒

2𝑁

when 𝜀SVD reaches 𝜀opt [~chaotic limit], actual 
error rate deviates from 𝜀SVD

A scalable method: what happens when increasing the qubit count?
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Conclusions

Google’s game can be won by a classical simulator

• Key: leverage 3 different simulations methods: 

Schrödinger, tensor-network, Matrix Product State

• Very basic implementation (no sophisticated contraction)

Beware of “large Hilbert space fallacy”: Structure matters!

• MPS: capture true difficult quantity: entanglement

• This is the target for quantum advantage!

Qubit quality is crucial! Recent progress in QEC @ETH, Google, Quantinuum…

XEB flaws: not scalable, not ‘useful’ task

• Q-score (Martiel, TA, Allouche ‘20): use QAOA MaxCut as benchmark
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Available on 
Atos QLM
(“QPEG”)


