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Motivation

Nuclear physics

® Deals with a system of non-relativistic fermions
Schrodinger Equation and symmetrization principle

¢ In typical processes the number of fermions is neither
small nor too large: Mesoscopic system

also
* The interaction is not well characterized/understood
¢ In medium effects are very important

Discrepancies with experimental data can be attributed either
to the interaction and/or the many body method

Comparison with experiment cannot be used to tell the
goodness of the (variational) many body method used



The nuclear mean field

The ”’in medium” effective nuclear interaction is soft enough to
permit a mean field treatment

* Magic numbers (8,20 28, 50, 82, 126, ...) are the strongest
experimental evidence supporting the existence of a mean
field. Implies a strong spin-orbit (meson exchange
currents)

e All ground state of even-even nuclei are 0" supporting the
existence of short range correlations creating Cooper pairs
of protons and neutrons

There is a mean field created collaboratively by all nucleons
that must include short correlations like in the BCS theory of
superfluidity

The mean field can be determined by using the standard
Hartree- Fock- Bogoliubov (HFB) method



The HFB approach

Mean field plus pairing (Hartree Fock Bogoliubov, HFB) is
based on the Bogoliubov transformation to quasi-particles
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The HFB ground state defined by the condition
Bul®) =0 = |0) = [](uk + vkajaf|-)

U and V are determined by the variational principle on (¢|H|®)

HFB spontaneously breaks the particle number symmetry:

A~

|®) is not and eigenstate of the particle number operator N.

The symmetry group is U(1) (generated by efcpN)
Particle number constraint (®|N|®) = N and Routhian A — AN



Spontaneous symmetry breaking

The nuclear interaction favors the spontaneous breaking of
many symmetries at the mean field level
¢ Rotational invariance: Associated to SO(3)

® Angular momentum quantum numbers no longer valid
® Matter distribution not spherically symmetric: nuclear
deformation

® |ntrinsic and laboratory frame
* Rotational bands (ubiquitous in the nuclear chart)

e Parity: Discrete group. Parity doublets
¢ Traslational invariance
¢ [sospin (quantum number for protons and neutrons)

However, going beyond the mean field is required for a proper
description of quantum numbers (very important for
electromagnetic processes, to implement selection rules, etc)



Symmetry restoration

Example: Parity projection

Consider a wave function |®) which is not eigenstate of parity.
Act with the group elements (I and 1) on |®)

Take linear combinations with the appropriate weights to
restore parity

|7) = N|®) + #|NP)] = NI + «N]|P)

which defines the projector on good parity P, =1 + «[l
¢ Please note that |7) are linear combinations of |¢) and
M|®) are, no longer, mean field wf

e Symmetry restoration incorporates additional
correlations beyond mean field in the wave function



Continuous symmetries

e Particle number, U(1) symmetry group

1 27
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PN = dpe™
where ¢ determines the orientation in "gauge space” and
exp[—ipN] is the symmetry dictated weight.

¢ Angular momentum, SU(2) symmetry group
PM =gk / dQDl,(Q)R(Q)
K

where the Euler angles 2 determine the orientation in
space and the symmetry dictated weight are the Wigner D
matrices plus some coefficients gk due to the non-abelian
character of SU(2)



Order parameter

Every broken symmetry has associated order parameters
* Particle number: Pairing gap A = G(>_ ¢ ¢;)
Non zero when the symmetry is broken

When the wf is rotated in gauge space eicpN|q>> it acquires
a complex phase A — Ae?¥

¢ Rotational invariance: any mean value of multipole
operator ), = (Q\,) proportional to the spherical
harmonics Y), measuring the departure of the matter
distribution from sphericity
Quadupole moment is the lowest order and most popular
Again the "deformation parameter” (Q,,) acquires a
complex phase when the symmetry breaking mean field
solution is rotated (far more involved than in the particle
number case due to the non-abelian character of SU(2))



Order parameters
One says that the orientation ¢ (phase) and the size |A| of the
complex order parameter are canonical conjugate variables
and therefore if one considers fluctuations in orientation

2 A
PN 1 d(pefigaNeinN

one should also consider fluctuations in |A|
vo) = [ dalt(a)PYe(al)

This is the motivation/justification of the generator coordinate

method (GCM). In the rotational case

’wa> = /dﬁul/fa(ﬁm/)PIM’q)(ﬁuu»

The choice of the 3, depends on the physics to be described.
Typically, one takes 29 Or S29 and B3, Or B2 and ~ etc



Approximations

The above procedures set up a hierarchy (ladder) of
approximations

¢ Mean field with symmetry breaking (HFB)
® Symmetry restoration

¢ Fluctuation in "collective variables” (the canonical
conjugate of orientations)

One can add additional steps to the ladder by considering
® clementary two quasiparticle excitations [3’,fﬂ,+|¢>
¢ elementary four quasiparticle excitations ﬁ,}ﬁﬂ,ﬁ;ﬁ,ﬁ;ﬁ,j;yd))
e etc ...

to eventually reach (QC language) full Cl.

Full Cl impossible except in small configuration spaces

Tools to quantify the amount of correlations are required



Quantum information

By using quantum information tools we would like to quantify
how much correlations are incorporated into the different wf of
the different approaches considered. The non-correlated
symmetry restricted Hartree Fock (HF) is used as a baseline

e Spontaneous symmetry breaking

e Symmetry restoration

e GCM

¢ Restricted ClI
Assumption: Correlations are connected with the degree of
entanglement in the system

Quantities like quantum discord or the von Neuman entropy
of the one body density matrix are explored.

Our focus it to understand also how the QI quantities evolve
across quantum phase transitions, typically as a function of
force strength parameters.



Our work

In the past we have
studied several variants
of the Lipkin model with
various tools of quantum
information

e Entropies
¢ Discord

In those models parity
symmetry and particle
number symmetries
could be broken.

II. SINGLE-J SHELL

We consider the (2j+1)-fold degenerate single shell of
angular momentum j filled with an even number N of
identical particles, which without the interaction, is as-
sumed to be at zero energy. The Hamiltonian is com-
posed of the PPQ interaction,

H=-GPtP-xQ-Q, (2.1)

where P+ is the pair transfer operator and Q is the
quadrupole moment operator,

Pt =3 (jmim'|00)akar,. (2-2a)

mOm!
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Q=Y (jmim'|2p)atdm (2.2b)

mm'

while G and x are pairing and quadrupole coupling con-
stants, respectively. Hamiltonian (2.1) describes basic
collective correlations between nucleons [6,7] and it has
been used by many authors [8-11,20,21]. In the mean-

Can be solved exactly
Breaks rotational invariance

Phys. Rev. A 104, 032428; Phys. Rev. A 103, 032426; Phys.

Rev. A 105, 062449



Quantum information tools

e Symmetrization principle for fermions poses a problem

¢ Instead of particles (Hilbert spaces) one uses orbitals
(algebras)

e Quantum discord
Measures quantum correlations between two partitions A
and B of the whole set of orbitals as the difference
between the quantum conditional entropy and its classical
counterpart

e Entropy one body density matrix
The relative entropy of each single orbital with respect to
the remaining ones is summed up to define the entropy.
Orbital dependent. Uses the natural orbital basis as a
reference.



Quantum information tools: Discord

QUANTUM DISCORD: \?\Q

DEFINITION AND PROPERTIES V()

Definition:

5(A, B) = I(A, B) — J(A, B)

Measurement-based
\ conditional entropy
J(A,B) = maxS( 4) - S(pABlrIB)
ng

I(A, B) ="S(A) + S(B) — S(A, B)
AB|HB Zka(pAB)

1. Represents all the purely quantum correlations, beyond
entanglement.
2. For pure states, it reduces to the von Neumann entropy of a
subsystem, and the classical correlations acquires the same value. ]
B = —[IBpA
P

. Hard to compute due to the maximization process.



Quantum information tools: Discord

Definition:

8(A, B) = I(A, B) — J(A, B)
\ coiZ?:onal Zn-tr:;:

J(A,B) = mZ};xS(pA) - S(p*B|T1E)
I

\
S48 = TSt
k

How to compute it for qubits:
nf:() =V]0)(0] vt The unitary Vis the
‘variational parameter g 1

e, = v v

I(A, B) ="S(A) + S(B) — S(A, B)




Discord for fermions

QUANTUM DISCORD IN FERMION
SYSTEMS: TWO ORBITALS

The fermion systems must satisfy the Parity Superselection Rule (PSSR). Hence, not all the
measurements are allowed. z

Only a superposition of odd/even number of fermions is allowed

Example:
NO!
T2 |00)(00 | T2 o [00)(00 | + ] 00)(01 | + [01)(00 | + |01)(01 |

PSSR allows us to pute the quantum di d: for a system of two orbitals, only two measurements are allowed

B T

Hg =aga
i —
They are projectors since aBaB + aBaB =1

B _ 1
IIf = ajag




Discord for fermions

QUANTUM DISCORD IN FERMION
SYSTEMS: TWO ORBITALS

Dephasing channel

5(i.J) = S(Z(p") ) - S

Result:

The two orbital reduced density can be written as
Typical many-body variables

pr=1=Yy— v+ Yy

pp 0 0 a P2 = V)i~ Yijij vi = (wld'a|w)
, 0 p v O with  P3= Vi ™ Vijij ’ Y
Pl = 2 Py = Vijij Kji = <W|aiaj|w>
0 v p3 O x
a = K

— bt
« 0 o p, y = le'i Yijij = (‘/"“i 4 “j“i"/’)




Discord for fermions

QUANTUM DISCORD IN FERMION
SYSTEMS: TWO ORBITALS PAIRS

Following the qubit parametrization: HliB) - RTHEB)R

The parametrized projectors doesn’t have to mix states with different parity (because of the PSSR):

. . 1 N
R=¢H H= Z hl_.fci'cj +5Ai,-(ci‘ c; +¢ic) :{> Thouless rotation
[JEX



Models: Lipkin

THE 2-LIPKIN — T T
MODEL R aieraie ol SR

The 2 level Lipkin model simulates the nuclear interaction between two shells with same angular
momentum introducing a monopole-monopole interaction.

- Parity symmetry
- Number of
particles symmetry

1
Jo= 2 Z 6C;mc(r.m

om

Monopole-monopole term

-<)- c=+1

—m —1 m

H=¢J —iV(JZ+JZ)
ST T

5

Monopole-monopole interaction: for a
given value, there is a QPT that breaks
parity in the upper level

Ji= Ji= Z clT,mcfl.m
m




Models: Agassi

Pairing term

THE AGASSI LT
MODEL S ol sk

Monopole-monopole term

—m —1 1 m

Simulates a nuclear Hamiltonian introducing monopole-monopole and pairing interaction

8 Z A;Aa’

The pairing interaction

adds a superconducting
phase

H=e¢l —lV(JZ+JZ)
= o TG M TR

5

- Parity symmetry

- NIneey o Monopole-monopole interaction: for a Pairing interaction: for a given
particles symmetry given value, there is a QPT that breaks value, there is a QPT that
parity in the upper level breaks particle number

O(5) generators

1
=— i —Ji= i A = SU(2) generators
=g Xodhacon  L=ll= T A= Do :> e e

interaction (2-Lipkin

The HFB ground state has three quantum phases, corresponding to each term model)




Models: Lipkin 3 levels

THE 3-LIPKIN
MODEL o=

Similar to the 2-Lipkin model, with one additional energy level.

4 2 2 2

Monopole-monopole interaction: for two
given values, there is a QPT that breaks
number parity in the +1 and O level.

)  Monopole-monopole interaction between ¢ and ¢’ levels

::> SU(3) generators

K, = e

(e o,m-o,m



Two orbital quantum discord

THE AGASSI —
MODEL -0 — .

The quantum discord for the HFB ground state in the ‘original’ orbital basis is easy to compute:

Q
Il
+

m=m’and o= -0’ orbitals —m’”and o=0" orbitals
HF deformed phase 03820 HF deformed phase 0.5820
0.5175 05175
0.4530 0.4530
0.3885 0.3885
0.3240 0.3240
BCS phase 0.2595 0.2595
HE 01950 X F BCS phase 0.1950
spherical 0.1305 spherical 0.1305
phase 0.0660 Bl phase 0.0660
0.0015 0.0015
00 05 1.0 15 20 25 30 00 05 10 15 20 25 3.0
x b

HF deformed phase breaks parity symmetry BCS phase breaks particle number symmetry




Faba, Martin and Robledo, Phys. Rev. A 103, 032426, 2021

Two orbital quantum discord

THE 2-LIPKIN — OO F O e
MODEL -—Om-_ __I'CID"O'T c=—1

1
A particular case of Agassi model: only monopole-monopole interaction H = SJO - EV(J_%_ + JE)

Here we have QD between QD between up/down orbital pair

HF orbitals for the exact = 1. For y < 1 there is no quantum

ground state. 020 _ x ;2 discord. The orbitals are the

- N=7 same as the ‘original’ ones.

- If QD is high, the HF orbitals o015 — N=9 | 2. For y = co the discord is low
need to be very correlated | § — N=11 and decreases fast with the
in order to catch all the g — N=13 number of particles. The mean-
correlations. £ 0.10 o xzi; field approx. is good.

- If QD is smaill, the HF 2 N=20 | 3. For y ® I and y > 1 the discord
orbitals don’t need to be g reaches a maximum. The HF
very correlated in order to 0.05 approx. fails, since the orbitals
describe the exact state. [ need the correlate between

them in order to describe the

This is in agreement with the 0.00 exact ground state.

behaviour of RCE vs OV




Due to the QPT, RCE changes the curvature

Second derivative relative correlation energy

Correlation energy & overall entropy

THE 2-LIPKIN
MODEL
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RCE and OE grow quasi-linearly
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Exact ground state

Faba, Martin and Robledo, Phys. Rev. A 104,032428, 2021



Second derivative of relative correlation energy

Correlation energy & overall entropy

THE 3-LIPKIN
MODEL

Same behaviour than 2-Lipkin model,
with two QPT’s
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Exact ground state

Faba, Martin and Robledo, Phys. Rev. A 104,032428, 2021




Results: Four orbital QD

A
Four orbital quantum discord T /

THE 3-LIPKIN ™" ===

DY i O T e

MODEL B—

- This partition follows the natural structure
of the interaction
A=1[1,3],B=1[0,2]

All the approximations reproduce
0 1 7 Z A z z more or less the exact results.

QD (exact)
o
o
P

2 os
Q
) ] W ‘ <—— + better fit, specially far from the first QPT point
S 0.0
0 1 2 3 4 5 6
Eos
> _ﬂ <—— + particle number dependence
& 0.0
0 1 2 3 4 5 6
o =
z? i x 73&("“'” ‘ Change of behaviour at the QPT points
= -
oo

Faba, Martin and Robledo, Phys. Rev. A 105, 062449, 2022



Results: Four orbital QD

Four orbital quantum discord no

THE 3-LIPKIN ™™ &
MODEL = rol

A=1[2,31,B=10,1] The HF approximation does not succeed
catching quantum correlations, we need a
7 7 5 5 " 5 z symmetry restoration

QD (exact)
o o
> =
25

§ 0.1] ﬁ*‘% ‘ <«—— Closer to the exact result
S 0.0 - - T
0 1 2 3 4 5 6
= o1 A symmetry restoration is enough to obtain quantum
£o ] f M ‘ <«——correlations in a similar shape with respect to the
200 exact state + particle number dependence.
0 1 2 3 4 5 6
“;- 01T 5 N=5
o —— N=50 “—— Null QD for all values!
S 0.0
0 1 2 3 4 5 6

Faba, Martin and Robledo, Phys. Rev. A 105, 062449, 2022



Results: Four orbital QD

Four orbital quantum discord ng

THE 3-LIPKIN ™" === ?3%
MODEL

R =[1.8=1[0] The symmetry breaking process creates
205 = .
g T_._ N =50 ‘ ‘fake’ quantum correlations at the two
0.0 .

< 0 1 2 3 4 5 6 orbital level
3 0.51 ‘
e
S 0.0 - ¥ ;

0 1 2 3 4 5 6
g_ 0.5 A symmetry restoration is enough to restore the true
a QD
o 0.0

0 1 2 3 4 5 6
Cos
z <“—— Fake’ QD!
< 0.0

0 1 2 3 4 5 6

X

Faba, Martin and Robledo, Phys. Rev. A 105, 062449, 2022



CONCLUSIONS

- For fermion systems, the QD can be computed through Thouless rotations, and for
the two orbital case, it is specially simple.

- QD is a good tool in order to analyze many body systems, such as QPTs.
Moreover, the orbital QD is useful to understand deeply the role of the symmetries.

- In general, one needs symmetry restoration on top of HF to catch most of the
correlations present in the exact ground state. The correlations are ‘redistributed’

with the symmetry restoration process.

- Correlation energy is not a good estimation of the correlations within a system.
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