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Motivation
Nuclear physics

• Deals with a system of non-relativistic fermions
Schrodinger Equation and symmetrization principle

• In typical processes the number of fermions is neither
small nor too large: Mesoscopic system

also
• The interaction is not well characterized/understood
• In medium effects are very important

Discrepancies with experimental data can be attributed either
to the interaction and/or the many body method

Comparison with experiment cannot be used to tell the
goodness of the (variational) many body method used



The nuclear mean field
The ”in medium” effective nuclear interaction is soft enough to
permit a mean field treatment

• Magic numbers (8,20 28, 50, 82, 126, ...) are the strongest
experimental evidence supporting the existence of a mean
field. Implies a strong spin-orbit (meson exchange
currents)

• All ground state of even-even nuclei are 0+ supporting the
existence of short range correlations creating Cooper pairs
of protons and neutrons

There is a mean field created collaboratively by all nucleons
that must include short correlations like in the BCS theory of
superfluidity
The mean field can be determined by using the standard
Hartree- Fock- Bogoliubov (HFB) method



The HFB approach
Mean field plus pairing (Hartree Fock Bogoliubov, HFB) is
based on the Bogoliubov transformation to quasi-particles(

β
β†

)
=

(
U+ V+

V T UT

)(
c
c†

)
≡ W+

(
c
c†

)
The HFB ground state defined by the condition
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U and V are determined by the variational principle on ⟨Φ|Ĥ|Φ⟩

HFB spontaneously breaks the particle number symmetry:
|Φ⟩ is not and eigenstate of the particle number operator N̂.

The symmetry group is U(1) (generated by eiφN̂ )
Particle number constraint ⟨Φ|N̂|Φ⟩ = N and Routhian Ĥ − λN̂



Spontaneous symmetry breaking
The nuclear interaction favors the spontaneous breaking of
many symmetries at the mean field level

• Rotational invariance: Associated to SO(3)
• Angular momentum quantum numbers no longer valid
• Matter distribution not spherically symmetric: nuclear

deformation
• Intrinsic and laboratory frame
• Rotational bands (ubiquitous in the nuclear chart)

• Parity: Discrete group. Parity doublets
• Traslational invariance
• Isospin (quantum number for protons and neutrons)

However, going beyond the mean field is required for a proper
description of quantum numbers (very important for
electromagnetic processes, to implement selection rules, etc)



Symmetry restoration

Example: Parity projection
Consider a wave function |Φ⟩ which is not eigenstate of parity.
Act with the group elements (I and Π ) on |Φ⟩
Take linear combinations with the appropriate weights to
restore parity

|π⟩ = N [|Φ⟩+ π|ΠΦ⟩] = N [I+ πΠ]|Φ⟩

which defines the projector on good parity Pπ = I+ πΠ

• Please note that |π⟩ are linear combinations of |Φ⟩ and
Π|Φ⟩ are, no longer, mean field wf

• Symmetry restoration incorporates additional
correlations beyond mean field in the wave function



Continuous symmetries
• Particle number, U(1) symmetry group

PN =
1

2π

∫ 2π

0
dφe−iφNeiφN̂

where φ determines the orientation in ”gauge space” and
exp[−iφN] is the symmetry dictated weight.

• Angular momentum, SU(2) symmetry group

P IM =
∑

K

gK

∫
dΩDI

KM(Ω)R̂(Ω)

where the Euler angles Ω determine the orientation in
space and the symmetry dictated weight are the Wigner D
matrices plus some coefficients gK due to the non-abelian
character of SU(2)



Order parameter
Every broken symmetry has associated order parameters

• Particle number: Pairing gap ∆ = G⟨
∑

k c+
k c+

k̄
⟩

Non zero when the symmetry is broken
When the wf is rotated in gauge space eiφN̂ |Φ⟩ it acquires
a complex phase ∆ → ∆e2iφ

• Rotational invariance: any mean value of multipole
operator βλµ = ⟨Qλµ⟩ proportional to the spherical
harmonics Yλµ measuring the departure of the matter
distribution from sphericity
Quadupole moment is the lowest order and most popular
Again the ”deformation parameter” ⟨Qλµ⟩ acquires a
complex phase when the symmetry breaking mean field
solution is rotated (far more involved than in the particle
number case due to the non-abelian character of SU(2))



Order parameters
One says that the orientation φ (phase) and the size |∆| of the
complex order parameter are canonical conjugate variables
and therefore if one considers fluctuations in orientation

PN =
1

2π

∫ 2π

0
dφe−iφNeiφN̂

one should also consider fluctuations in |∆|

|Ψσ⟩ =
∫

d |∆|fσ(|∆|)PN |Φ(|∆|)⟩

This is the motivation/justification of the generator coordinate

method (GCM). In the rotational case

|Ψσ⟩ =
∫

dβµν fσ(βµν)P IM |Φ(βµν)⟩

The choice of the βµν depends on the physics to be described.
Typically, one takes β20 or β20 and β30, or β20 and γ etc



Approximations
The above procedures set up a hierarchy (ladder) of
approximations

• Mean field with symmetry breaking (HFB)
• Symmetry restoration
• Fluctuation in ”collective variables” (the canonical

conjugate of orientations)
One can add additional steps to the ladder by considering

• elementary two quasiparticle excitations β+
k β+

l |Φ⟩
• elementary four quasiparticle excitations β+

k1
β+

k2
β+

k3
β+

k4
|Φ⟩

• etc ...
to eventually reach (QC language) full CI.

Full CI impossible except in small configuration spaces

Tools to quantify the amount of correlations are required



Quantum information
By using quantum information tools we would like to quantify
how much correlations are incorporated into the different wf of
the different approaches considered. The non-correlated
symmetry restricted Hartree Fock (HF) is used as a baseline

• Spontaneous symmetry breaking
• Symmetry restoration
• GCM
• Restricted CI

Assumption: Correlations are connected with the degree of
entanglement in the system

Quantities like quantum discord or the von Neuman entropy
of the one body density matrix are explored.

Our focus it to understand also how the QI quantities evolve
across quantum phase transitions, typically as a function of
force strength parameters.



Our work

In the past we have
studied several variants
of the Lipkin model with
various tools of quantum
information
• Entropies
• Discord

In those models parity
symmetry and particle
number symmetries
could be broken. Can be solved exactly

Breaks rotational invariance

Phys. Rev. A 104, 032428; Phys. Rev. A 103, 032426; Phys.
Rev. A 105, 062449



Quantum information tools

• Symmetrization principle for fermions poses a problem
• Instead of particles (Hilbert spaces) one uses orbitals

(algebras)
• Quantum discord

Measures quantum correlations between two partitions A
and B of the whole set of orbitals as the difference
between the quantum conditional entropy and its classical
counterpart

• Entropy one body density matrix
The relative entropy of each single orbital with respect to
the remaining ones is summed up to define the entropy.
Orbital dependent. Uses the natural orbital basis as a
reference.



Quantum information tools: Discord



Quantum information tools: Discord



Discord for fermions



Discord for fermions



Discord for fermions



Models: Lipkin



Models: Agassi



Models: Lipkin 3 levels
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Results: ϵ vs S



Results: ϵ vs S



Results: Four orbital QD



Results: Four orbital QD



Results: Four orbital QD
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