Neutrino Flavor Dynamics:
Quantum Evolution

Josh Martin, Huaiyu Duan (UNM), A. Roggero (Trento)
J. Carlson

- Astrophysical Neutrinos (Supernovae, Neutron Star Mergers)
- Mean field (product state) treatments
- Quantum Computing Approaches
- Dynamics: Quench
- Dynamics: Time-Dependence
- Outlook

Flavor evolution of neutrinos and antineutrinos in supernovae and NS mergers (dense neutrino environments)

$$
H=H_{1, v}+H_{1, m}+H_{2}
$$

$$
\begin{aligned}
H_{1, v} & =\left(\begin{array}{cc}
-\frac{\delta m^{2}}{2 E_{\nu}} \cos (2 \theta) & \frac{\delta m^{2}}{2 E_{\nu}} \sin (2 \theta) \\
\frac{\delta m^{2}}{2 E_{\nu}} \sin (2 \theta) & \frac{\delta m^{2}}{2 E_{\nu}} \cos (2 \theta)
\end{array}\right) \\
H_{1, m} & =\left(\begin{array}{cc}
\sqrt{2} G_{f} n_{e} & 0 \\
0 & \sqrt{2} G_{F} n_{e}
\end{array}\right)
\end{aligned}
$$

Independent Neutrino Evolution (Solar, Accelerators, Reactors,...)

Flavor Exchange

$$
H_{2}=\frac{G_{F}}{2 V} \sum_{i<j}\left[1-\overrightarrow{v_{i}} \cdot \overrightarrow{v_{j}}\right] \sigma_{i} \cdot \sigma_{j}
$$

Two Dimensional Lattice for Neutrinos (Momentum space)

Comparison of Neutrino Problem vs. Heisenberg-like spin problem

	Heisenberg (Typical)	Neutrinos
1-Body 2-Body Spin Exchange	Nearest Neighbor	All-to-All
Initial State	Uniform	Space-Time Magnitude \& angle dependence
Finite T, Linear Evolution	Response	Product State
Quench,...	Geometry: 2-body decays	
Measurement	Along H	Flavor Basis

Product Initial State and Time Evolution:

Initial State is a product of $\operatorname{SU}(2)$ spinors

- Assuming initial distribution is incoherent from

$$
\psi[t=0]=\prod_{i, j} \phi_{i, j}
$$ coupling to dense hadronic matter in the interior

- Initial Flavor angular and energy distributions encoded in $\phi_{i, j}$ grid, couplings encode angular \& energy dependent flux
Mean-field (product state) evolution:

$$
\Psi[t+\delta t]=\prod_{i, j} \phi_{i . j}(t+\delta t) \approx \exp [-i H t] \Psi[t]
$$

- Approximate truncated Hilbert space to enable evolution
- 2 N amplitudes instead of 2^{N} for full problem
- Typically of order 100 Energies $\times 100$ angles $=10 \mathrm{~K}$ amplitudes

Time dependent Hamiltonian: start at radius R0 and integrate to large radius
Time dependence from (1) geometry (relative angles decreasing with time)
Matter Density decreasing with distance (time)

Even mean field can be computationally challenging

ν_{e} survival probability versus radius for different \# angle bins, tolerances

Duan, Fuller, Carlson, Qian; PRD 2006

Spectral Swap

In many cases, find the neutrinos 'swap' spectra at and above some energy

Above the transition muon neutrinos \rightarrow electron neutrinos and vice versa

Final state is what can be observed terrestrially (e.g. DUNE)
Depends upon many things:
Initial energy spectra Initial angular distributions Normal/Inverted neutrino mass hierarchy

Intermediate time evolution influences
Energy deposition in the shock
Nucleosynthesis

Rich possibilities, multiple swaps, etc.
CP-violations, matter effects,
Is product state evolution reliable? When?

Beyond Mean Field

$$
\begin{gathered}
\Psi[t]=\sum_{\alpha=1}^{2^{N}} \phi_{\alpha}(t) \\
\Psi[t+\delta t]=\exp [-i H t] \Psi[t] \\
2^{16}=65 \mathrm{~K} \text { amplitudes } \\
2^{20}=1 \mathrm{M} \text { amplitudes }
\end{gathered}
$$

Hamiltonian is somewhat sparse. Each state connects to
N Spin flip states plus
N^{2} spin exchange states
Binary representation of many-body state - each spin up (1) or down(0)

In flavor basis:
$H_{1, M} \propto \sigma_{z} \quad$ is diagonal in flavor
$H_{1, v} \propto \cos (2 \theta) \sigma_{z}+\sin (2 \theta) \sigma_{x} \quad$ Diagonal plus bit flip
$H_{2} \propto \sigma_{i} \cdot \sigma_{j} \quad$ Diagonal plus spin exchange
Fairly reasonable to do $16-24$ spins
on a laptop/desktop
However, neutrino masses (with matter)
lead to short oscillation lengths

Simplify Problem by adding symmetries Doing quench (time-dependent H) only

Two Beam Hamiltonian

$$
\begin{gathered}
\frac{H}{\mu}=\frac{\Omega}{2} \vec{B} \cdot\left(\vec{J}_{\mathrm{A}}-\vec{J}_{\mathrm{B}}\right)+\frac{2}{N} \vec{J}_{\mathrm{A}} \cdot \vec{J}_{\mathrm{B}}, \\
\vec{J}_{\mathrm{A} / \mathrm{B}}=\sum_{i \in \mathrm{~A} / \mathrm{B}} \vec{\sigma}_{i} / 2 .
\end{gathered}
$$

No 2-body coupling within a beam Total Hamiltonian has term proportional to Beam A . Beam B spin

Initial State (product)

$$
\begin{aligned}
& |\Psi\rangle=\left|\hat{n}_{\mathrm{A}}\right\rangle^{\otimes N_{\mathrm{A}}}\left|\hat{n}_{\mathrm{B}}\right\rangle^{\otimes N_{\mathrm{B}}} . \\
& \left|\hat{n}_{\mathrm{A} / \mathrm{B}}\right\rangle=\cos \left(\frac{\theta_{A / B}}{2}\right)\left|\nu_{1}\right\rangle+\sin \left(\frac{\theta_{A / B}}{2}\right) e^{i \phi_{N_{A}}\left|\nu_{2}\right\rangle,}
\end{aligned}
$$

Initial state and Hamiltonian symmetric under exchange Of any two spins within a beam

Propagate with time-independent Hamiltonian (quench):
Investigate Entanglement Entropy, Purity,
When does the mean-field (product state approximation) work?
\# of spins, time, ...

Possible dynamic phase transitions in low-energy regime of Hamiltonian

Density of States

And initial state distributions

Initial product states sharply peaked in energy
Dark Blue: Full many-body density of states

- Red: bipolar oscillation initial conditions
- Pink: collective precession of the spins
- Cyan: random polarizations of the individual spins

Initial state moments: consistent w/ gaussian for large N

$$
\begin{gathered}
\Delta H^{2}=c_{1} N+c_{0} . \\
c_{0}=\frac{N_{\mathrm{A}} N_{\mathrm{B}}}{4 N^{2}}\left(1-\left(\hat{n}_{\mathrm{A}} \cdot \hat{n}_{\mathrm{B}}\right)\right)^{2}, \\
\lim _{N \rightarrow \infty} \mathcal{M}_{3} \equiv \frac{\left\langle(H-\langle H\rangle)^{3}\right\rangle}{\Delta H^{3}}=0, \\
\lim _{N \rightarrow \infty} \mathcal{M}_{4} \equiv \frac{\left\langle(H-\langle H\rangle)^{4}\right\rangle}{\Delta H^{4}}=3 .
\end{gathered}
$$

Comparison of mean-field and full time evolution Bipolar Oscillations

$$
\theta=0.001
$$

$\theta=0.1$

Agreement improves with larger N , higher density of states

Comparison of mean-field and full time evolution: Maximum Differences

Mean Field works quite well for large N , modest times
Entanglement Entropy

Vertical Lines: threshold values for bipolar instability As a function of the energy asymmetry

Time development of entanglement entropy vs. N Symmetries limit entanglement entropy to $\log _{2}(\mathrm{~N})$

What about time- (radius) dependent Hamiltonian?

Eliminate (most) symmetries

Limits studies to order 12-25 spins : 2^{N} states

Sample problem: Pehlivan, Balaneekin, Kajino, Yoshida PRD 2011

Patwardhan, Cervia, Balentekin (arXiv:2109.08995)

Hamiltonian

$$
\begin{aligned}
& H=H_{\mathrm{vac}}+H_{\nu \nu}(t) \\
& H_{\mathrm{vac}}=\sum_{i} \frac{\omega_{i}}{2} \vec{B} \cdot \vec{\sigma}_{i}, \quad \omega_{i}=i \frac{16 \omega_{0}}{N} \quad(i \in[1, N]) \\
& H_{\nu \nu}(t)=\frac{\mu(t)}{2 N} \sum_{i<j}\left(1-\mathbf{v}_{i} \cdot \mathbf{v}_{j}\right) \vec{\sigma}_{i} \cdot \vec{\sigma}_{j} \\
& \mu(t)=16 \mu_{0}\left(1-\sqrt{1-\left(\frac{R_{\nu}}{r_{0}+t}\right)^{2}}\right)^{2}
\end{aligned}
$$

Two-body term reduces with time
Note all magnetic fields aligned, can keep J_{z} as a good quantum number. J^{2} commutes with $H_{\nu \nu}$

Initial State (1st case)

$$
|\Psi(t=0 ; n)\rangle=\bigotimes_{i=1}^{n}\left|\nu_{e}\right\rangle_{i} \bigotimes_{j=n+1}^{N}\left|\nu_{\tau}\right\rangle_{j} .
$$

$$
\text { Initial state all } \nu_{e}
$$

Initial state all ν_{e} : all initial spins parallel
Spectral Split in full quantum treatment

- Spectral Split observed!
- Agreement between mean-field and many-body
- Uniform coupling and grid couplings similar
- Entanglement entropy peaks near swap energy

Is this general or special behavior?

Properties of Initial State where spectral split observed

- All initial spins aligned: maximum of neutrino-neutrino interaction
- Initial state can be split into components of fixed M that do not mix
- Initial state is maximal energy state within each subspace

More typical initial product states

- More typically some finite fraction of both flavors
- (Neutronization burst $\sim 90 / 10 \%$, others $40 / 60 \%$)
- Distributions spread in energy and angle

Initial State component w/ N=12, Nup=8 with significant overlap

- All such initial states are far from the edges of the spectrum,
- Both the total spectrum and within individual M

Density of states for $\mathbf{N}=12$, \# up = 8

Time-dependent spectrum

\square
Large Gap / Adiabatic evolution
Avoided level crossing
More general dynamics

Large Gap / Adiabatic evolution Spectral swap / Dynamical phase transition

Interior Spectrum
Energy levels vs time

Energy and variance versus time

$$
\Delta=\frac{\langle H\rangle-E_{\text {min }}}{E_{\text {max }}-E_{\text {min }}}
$$

At end (large radius), Hamiltonian is H_{1} only
Variance is $\frac{\left\langle H^{2}\right\rangle-\langle H\rangle^{2}}{N}=(1 / N) \sum_{i} w_{i}^{2}\left[1-\sigma_{z}(i)^{2}\right]$
Knowledge of N moments $=$ knowledge of all $\left\langle\sigma_{z}(i)\right\rangle$ 'Perfect’ spectral split: variance computed with final H same with initial and final state

Single-spin expectation values (Initial and Final)

What does evolution look like in spectral swap case?
Mean Field works:

A 'typical' case

Initial state all low-E ν_{e}; three highest states ν_{μ}

Mean Field and Many-Body differ significantly

- One-body expectation values can be fit with $\exp \left[-\tilde{\beta} E_{i}\right]$
- Overall fit shown
- Can be fit within subspace with different $\tilde{\beta_{M}}$

Knowledge of 1 moment apparently enough to reconstruct single spin expectation values

On occasion mean-field off in $<\mathrm{H}>$ by $\sim 20 \%$

Coherent Neutrinos Conclusion/Outlook:

- Mean-field solutions produced enticing neutrino flavor physics in dense neutrino environments
- Spectral splits survive in full many-body treatment when adiabatic evolution applies
- In general full quantum treatment modifies the solution from standard mean-field evolution
- Single-spin observables appear to be describable in a statistical treatment
- Hopes for improved mean-field like treatment ($\ll 2^{N}$ states)
- Intriguing analogues to traditional (local) quantum spin Hamiltonians

