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This is similar to the standard bulb model as the relative
couplings 1 − cosðθpqÞ are small.
The final Hamiltonian for the simple model we imple-

ment here can be written compactly, in units of η, as

H ¼
XN

k¼1

b⃗ ·σ⃗k þ
XN

p<q

Jpqσ⃗p · σ⃗q; ð7Þ

with the external field b⃗ ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 0.9252

p
; 0;−0.925Þ

obtained by choosing the mixing angle θv ¼ 0.195 and
pair coupling matrix Jpq ¼ ð1 − cosðθpqÞÞ. Note that in
this model we set the matter potential A in the one-body
contribution to the Hamiltonian Eq. (3) to zero.

A. Real time evolution

The major challenge in implementing the time evolution
in Eq. (2) in a quantum simulation is to find an accurate
approximation to the evolution operator UðtÞ ¼ exp½−iHt&
that can also be decomposed efficiently into local unitary
operations [17]. A simple and popular approach is to use a
first-order Trotter-Suzuki decomposition [19] of the propa-
gator leading to the approximation

U1ðtÞ ¼
YN

j¼1

e−itb⃗·σ⃗j
YN

p<q

e−itJpqσ⃗p·σ⃗q ; ð8Þ

which is correct up to an additive error ϵ ¼ Oðt2Þ. Past
experience with the Euclidean version of this evolution
operator in quantum Monte Carlo suggests that a better
approximation to the full propagator UðtÞ can be obtained
by using the exact propagators for pairs (see e.g., [20,21]).
In order to construct this alternative approximation, we first
rewrite the Hamiltonian in Eq. (7) manifestly as a sum of
ðN2Þ two-body Hamiltonians acting on each pair of qubits

H ¼
XN

p<q

"
b⃗ · ðσ⃗p þ σ⃗qÞ

N − 1
þ Jpqσ⃗k · σ⃗q

#
≔

XN

p<q

hpq: ð9Þ

We can then define an approximate propagatorU2 using the
exact pair propagator as follows

U2ðtÞ ¼
YN

p<q

e−ithpq ≔
YN

p<q

upq: ð10Þ

Note that the implementation of this operator is efficient
since each pair Hamiltonian acts nontrivially only on a
4 × 4 subset of the total Hilbert space and therefore, as
shown for instance in Refs. [22,23], can be implemented
exactly using at most 3 entangling operations. Note that the
error in this approximation still scales asOðt2Þ but nowwith
a possibly reduced prefactor. In Appendix A we present
a direct comparison between the two approximations.

Finally, the approximation order could also be improved
by symmetrizing over the ordering of operators or by
applying symmetry transformations (see e.g., [24]).
Owing to the long range of the interactions, a naive

implementation of this scheme will require either a device
with all-to-all connectivity (like trapped ion systems [25])
or an extensive use of the SWAP operation, represented in
matrix form as

SWAP ¼

0

BBB@

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

1

CCCA: ð11Þ

The effect of this operation is to exchange the state of two
qubits. One can then use this operation to bring a pair of
qubits that we want to interact close to each other by
applying a sequence of SWAP gates of order N. Since we
need to apply all possible pair interactions, we will show
that it is actually possible to carry out a complete step,
under the unitary in Eq. (10), without incurring any
overhead due to the application of the SWAP operations.
The scheme is inspired by the more general fermionic swap
network construction presented in Ref. [26].
We illustrate this idea using the diagram shown in Fig. 1

for a simple case with N ¼ 4 neutrinos. Starting from the
initial state on the left, we first apply the unitaries upq from
Eq. (10) to the odd bonds: for the N ¼ 4 case, these are the
bonds between the (1,2) and (3,4) pairs of qubits. Before
moving to the next pairs, we also apply a SWAP operation
to the same pairs we just acted upon. The resulting unitary
operation is denoted as a double line joining qubits in Fig. 1
and the net effect is that at the next step the qubits that have

FIG. 1. Pictorial representation of the swap network used in our
simulation in the case of N ¼ 4 neutrinos.
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plays an important role in the evolution of the system. For
specific initial states near the extremes of the spectra,
phenomena such as dynamical phase transitions may be
present [30]. For this all-to-all Hamiltonian interaction, as
we show below, the full spectrum has a range that is
proportional to N while the width of the energy distribution
of an initial product state is proportional to

ffiffiffiffi
N

p
while the

energy level spacing for a given total J3 is approximately
constant for largeN. The energy level spacing summed over
all J3 is proportional to 1=N. This behavior is also seen in a
typical spin models with short-range interactions. In this
subsection we discuss the moments of the two-beammodel,
but these can be easily computed for more general cases.
We will proceed by calculating the expectation values of

the first two moments, and the third and fourth central
moments, of the initial condition in the spectrum of the
Hamiltonian. The expectation value of the Hamiltonian is

hHi ¼ N
4

"
ΩB⃗ ·

#
n̂A

NA

N
− n̂B

NB

N

$
þ 2n̂A · n̂B

NANB

N2

%
:

ð7Þ

The expectation value of hH2i can be computed by
expanding the terms in the square of the Hamiltonian, and
the surviving terms in the variance arise only from terms
with repeated spin indices; for operator products applied on

different spin components of the state the expectation value
of the product is the same as the product of the expectation
values. In general terms with more repeated spin indices
will produce lower powers of N in the nth central moment
of the Hamiltonian. The variance can be written in the form

ΔH2 ¼ c1N þ c0: ð8Þ

The term c0 has the form

c0 ¼
NANB

4N2
ð1 − ðn̂A · n̂BÞÞ2; ð9Þ

which vanishes when n̂A ¼ n̂B since this state is an
eigenstate of total spin. We also note that it contains no
term proportional to Ω, therefore it stems only from the
ν − ν interaction term in the Hamiltonian. As the one body
term alone cannot generate interparticle correlation effects,
if c0 dominates the variance for some finite value of N, we
expect to be in the regime in which many-body effects will
be significant due to the finite size. It is therefore important
to study the ratio c0=ðc1NÞ as this will control the size of N
where mean-field-like behavior (which works directly in
the N → ∞ limit) can possibly emerge. Critically, if c1
vanishes for some choice of parameters, we expect that
there exists no value of N such that the many-body and
mean field solutions will agree.
Next we find that c1 is a second order polynomial in Ω.

The second order term comes from the square of the one-
body term, the zeroth order from the square of the two-body
term, and the first order from the product of the two. We
write the variance as

c1 ¼ c1;2Ω2 þ c1;1Ωþ c1;0: ð10Þ

For arbitrary initial polarizations we find that the coeffi-
cients are

c1;2 ¼
1

16

"
NA

N
jB⃗ × n̂Aj2 þ

NB

N
jB⃗ × n̂Bj2

%
; ð11Þ

c1;1 ¼
NANB

4N2
B⃗ · ðn̂B − n̂AÞð1þ n̂A · n̂BÞ; ð12Þ

and c1;0 ¼
NANB

4N2
ð1 − ðn̂A · n̂BÞ2Þ: ð13Þ

If c1 is to vanish identically, then it must be the case that
either each of the c1;i coefficients must equal zero inde-
pendently, or Ω must take some special value such that the
Ω polynomial vanishes. The zeros of the c1 polynomial in
Ω are found with a straightforward application of the
quadratic formula, and we find that the discriminant
(c21;1 − 4c1;2c1;0) is always negative for any choice of
polarizations (n̂A=B) or population fraction NA=N. This

FIG. 1. Histogram of the number of energy states of the many-
body Hamiltonian (blue) in the JA ¼ NA=2, JB ¼ NB=2 sub-
space forN ¼ 3600 spins. Energy bins have a width of 10 in units
of μ. The energy distribution corresponds to the choice of energy
asymmetry (Ω) and population fraction for case 2 the bipolar
mode solution as specified in Table I. Also shown are three initial
conditions projected over the energy spectrum (red, pink, and
cyan histograms). The red histogram corresponds to an initial
polarization in energy space which results in bipolar oscillations
in the large N limit (case 2 in Table I). Similarly, the pink
corresponds to an initial polarization which results in collective
precession of the flavor polarization vectors in the large N limit
(case 2 in Table II). Finally, the cyan represents randomly chosen
polarizations for the n̂A=B unit vectors (case 6 in Table III).
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II. BACKGROUND PHYSICS

A. Neutrino bulb model

At tPB * 3 s, the inner core of the progenitor star has
settled down into a proto-neutron star with a radius of
about 10 km. In the following !10 s, the nascent neutron
star radiates away its gravitational binding energy as out-
lined above. During this time, neutrinos could deposit
energy into the matter above the neutron star and create a
high-entropy ‘‘hot bubble’’ between the proto-neutron star
surface and the shock. Inside the hot bubble, a quasistatic
and near adiabatic mass outflow, the so-called ‘‘neutrino-
driven wind’’, may be established at this epoch as a result
of neutrino/antineutrino heating [24,25]. To simplify the
numerical calculations of the flavor transformations of
neutrinos and antineutrinos inside the hot bubble, we ap-
proximate the physical and geometric conditions of the
post-shock supernova by a ‘‘neutrino bulb model’’. This
model is characterized by the following assumptions:

(1) The neutron star emits neutrinos uniformly and iso-
tropically from the surface of a sphere (neutrino
sphere) of radius R!; [Note that the neutrino flux
emitted at angle #0 with respect to the normal
direction at the neutrino sphere comes with a geo-
metric factor cos#0. See Eq. (5).]

(2) At any point outside the neutrino sphere, the physi-
cal conditions, such as baryon density nb, tempera-
ture T, etc., depend only on the distance r from this
point to the center of the neutron star;

(3) Neutrinos are emitted from the neutron star surface
in pure flavor eigenstates and with Fermi-Dirac type
energy spectra.

The neutrino bulb model, as illustrated in Fig. 1, has
multifold symmetries. It is clearly spherically symmetric.
This means that one only need study the physical condi-
tions at a series of points along one radial direction, which
we choose to be the z-axis. It is also obvious that the
neutrino flux seen at any given point on the z-axis has a
cylindrical symmetry. As a result, different neutrino beams
possessing the same polar angle with respect to the z-axis
and with the same initial physical properties (flavor, en-
ergy, etc.) should be completely equivalent. In other words,
they will have identical flavor evolution histories. One may
choose this polar angle to be #, the angle between the
direction of the beam and the z-axis. Alternatively, a beam
could be specified by the polar angle ! giving the emission
position of the beam on the neutrino sphere (see Fig. 1). A
third option, which we have found to be most useful in our
numerical calculations, is to label the beam by emission
angle #0. This is defined to be the angle with respect to the
normal direction at the point of emission on the neutrino
sphere (see Fig. 1). This emission angle #0 is an intrinsic
geometric property of the beam, and does not vary along
the neutrino trajectory. Moreover, because of assumptions
1 and 2 in the neutrino bulb model, all the neutrino beams
with the same emission angle #0 and the same initial

physical properties must be equivalent. In simulating the
flavor transformations of neutrinos in the neutrino bulb
model, it is only necessary to follow a group of neutrinos
which are uniquely indexed by their initial flavors, energies
and emission angles.

At any given radius r, all the geometric properties of a
neutrino beam may be calculated using r and #0. For
example, # and ! are related to #0 through the following
identity:

 

sin#
R!

" sin!

l# l0
" sin#0

r
; (1)

where

 l $ r cos#; (2)

and

 l0 $ R! cos#0: (3)

Length l# l0 in Eq. (1) is also the total propagation
distance along the neutrino beam. At a point at radius r,
the neutrino beams are restricted to be within a cone of
half-angle

 #max " arcsin
!
R!
r

"
(4)

(see Fig. 1).
One can integrate flux over all neutrino beams (angles)

and calculate the neutrino number density n! at radius r. In
this paper we use the symbol ! in the general sense,
denoting either a neutrino or an antineutrino. We use !"
( "!") to denote a neutrino (antineutrino) in flavor state ",
and !" ( "!") to denote a neutrino (antineutrino) created at
the neutrino sphere initially in flavor state ". As an ex-
ample, we shall calculate the differential number density
dn!"%q& at radius r: this will have contributions from all !"

 Neutron
Star

P

Rν

Θ z
ϑ

ν

ϑ0

FIG. 1. The geometric picture of the neutrino bulb model. An
arbitrary neutrino beam (solid line) is shown emanating from a
point on the neutrino sphere with polar angle !. This beam
intersects the z-axis at point P with angle #. Because neutrinos
are emitted from the neutrino sphere of radius R!, point P sees
only neutrinos traveling within the cone delimited by the dotted
lines. One of the most important geometric characteristics of a
neutrino beam is its emission angle #0, defined with respect to
the normal direction at the point of emission on the neutrino
sphere (#0 " !' #). All other geometric properties of a neu-
trino beam may be calculated using radius r and #0.
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Flavor evolution of neutrinos and antineutrinos in 
supernovae and NS mergers (dense neutrino environments)
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numerical calculations, is to label the beam by emission
angle #0. This is defined to be the angle with respect to the
normal direction at the point of emission on the neutrino
sphere (see Fig. 1). This emission angle #0 is an intrinsic
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the neutrino trajectory. Moreover, because of assumptions
1 and 2 in the neutrino bulb model, all the neutrino beams
with the same emission angle #0 and the same initial
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FIG. 1. The geometric picture of the neutrino bulb model. An
arbitrary neutrino beam (solid line) is shown emanating from a
point on the neutrino sphere with polar angle !. This beam
intersects the z-axis at point P with angle #. Because neutrinos
are emitted from the neutrino sphere of radius R!, point P sees
only neutrinos traveling within the cone delimited by the dotted
lines. One of the most important geometric characteristics of a
neutrino beam is its emission angle #0, defined with respect to
the normal direction at the point of emission on the neutrino
sphere (#0 " !' #). All other geometric properties of a neu-
trino beam may be calculated using radius r and #0.
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Product Initial State and Time Evolution:
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• Assuming initial distribution is incoherent from 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• 2N amplitudes instead of 2N for full problem

• Typically of order 100 Energies x 100 angles = 10K amplitudes
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geometric property of the beam, and does not vary along
the neutrino trajectory. Moreover, because of assumptions
1 and 2 in the neutrino bulb model, all the neutrino beams
with the same emission angle #0 and the same initial
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flavor transformations of neutrinos in the neutrino bulb
model, it is only necessary to follow a group of neutrinos
which are uniquely indexed by their initial flavors, energies
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At any given radius r, all the geometric properties of a
neutrino beam may be calculated using r and #0. For
example, # and ! are related to #0 through the following
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FIG. 1. The geometric picture of the neutrino bulb model. An
arbitrary neutrino beam (solid line) is shown emanating from a
point on the neutrino sphere with polar angle !. This beam
intersects the z-axis at point P with angle #. Because neutrinos
are emitted from the neutrino sphere of radius R!, point P sees
only neutrinos traveling within the cone delimited by the dotted
lines. One of the most important geometric characteristics of a
neutrino beam is its emission angle #0, defined with respect to
the normal direction at the point of emission on the neutrino
sphere (#0 " !' #). All other geometric properties of a neu-
trino beam may be calculated using radius r and #0.
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hNS ’ R2
!

!
m2

Pl

MNSmN

"
Tmatt!R!" (18a)

’ !0:052 km"
! R!
10 km

"
2
!
1:4M#
MNS

"#Tmatt!R!"
1 MeV

$
(18b)

is the scale height with Tmatt!R!" being the matter tempera-
ture at the neutrino sphere. This exponential fall-off in
density is expected on general physical grounds and is
found in, e.g., the Mayle and Wilson supernova simulations
[2]. As discussed in Refs. [25,26], a steady state between
neutrino heating and cooling results in near isothermal
conditions in the vicinity of the neutron star surface.

This, coupled with the expected very low electron fraction
Ye near the neutron star surface, implies that the baryon
density must have this exponential dependence on radius,
at least for a radius interval $hNS.

It turns out that addition of this exponential density
profile near the neutrino sphere facilitates the multiangle
simulations of neutrino flavor transformation. In Fig. 2 we
plot the net electron number density

 ne % Yenb (19)

obtained from the exponential profile in Eq. (17). For
comparison, we also plot ne!r" obtained from the constant
entropy profile [Eq. (16)] with entropy per baryon S % 140
and 250. In both Fig. 2 and in the rest of the paper, we take
MNS % 1:4M#, R! % 11 km, Ye % 0:4, gs % 11=2, nb0 %
1:63& 1036 cm'3 and hNS % 0:18 km. Note that once we
have specified nb0 and hNS our model for the physical
environment in the hot bubble is completely determined
by the choice of entropy per baryon S. In units of
Boltzmann constant per baryon, we expect S$ 100 in
the hot bubble [25].

B. Neutrino flavor transformation in supernovae

Our objective is to study the flavor evolution of the
neutrino field when !e and !!e mix with neutrinos and
antineutrinos of another active flavor (say !" and !!"). We
write the wave function of the flavor doublet of a neutrino
(or antineutrino) as

  ! %
a
b

! "
; (20)

where a and b are the amplitudes for a neutrino to be in the
!e ( !!e) and !" ( !!") flavor states, respectively. The flavor
evolution of !# is determined by the Schrödinger equation
(see, e.g., Ref. [3])

 i
d

dt
 !# % H !# %

1

2
'" cos2$( A( B " sin2$( Be"

" sin2$( B)e" " cos2$' A' B
! "

 !# ; (21)

where $ is the vacuum mixing angle, ", A and B!e"" are the
potentials induced by neutrino mass difference, matter, and
background neutrinos, respectively. One obtains the appro-
priate Hamiltonian for antineutrinos by making the trans-
formation

 A! 'A; B! 'B; Be" ! 'B)e": (22)

The vacuum potential is defined as

 " * %m2

2E!
; (23)

where %m2 is the neutrino mass-squared difference, and E!
is the energy of the neutrino. (Note that we also use q as the
energy or the magnitude of the momentum of a neutrino in

this section, which is the same as E!.) We define the mass-
squared difference in terms of the appropriate neutrino
mass eigenvalues m1 and m3 to be %m2 * m2

3 'm2
1. In

what follows we employ the normal (%m2 % %m2
atm) and

inverted (%m2 % '%m2
atm) mass hierarchies. The matter

potential is

 A %
%%%
2
p
GFne %

%%%
2
p
GFYenb; (24)

where GF is the Fermi coupling constant. We define a
reduced density matrix %! (in the flavor basis) from  ! as

 %! *
1

2
jaj2 ' jbj2 2ab)

2a)b 'jaj2 ( jbj2
! "

: (25)
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FIG. 2 (color online). Plot of (effective) net lepton number
density nl!r". The dashed and dot-dashed lines are for the net
electron density ne % Yenb using the baryon density profile in
Eq. (16) with S % 140 and 250, respectively. The dotted line is
for the net electron density assuming the baryon density profile
in Eq. (17) only. The solid line is for the effective net !e density
along the radial trajectory [Eq. (40)].
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Time dependent Hamiltonian: start at radius R0 and integrate to large radius

Time dependence from (1) geometry (relative angles decreasing with time)

Matter Density decreasing with distance (time)

Time dependence from (1) geometry (relative angles decreasing with time)

Matter Density decreasing with distance (time)



Even mean field can be computationally challenging

a large and dominant matter potential A. Including n0b
makes the matter potential A!R!" much bigger and this
helps keep neutrinos in their initial flavor states, at least for
the significant range of neutrino/antineutrino energies and
for our chosen value of j"m2j ’ "m2

atm. We also note that

neutrinos on different trajectories propagate through differ-
ent distances. A big matter potential breaks the correlation
between neutrinos on different trajectories and lets them
evolve independently for awhile.

These considerations can be cast in simpler, more physi-
cal terms. In the relatively narrow region near the neutrino
sphere where n0b dominates it has the effect of changing, or
‘‘resetting’’, the neutrino wavefunctions relative to what
they would have been had we employed the unphysical
low-density profile all the way to the neutrino sphere. In the
latter unphysical case, neutrinos are in flavor eigen states at
the neutrino sphere, and the NFIS’s are perfectly aligned
with each other yet slightly deviated from the total effec-
tive field Heff . The effects of this unphysical setup does not
go away quickly with increasing radius because the cou-
pling among the NFIS’s (arising from neutrino-neutrino
forward scatterings) is so strong. If the exponential baryon
density profile n0b is added, the overwhelming matter field
He at the neutrino sphere not only makes the NFIS’s more
aligned with Heff , but also breaks the coupling of the
NFIS’s propagating along different trajectories. In the short
distance where the matter field He dominates, the NFIS’s
on different trajectories have traveled different distances
and so have developed different phases. At the radius
where n0b becomes negligible, the NFIS’s are effectively
‘‘reset’’ to a more physical condition than one would obtain
without n0b.

The other pitfall is that one may use an insufficient
number of angle bins. Assuming that there has been very
little neutrino flavor conversion close to the neutrino
sphere where r# R!, we can write

 

B!r; #" ’
!!!
2
p
GF

2#R2
!

" L!e
hE!ei

$
L !!e

hE !!ei

#$
1$

!!!!!!!!!!!!!!!!!!!!!!
1$

"R!
r

#
2

s
$ 1

2
cos#

"R!
r

#
2
%
; (44a)

Be$!r; #" ’ 0: (44b)

For a small step size "l, one has
 

 !%!l% "l" ’ exp!$iH"l" !%!l" (45a)

’
e$i!A%B""l $i " sin2&

A%B sin&!A% B""l'
$i " sin2&

A%B sin&!A% B""l' ei!A%B""l

 !
 !%!l"; (45b)

where we have used the fact that A% B( " at r# R!. It
is the off-diagonal elements of the transformation matrix in
Eq. (45b) that govern the exchange of the two flavor
components of a neutrino wave function. These off-
diagonal terms, we note, are oscillatory functions of the
B potential and the step size "l, both of which have angular
dependence [see Eqs. (2) and (44a)]. Physically, this oscil-
latory feature with respect to angles is suppressed by strong
correlation among neutrinos on different trajectories.
Numerical codes without enough angular resolution, how-
ever, could allow a spurious ‘‘cross-talk’’ between angle

zones which artificially strengthens flavor oscillations.
This unphysical feedback could produce substantial neu-
trino flavor conversion even at low radius in some numeri-
cal schemes.

In Fig. 3 we plot average survival probability hP!e!e!r"i
along the radial trajectory with the normal mass hierarchy
using different numerical schemes (error tolerance, num-
ber of angle bins, etc.). HereP!e!e!r" is the probability for a

!e to be a !e at radius r, and the average is done over the
initial energy distribution for !e. (As mentioned above, we
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FIG. 3 (color online). Average !e survival probability
hP!e!e !r"i along the radial trajectory ( cos#0 ) 1) with the
normal mass hierarchy in different numerical schemes. Here
the average is done over the initial energy spectra of !e. The
dot-dashed line uses 160 angle bins and error tolerance 10$5 in
each step without the initial baryon density profile n0b. The
dashed and solid lines both include n0b and employ error toler-
ance 10$10, but use 256 and 512 angle bins, respectively.
Calculations with 768, 1024 and 1407 angle bins in different
binning schemes produce curves which fall on the solid line.
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 survival probability versus radius for different # angle bins, tolerances νe

Duan, Fuller, Carlson, Qian; PRD 2006



Spectral Swap

produce results qualitatively similar to those in the multi-
angle simulations, and yet do not involve complicated
entanglement of neutrino flavor transformation on different
trajectories. They are therefore easier to understand. In
Sec. IVA we will try to explain some of the results pre-
sented in Sec. III B with the help of these simplified
calculations. In Sec. IV B we will study how the onset of
large-scale collective neutrino flavor transformation is re-
lated to the neutrino luminosity L!. We will comment on
the validity of the single-angle approximation at the end of
this section.

Unless otherwise stated, all the simulations discussed in
this section have the same parameters as those in Sec. III,
i.e., j"m2j ! 3" 10#3 eV2, # ! 0:1, L! ! 1051 erg=s
and S ! 140, but are based on the single-angle
approximation.

A. Neutrino flavor transformation in the bi-polar mode

The novel features of neutrino flavor transformation in
the hot bubble region are easier to understand in the

formalism of NFIS (Neutrino Flavor Iso-Spin) [17] than
in the traditional formalism of the wave functions. In
Fig. 8, we plot h&x$r%i, h&y$r%i and h&z$r%i, the three com-
ponents of the average NFIS’s in flavor space, for !e and !!e
in both the scenarios with a normal mass hierarchy and
with an inverted mass hierarchy. (The three components of
the NFIS’s are averaged over the initial neutrino or anti-
neutrino energy spectra.) We note that the probability for a
neutrino or antineutrino initially in the $ flavor state to be
in the electron flavor state is related to &z by
 

P!$!e !
1

2
& &!$z; (47a)

P !!$ !!e !
1

2
# & !!$z: (47b)

Comparing Fig. 8 with Fig. 4, one sees that the results of
single-angle simulations are qualitatively the same as those
obtained in the full multiangle simulations. We also note
that in the region where neutrinos transform, the NFIS’s of
both neutrinos and antineutrinos have large values of &x
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FIG. 7 (color online). Change of energy spectra of neutrinos (left panels) and antineutrinos (right panels) with the normal (upper
panels) and inverted (lower panels) neutrino mass hierarchies. The dotted and dot-dashed lines are the spectra of neutrinos
(antineutrinos) in the electron and tau flavors, respectively, at r ! R!, and the solid and dashed lines are the corresponding spectra
at r ! 250 km.
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Initial νe

Initial νμ

Final νe

Final νμ

In many cases, find the neutrinos ‘swap’ spectra  
         at and above some energy

Above the transition muon neutrinos  electron neutrinos 
         and vice versa


Final state is what can be observed terrestrially (e.g. DUNE)

Depends upon many things:


Initial energy spectra

Initial angular distributions

Normal/Inverted neutrino mass hierarchy

→

Intermediate time evolution influences

     Energy deposition in the shock

     Nucleosynthesis

     …


Rich possibilities, multiple swaps, etc.

CP-violations, matter effects, ….


Is product state evolution reliable? When? 
Duan, Fuller, Carlson, Qian; PRD 2006



Beyond Mean Field

Ψ[t] =
2N

∑
α=1

ϕα(t)

Ψ[t + δt] = exp[−iHt] Ψ[t]

Binary representation of many-body state - each spin up (1) or down(0)

In flavor basis:


H1,v ∝ cos(2θ)σz + sin(2θ)σx

is diagonal in flavor
H1,M ∝ σz

Diagonal plus bit flip


H2 ∝ σi ⋅ σj Diagonal plus spin exchange


216 = 65K amplitudes

220 =  1M amplitudes


Hamiltonian is somewhat sparse.  Each state connects to 
N Spin flip states plus  

N2 spin exchange states


Fairly reasonable to do 16-24 spins 
on a laptop/desktop


However, neutrino masses (with matter) 
lead to short oscillation lengths



Simplify Problem by adding symmetries

Doing quench (time-dependent H) only

time-evolution incurs a considerable increase of the sim-
ulation cost. This problem can be circumvented using
algorithms to perform simulations in the interaction picture
(see e.g. [26]) and we plan to leverage this technology in
future work. We assume that the presence of any other
charged leptons is negligible.
Determining the flavor evolution of the dense neutrino

gas, even under the assumptions of homogeneity and
isotropy, is prohibitively difficult. For an arbitrary initial
condition describing the initial flavor states of N neutrinos,
the time evolution of 2N complex amplitudes must be
tracked consistently. In the following work we will study
the flavor dynamics of a system which is approximated as
two “beams” of neutrinos. In this approximation, there are
only two distinct velocities vA and vB, so we can extract the
geometric factor 1 − vi · vj from the neutrino-neutrino
coherent forward scattering potential. We also assume that
within each beam there are monochromatic neutrinos such
that we only retain two distinct vacuum oscillation frequen-
cies, ωA and ωB.
With the momentum geometry and energies specified,

we will work in the frame which rotates about the B⃗ axis
with frequency

ðωA þ ωBÞ
2

such that we drop the component of the vacuum oscillation
Hamiltonian which is common to both beams. The two
body Hamiltonian is characterized by the strength

μ ¼
ffiffiffi
2

p
GFN
V

ð1 − vA · vBÞ; ð2Þ

and we will measure all other energies and times in units
of μ. We thus define Ω ¼ ðωA − ωBÞ=μ and express the
two-beam Hamiltonian for the quantum many-body prob-
lem in units of μ as

H
μ
¼ Ω

2
B⃗ · ðJ⃗A − J⃗BÞ þ

2

N
J⃗A · J⃗B; ð3Þ

where J⃗A=B ¼
P

i∈A=B σ⃗i=2. We note that the Hamiltonian
in Eq. (3) is integrable and a complete solution could, in
principle, be obtained using the Bethe ansatz [18,25,27].
Having normalized all energies to the characteristic scale of
the neutrino-neutrino forward scattering term, we set μ ¼ 1
thereby suppressing explicit dependence on μ throughout
the rest of this work.

III. INITIAL PRODUCT STATES AND ENERGY
MOMENTS

The initial conditions we will study are product states of
the individual spins with aligned spins within each beam.
This is a highly simplified case of a more realistic initial

state in which, for example, oscillations are suppressed by
the large matter density near the surface of a protoneutron
star, but the decoupling regime at the surface will be energy
and flavor dependent. It has the advantage of making it easy
to compare the evolution of the mean-field and many-body
case starting from the same initial state. The symmetries in
this initial state can also be exploited to treat the many-body
dynamics very efficiently.
We write our initial state as

jΨi ¼ jn̂Ai⊗NA jn̂Bi⊗NB : ð4Þ

The unit vectors n̂A=B are parametrized by azimuthal and
polar angles θA=B and ϕA=B, and the individual single
particle states are written in terms of these angles as

jn̂A=Bi ¼ cos
"
θA=B
2

#
jν1iþ sin

"
θA=B
2

#
eiϕA=B jν2i; ð5Þ

where jν1i and jν2i are the mass eigenstates of the single
neutrino vacuum Hamiltonian.
This initial condition is highly symmetric, and as such it

accesses only a tiny fraction of the eigenstates of the total
many body Hamiltonian. We observe that the number of
energy states with nonzero overlap with this initial con-
dition scales at most as ∼N3=2 rather than exponentially in
N, which we will justify in the following paragraphs. We
will express the initial condition in the angular momentum
basis jJA;MAi of each block of spins such that

jΨi ¼
X

MA;MB

cMA;MB
jJA;MAi ⊗ jJB;MBi: ð6Þ

We also see that the Hamiltonian keeps invariant the
individual squared angular momentum of each block,
J2A=B, and the total ê3 projection J3 ¼ MA þMB (i.e. the

projection into B⃗ ¼ −ê3 in the mass basis) and that in this
choice of basis the many-body Hamiltonian is tridiagonal.
The initial condition is a state with maximal J2A and J2B, so
we therefore only need to determine with which total
angular momentum projection J3 subspaces our initial state
has appreciable nonzero overlap, and we can then effi-
ciently diagonalize those subspaces due to their tridiagonal
structure using the subroutine eigh_tridiagonal
provided by SciPy [28] (see also [29]). Furthermore, from
the conserved quantities of the Hamiltonian and the
structure of the general form of our initial condition
[Eq. (6)] we observe that the dimensionality of the
accessible Hilbert space scales at most as N2. In Fig. 1
we show the total distribution of energy eigenstates as a
histogram for all possible J3 subspaces of the Hamiltonian
with JA=B ¼ NA=B=2.
In this subsection, we compute the energy distribution of

the initial product state in terms of moments of the
Hamiltonian calculated with respect to our initial state.
For our time-independent Hamiltonian, energy conservation
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time-evolution incurs a considerable increase of the sim-
ulation cost. This problem can be circumvented using
algorithms to perform simulations in the interaction picture
(see e.g. [26]) and we plan to leverage this technology in
future work. We assume that the presence of any other
charged leptons is negligible.
Determining the flavor evolution of the dense neutrino

gas, even under the assumptions of homogeneity and
isotropy, is prohibitively difficult. For an arbitrary initial
condition describing the initial flavor states of N neutrinos,
the time evolution of 2N complex amplitudes must be
tracked consistently. In the following work we will study
the flavor dynamics of a system which is approximated as
two “beams” of neutrinos. In this approximation, there are
only two distinct velocities vA and vB, so we can extract the
geometric factor 1 − vi · vj from the neutrino-neutrino
coherent forward scattering potential. We also assume that
within each beam there are monochromatic neutrinos such
that we only retain two distinct vacuum oscillation frequen-
cies, ωA and ωB.
With the momentum geometry and energies specified,

we will work in the frame which rotates about the B⃗ axis
with frequency

ðωA þ ωBÞ
2

such that we drop the component of the vacuum oscillation
Hamiltonian which is common to both beams. The two
body Hamiltonian is characterized by the strength

μ ¼
ffiffiffi
2

p
GFN
V

ð1 − vA · vBÞ; ð2Þ

and we will measure all other energies and times in units
of μ. We thus define Ω ¼ ðωA − ωBÞ=μ and express the
two-beam Hamiltonian for the quantum many-body prob-
lem in units of μ as

H
μ
¼ Ω

2
B⃗ · ðJ⃗A − J⃗BÞ þ

2

N
J⃗A · J⃗B; ð3Þ

where J⃗A=B ¼
P

i∈A=B σ⃗i=2. We note that the Hamiltonian
in Eq. (3) is integrable and a complete solution could, in
principle, be obtained using the Bethe ansatz [18,25,27].
Having normalized all energies to the characteristic scale of
the neutrino-neutrino forward scattering term, we set μ ¼ 1
thereby suppressing explicit dependence on μ throughout
the rest of this work.

III. INITIAL PRODUCT STATES AND ENERGY
MOMENTS

The initial conditions we will study are product states of
the individual spins with aligned spins within each beam.
This is a highly simplified case of a more realistic initial

state in which, for example, oscillations are suppressed by
the large matter density near the surface of a protoneutron
star, but the decoupling regime at the surface will be energy
and flavor dependent. It has the advantage of making it easy
to compare the evolution of the mean-field and many-body
case starting from the same initial state. The symmetries in
this initial state can also be exploited to treat the many-body
dynamics very efficiently.
We write our initial state as

jΨi ¼ jn̂Ai⊗NA jn̂Bi⊗NB : ð4Þ

The unit vectors n̂A=B are parametrized by azimuthal and
polar angles θA=B and ϕA=B, and the individual single
particle states are written in terms of these angles as

jn̂A=Bi ¼ cos
"
θA=B
2

#
jν1iþ sin

"
θA=B
2

#
eiϕA=B jν2i; ð5Þ

where jν1i and jν2i are the mass eigenstates of the single
neutrino vacuum Hamiltonian.
This initial condition is highly symmetric, and as such it

accesses only a tiny fraction of the eigenstates of the total
many body Hamiltonian. We observe that the number of
energy states with nonzero overlap with this initial con-
dition scales at most as ∼N3=2 rather than exponentially in
N, which we will justify in the following paragraphs. We
will express the initial condition in the angular momentum
basis jJA;MAi of each block of spins such that

jΨi ¼
X

MA;MB

cMA;MB
jJA;MAi ⊗ jJB;MBi: ð6Þ

We also see that the Hamiltonian keeps invariant the
individual squared angular momentum of each block,
J2A=B, and the total ê3 projection J3 ¼ MA þMB (i.e. the

projection into B⃗ ¼ −ê3 in the mass basis) and that in this
choice of basis the many-body Hamiltonian is tridiagonal.
The initial condition is a state with maximal J2A and J2B, so
we therefore only need to determine with which total
angular momentum projection J3 subspaces our initial state
has appreciable nonzero overlap, and we can then effi-
ciently diagonalize those subspaces due to their tridiagonal
structure using the subroutine eigh_tridiagonal
provided by SciPy [28] (see also [29]). Furthermore, from
the conserved quantities of the Hamiltonian and the
structure of the general form of our initial condition
[Eq. (6)] we observe that the dimensionality of the
accessible Hilbert space scales at most as N2. In Fig. 1
we show the total distribution of energy eigenstates as a
histogram for all possible J3 subspaces of the Hamiltonian
with JA=B ¼ NA=B=2.
In this subsection, we compute the energy distribution of

the initial product state in terms of moments of the
Hamiltonian calculated with respect to our initial state.
For our time-independent Hamiltonian, energy conservation
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No 2-body coupling within a beam

Total Hamiltonian has term 

proportional to Beam A . Beam B spin

Initial State (product)

time-evolution incurs a considerable increase of the sim-
ulation cost. This problem can be circumvented using
algorithms to perform simulations in the interaction picture
(see e.g. [26]) and we plan to leverage this technology in
future work. We assume that the presence of any other
charged leptons is negligible.
Determining the flavor evolution of the dense neutrino

gas, even under the assumptions of homogeneity and
isotropy, is prohibitively difficult. For an arbitrary initial
condition describing the initial flavor states of N neutrinos,
the time evolution of 2N complex amplitudes must be
tracked consistently. In the following work we will study
the flavor dynamics of a system which is approximated as
two “beams” of neutrinos. In this approximation, there are
only two distinct velocities vA and vB, so we can extract the
geometric factor 1 − vi · vj from the neutrino-neutrino
coherent forward scattering potential. We also assume that
within each beam there are monochromatic neutrinos such
that we only retain two distinct vacuum oscillation frequen-
cies, ωA and ωB.
With the momentum geometry and energies specified,

we will work in the frame which rotates about the B⃗ axis
with frequency

ðωA þ ωBÞ
2

such that we drop the component of the vacuum oscillation
Hamiltonian which is common to both beams. The two
body Hamiltonian is characterized by the strength
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and we will measure all other energies and times in units
of μ. We thus define Ω ¼ ðωA − ωBÞ=μ and express the
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H
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N
J⃗A · J⃗B; ð3Þ

where J⃗A=B ¼
P

i∈A=B σ⃗i=2. We note that the Hamiltonian
in Eq. (3) is integrable and a complete solution could, in
principle, be obtained using the Bethe ansatz [18,25,27].
Having normalized all energies to the characteristic scale of
the neutrino-neutrino forward scattering term, we set μ ¼ 1
thereby suppressing explicit dependence on μ throughout
the rest of this work.

III. INITIAL PRODUCT STATES AND ENERGY
MOMENTS

The initial conditions we will study are product states of
the individual spins with aligned spins within each beam.
This is a highly simplified case of a more realistic initial

state in which, for example, oscillations are suppressed by
the large matter density near the surface of a protoneutron
star, but the decoupling regime at the surface will be energy
and flavor dependent. It has the advantage of making it easy
to compare the evolution of the mean-field and many-body
case starting from the same initial state. The symmetries in
this initial state can also be exploited to treat the many-body
dynamics very efficiently.
We write our initial state as

jΨi ¼ jn̂Ai⊗NA jn̂Bi⊗NB : ð4Þ

The unit vectors n̂A=B are parametrized by azimuthal and
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where jν1i and jν2i are the mass eigenstates of the single
neutrino vacuum Hamiltonian.
This initial condition is highly symmetric, and as such it

accesses only a tiny fraction of the eigenstates of the total
many body Hamiltonian. We observe that the number of
energy states with nonzero overlap with this initial con-
dition scales at most as ∼N3=2 rather than exponentially in
N, which we will justify in the following paragraphs. We
will express the initial condition in the angular momentum
basis jJA;MAi of each block of spins such that

jΨi ¼
X

MA;MB

cMA;MB
jJA;MAi ⊗ jJB;MBi: ð6Þ

We also see that the Hamiltonian keeps invariant the
individual squared angular momentum of each block,
J2A=B, and the total ê3 projection J3 ¼ MA þMB (i.e. the

projection into B⃗ ¼ −ê3 in the mass basis) and that in this
choice of basis the many-body Hamiltonian is tridiagonal.
The initial condition is a state with maximal J2A and J2B, so
we therefore only need to determine with which total
angular momentum projection J3 subspaces our initial state
has appreciable nonzero overlap, and we can then effi-
ciently diagonalize those subspaces due to their tridiagonal
structure using the subroutine eigh_tridiagonal
provided by SciPy [28] (see also [29]). Furthermore, from
the conserved quantities of the Hamiltonian and the
structure of the general form of our initial condition
[Eq. (6)] we observe that the dimensionality of the
accessible Hilbert space scales at most as N2. In Fig. 1
we show the total distribution of energy eigenstates as a
histogram for all possible J3 subspaces of the Hamiltonian
with JA=B ¼ NA=B=2.
In this subsection, we compute the energy distribution of

the initial product state in terms of moments of the
Hamiltonian calculated with respect to our initial state.
For our time-independent Hamiltonian, energy conservation
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time-evolution incurs a considerable increase of the sim-
ulation cost. This problem can be circumvented using
algorithms to perform simulations in the interaction picture
(see e.g. [26]) and we plan to leverage this technology in
future work. We assume that the presence of any other
charged leptons is negligible.
Determining the flavor evolution of the dense neutrino

gas, even under the assumptions of homogeneity and
isotropy, is prohibitively difficult. For an arbitrary initial
condition describing the initial flavor states of N neutrinos,
the time evolution of 2N complex amplitudes must be
tracked consistently. In the following work we will study
the flavor dynamics of a system which is approximated as
two “beams” of neutrinos. In this approximation, there are
only two distinct velocities vA and vB, so we can extract the
geometric factor 1 − vi · vj from the neutrino-neutrino
coherent forward scattering potential. We also assume that
within each beam there are monochromatic neutrinos such
that we only retain two distinct vacuum oscillation frequen-
cies, ωA and ωB.
With the momentum geometry and energies specified,

we will work in the frame which rotates about the B⃗ axis
with frequency

ðωA þ ωBÞ
2

such that we drop the component of the vacuum oscillation
Hamiltonian which is common to both beams. The two
body Hamiltonian is characterized by the strength

μ ¼
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ð1 − vA · vBÞ; ð2Þ

and we will measure all other energies and times in units
of μ. We thus define Ω ¼ ðωA − ωBÞ=μ and express the
two-beam Hamiltonian for the quantum many-body prob-
lem in units of μ as

H
μ
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B⃗ · ðJ⃗A − J⃗BÞ þ

2

N
J⃗A · J⃗B; ð3Þ

where J⃗A=B ¼
P

i∈A=B σ⃗i=2. We note that the Hamiltonian
in Eq. (3) is integrable and a complete solution could, in
principle, be obtained using the Bethe ansatz [18,25,27].
Having normalized all energies to the characteristic scale of
the neutrino-neutrino forward scattering term, we set μ ¼ 1
thereby suppressing explicit dependence on μ throughout
the rest of this work.

III. INITIAL PRODUCT STATES AND ENERGY
MOMENTS

The initial conditions we will study are product states of
the individual spins with aligned spins within each beam.
This is a highly simplified case of a more realistic initial

state in which, for example, oscillations are suppressed by
the large matter density near the surface of a protoneutron
star, but the decoupling regime at the surface will be energy
and flavor dependent. It has the advantage of making it easy
to compare the evolution of the mean-field and many-body
case starting from the same initial state. The symmetries in
this initial state can also be exploited to treat the many-body
dynamics very efficiently.
We write our initial state as

jΨi ¼ jn̂Ai⊗NA jn̂Bi⊗NB : ð4Þ

The unit vectors n̂A=B are parametrized by azimuthal and
polar angles θA=B and ϕA=B, and the individual single
particle states are written in terms of these angles as

jn̂A=Bi ¼ cos
"
θA=B
2

#
jν1iþ sin

"
θA=B
2

#
eiϕA=B jν2i; ð5Þ

where jν1i and jν2i are the mass eigenstates of the single
neutrino vacuum Hamiltonian.
This initial condition is highly symmetric, and as such it

accesses only a tiny fraction of the eigenstates of the total
many body Hamiltonian. We observe that the number of
energy states with nonzero overlap with this initial con-
dition scales at most as ∼N3=2 rather than exponentially in
N, which we will justify in the following paragraphs. We
will express the initial condition in the angular momentum
basis jJA;MAi of each block of spins such that

jΨi ¼
X

MA;MB

cMA;MB
jJA;MAi ⊗ jJB;MBi: ð6Þ

We also see that the Hamiltonian keeps invariant the
individual squared angular momentum of each block,
J2A=B, and the total ê3 projection J3 ¼ MA þMB (i.e. the

projection into B⃗ ¼ −ê3 in the mass basis) and that in this
choice of basis the many-body Hamiltonian is tridiagonal.
The initial condition is a state with maximal J2A and J2B, so
we therefore only need to determine with which total
angular momentum projection J3 subspaces our initial state
has appreciable nonzero overlap, and we can then effi-
ciently diagonalize those subspaces due to their tridiagonal
structure using the subroutine eigh_tridiagonal
provided by SciPy [28] (see also [29]). Furthermore, from
the conserved quantities of the Hamiltonian and the
structure of the general form of our initial condition
[Eq. (6)] we observe that the dimensionality of the
accessible Hilbert space scales at most as N2. In Fig. 1
we show the total distribution of energy eigenstates as a
histogram for all possible J3 subspaces of the Hamiltonian
with JA=B ¼ NA=B=2.
In this subsection, we compute the energy distribution of

the initial product state in terms of moments of the
Hamiltonian calculated with respect to our initial state.
For our time-independent Hamiltonian, energy conservation
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plays an important role in the evolution of the system. For
specific initial states near the extremes of the spectra,
phenomena such as dynamical phase transitions may be
present [30]. For this all-to-all Hamiltonian interaction, as
we show below, the full spectrum has a range that is
proportional to N while the width of the energy distribution
of an initial product state is proportional to

ffiffiffiffi
N

p
while the

energy level spacing for a given total J3 is approximately
constant for largeN. The energy level spacing summed over
all J3 is proportional to 1=N. This behavior is also seen in a
typical spin models with short-range interactions. In this
subsection we discuss the moments of the two-beammodel,
but these can be easily computed for more general cases.
We will proceed by calculating the expectation values of

the first two moments, and the third and fourth central
moments, of the initial condition in the spectrum of the
Hamiltonian. The expectation value of the Hamiltonian is

hHi ¼ N
4

"
ΩB⃗ ·

#
n̂A

NA

N
− n̂B

NB

N

$
þ 2n̂A · n̂B

NANB

N2

%
:

ð7Þ

The expectation value of hH2i can be computed by
expanding the terms in the square of the Hamiltonian, and
the surviving terms in the variance arise only from terms
with repeated spin indices; for operator products applied on

different spin components of the state the expectation value
of the product is the same as the product of the expectation
values. In general terms with more repeated spin indices
will produce lower powers of N in the nth central moment
of the Hamiltonian. The variance can be written in the form

ΔH2 ¼ c1N þ c0: ð8Þ

The term c0 has the form

c0 ¼
NANB

4N2
ð1 − ðn̂A · n̂BÞÞ2; ð9Þ

which vanishes when n̂A ¼ n̂B since this state is an
eigenstate of total spin. We also note that it contains no
term proportional to Ω, therefore it stems only from the
ν − ν interaction term in the Hamiltonian. As the one body
term alone cannot generate interparticle correlation effects,
if c0 dominates the variance for some finite value of N, we
expect to be in the regime in which many-body effects will
be significant due to the finite size. It is therefore important
to study the ratio c0=ðc1NÞ as this will control the size of N
where mean-field-like behavior (which works directly in
the N → ∞ limit) can possibly emerge. Critically, if c1
vanishes for some choice of parameters, we expect that
there exists no value of N such that the many-body and
mean field solutions will agree.
Next we find that c1 is a second order polynomial in Ω.

The second order term comes from the square of the one-
body term, the zeroth order from the square of the two-body
term, and the first order from the product of the two. We
write the variance as

c1 ¼ c1;2Ω2 þ c1;1Ωþ c1;0: ð10Þ

For arbitrary initial polarizations we find that the coeffi-
cients are

c1;2 ¼
1

16

"
NA

N
jB⃗ × n̂Aj2 þ

NB

N
jB⃗ × n̂Bj2

%
; ð11Þ

c1;1 ¼
NANB

4N2
B⃗ · ðn̂B − n̂AÞð1þ n̂A · n̂BÞ; ð12Þ

and c1;0 ¼
NANB

4N2
ð1 − ðn̂A · n̂BÞ2Þ: ð13Þ

If c1 is to vanish identically, then it must be the case that
either each of the c1;i coefficients must equal zero inde-
pendently, or Ω must take some special value such that the
Ω polynomial vanishes. The zeros of the c1 polynomial in
Ω are found with a straightforward application of the
quadratic formula, and we find that the discriminant
(c21;1 − 4c1;2c1;0) is always negative for any choice of
polarizations (n̂A=B) or population fraction NA=N. This

FIG. 1. Histogram of the number of energy states of the many-
body Hamiltonian (blue) in the JA ¼ NA=2, JB ¼ NB=2 sub-
space forN ¼ 3600 spins. Energy bins have a width of 10 in units
of μ. The energy distribution corresponds to the choice of energy
asymmetry (Ω) and population fraction for case 2 the bipolar
mode solution as specified in Table I. Also shown are three initial
conditions projected over the energy spectrum (red, pink, and
cyan histograms). The red histogram corresponds to an initial
polarization in energy space which results in bipolar oscillations
in the large N limit (case 2 in Table I). Similarly, the pink
corresponds to an initial polarization which results in collective
precession of the flavor polarization vectors in the large N limit
(case 2 in Table II). Finally, the cyan represents randomly chosen
polarizations for the n̂A=B unit vectors (case 6 in Table III).
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implies that there exists no real value of Ω such that the
coefficient c1 ¼ 0.
Finally, we note that if c1;2 vanishes, then both n̂A and n̂B

must be parallel to "B⃗. The coefficients c1;1 and c1;0 also
vanish in this case, as they are both identically zero if
n̂A ¼ "n̂B. We thus conclude that c1 only vanishes when
the initial polarization states are eigenstates of the one-body
Hamiltonian. This is exactly the situation for all models
studied in Refs. [30,31] where important deviations from
mean-field behavior were shown to persist up to macro-
scopic system sizes.
We also calculate the skewness (denotedM3 below) and

kurtosis (denoted M4 below) of the Hamiltonian with
respect to this initial condition. Both of these moments
involve a large amount of algebra, and displaying the exact
analytic expressions is prohibitively difficult. While we are
able to calculate these moments using exact analytic
expressions, their asymptotic behavior in the N → ∞ limit
is all that is necessary for obtaining some insight in the
subsequent discussion. We find that

lim
N→∞

M3 ≡ hðH − hHiÞ3i
ΔH3

¼ 0; ð14Þ

lim
N→∞

M4 ≡ hðH − hHiÞ4i
ΔH4

¼ 3: ð15Þ

These limits are only violated when c1 in ΔH2 is identi-
cally zero.
The moment structure of the Hamiltonian when calcu-

lated with respect to our prototypical initial condition
suggests that the probability density associated with
measuring a given energy eigenstate with some nonzero
overlap with our initial condition in the spectrum of the
Hamiltonian is approximately a Gaussian distribution
centered on hHi in the large N limit. The width of the
total energy spectrum of the Hamiltonian (Emax − Emin)
scales proportionally with N, but the width of the initial
condition in energy space scales like

ffiffiffiffi
N

p
. As N becomes

large, the Gaussian becomes (relatively) more localized in
energy space. Thus our prototypical initial condition only
accesses a fraction of the total spectrum of the Hamiltonian.
As the energy spacing is δE ∝ 1=N, the approximate
number of energy states which may (potentially) be
accessed by the initial condition (N ðΨÞ) is

N ðΨÞ ∝
ffiffiffiffiffiffiffiffiffiffi
ΔH2

p

δE
∼ N3=2: ð16Þ

The structure of the variance of the Hamiltonian, Eq. (8),
suggests a natural criterion for approximating the total
number of neutrino flavor spins which must be included in
a large scale many body simulation of a given system in
order to isolate what features of the determined solution
might persist in the large N limit, and what features are

finite size effects which will diminish with sufficiently
large N. We find that in cases such that c1N ≫ c0 the
evolution of simple one-body observables follows closely
the one predicted by the mean field equations of motion on
natural timescales predicted from the system parameters for
several categories of initial conditions. Interestingly, for the
cases investigated in this work, this convergence to the
mean field evolution of one-body properties occurs despite
the presence of a substantial fraction of the maximum
entanglement [which is proportional to logðNÞ due to the
size of the accessible Hilbert space] in the evolved many-
body state (see Sec. V). This suggests that many-body
quantum correlations generated by the time evolution are
highly nonlocal in nature and might not be important to
describe some aspects of the flavor dynamics in the system.

IV. MANY-BODY AND MEAN-FIELD DYNAMICS

In order to assess the impact of coherent neutrino flavor
oscillations on the relevant astrophysical systems, we are
interested in the expectation values of the one body
operators hJ⃗A=Bi which tell us about the average flavor
content of the individual neutrino beams. The time behav-
ior of these systems can be calculated in both the full
quantum evolution and in a mean-field (product state)
approximation. For the problem under our consideration
the symmetries enable us to calculate the full quantum
evolution for thousands of spins through the time evolution
of the individual eigenstates obtained as above.
Another method for following the evolution of the

expectation values is through an application of the
Ehrenfest theorem. When applied we recover an equation
of motion for the one body operators in terms of expect-
ation values of two body operators. Unfortunately, there
exists no exact closure of this relationship, as the equations
of motion (EOMs) for the two body expectation values are
functions of three body expectation values, and so on
[32–36].
In the mean-field approach, we approximate the two

body expectation value as a product of one body expect-
ation values with the goal of constructing a closed set of
equations for the EOMs of the one body operator expect-
ation values. We therefore make the substitution

hJ⃗A × J⃗Bi ≈ hJ⃗Ai × hJ⃗Bi: ð17Þ

By defining polarization vectors as

P⃗A=B ¼ 2

NA=B
hJ⃗A=Bi; ð18Þ

we recover the mean-field equations of motion:

dP⃗A

dt
¼ Ω

2
B⃗ × P⃗A þ NB

N
P⃗B × P⃗A; ð19aÞ
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plays an important role in the evolution of the system. For
specific initial states near the extremes of the spectra,
phenomena such as dynamical phase transitions may be
present [30]. For this all-to-all Hamiltonian interaction, as
we show below, the full spectrum has a range that is
proportional to N while the width of the energy distribution
of an initial product state is proportional to

ffiffiffiffi
N

p
while the

energy level spacing for a given total J3 is approximately
constant for largeN. The energy level spacing summed over
all J3 is proportional to 1=N. This behavior is also seen in a
typical spin models with short-range interactions. In this
subsection we discuss the moments of the two-beammodel,
but these can be easily computed for more general cases.
We will proceed by calculating the expectation values of

the first two moments, and the third and fourth central
moments, of the initial condition in the spectrum of the
Hamiltonian. The expectation value of the Hamiltonian is

hHi ¼ N
4

"
ΩB⃗ ·

#
n̂A

NA

N
− n̂B

NB

N

$
þ 2n̂A · n̂B

NANB

N2

%
:

ð7Þ

The expectation value of hH2i can be computed by
expanding the terms in the square of the Hamiltonian, and
the surviving terms in the variance arise only from terms
with repeated spin indices; for operator products applied on

different spin components of the state the expectation value
of the product is the same as the product of the expectation
values. In general terms with more repeated spin indices
will produce lower powers of N in the nth central moment
of the Hamiltonian. The variance can be written in the form

ΔH2 ¼ c1N þ c0: ð8Þ

The term c0 has the form

c0 ¼
NANB

4N2
ð1 − ðn̂A · n̂BÞÞ2; ð9Þ

which vanishes when n̂A ¼ n̂B since this state is an
eigenstate of total spin. We also note that it contains no
term proportional to Ω, therefore it stems only from the
ν − ν interaction term in the Hamiltonian. As the one body
term alone cannot generate interparticle correlation effects,
if c0 dominates the variance for some finite value of N, we
expect to be in the regime in which many-body effects will
be significant due to the finite size. It is therefore important
to study the ratio c0=ðc1NÞ as this will control the size of N
where mean-field-like behavior (which works directly in
the N → ∞ limit) can possibly emerge. Critically, if c1
vanishes for some choice of parameters, we expect that
there exists no value of N such that the many-body and
mean field solutions will agree.
Next we find that c1 is a second order polynomial in Ω.

The second order term comes from the square of the one-
body term, the zeroth order from the square of the two-body
term, and the first order from the product of the two. We
write the variance as

c1 ¼ c1;2Ω2 þ c1;1Ωþ c1;0: ð10Þ

For arbitrary initial polarizations we find that the coeffi-
cients are

c1;2 ¼
1

16

"
NA

N
jB⃗ × n̂Aj2 þ

NB

N
jB⃗ × n̂Bj2

%
; ð11Þ

c1;1 ¼
NANB

4N2
B⃗ · ðn̂B − n̂AÞð1þ n̂A · n̂BÞ; ð12Þ

and c1;0 ¼
NANB

4N2
ð1 − ðn̂A · n̂BÞ2Þ: ð13Þ

If c1 is to vanish identically, then it must be the case that
either each of the c1;i coefficients must equal zero inde-
pendently, or Ω must take some special value such that the
Ω polynomial vanishes. The zeros of the c1 polynomial in
Ω are found with a straightforward application of the
quadratic formula, and we find that the discriminant
(c21;1 − 4c1;2c1;0) is always negative for any choice of
polarizations (n̂A=B) or population fraction NA=N. This

FIG. 1. Histogram of the number of energy states of the many-
body Hamiltonian (blue) in the JA ¼ NA=2, JB ¼ NB=2 sub-
space forN ¼ 3600 spins. Energy bins have a width of 10 in units
of μ. The energy distribution corresponds to the choice of energy
asymmetry (Ω) and population fraction for case 2 the bipolar
mode solution as specified in Table I. Also shown are three initial
conditions projected over the energy spectrum (red, pink, and
cyan histograms). The red histogram corresponds to an initial
polarization in energy space which results in bipolar oscillations
in the large N limit (case 2 in Table I). Similarly, the pink
corresponds to an initial polarization which results in collective
precession of the flavor polarization vectors in the large N limit
(case 2 in Table II). Finally, the cyan represents randomly chosen
polarizations for the n̂A=B unit vectors (case 6 in Table III).
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plays an important role in the evolution of the system. For
specific initial states near the extremes of the spectra,
phenomena such as dynamical phase transitions may be
present [30]. For this all-to-all Hamiltonian interaction, as
we show below, the full spectrum has a range that is
proportional to N while the width of the energy distribution
of an initial product state is proportional to

ffiffiffiffi
N

p
while the

energy level spacing for a given total J3 is approximately
constant for largeN. The energy level spacing summed over
all J3 is proportional to 1=N. This behavior is also seen in a
typical spin models with short-range interactions. In this
subsection we discuss the moments of the two-beammodel,
but these can be easily computed for more general cases.
We will proceed by calculating the expectation values of

the first two moments, and the third and fourth central
moments, of the initial condition in the spectrum of the
Hamiltonian. The expectation value of the Hamiltonian is

hHi ¼ N
4
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ΩB⃗ ·
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N
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NB

N
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þ 2n̂A · n̂B

NANB

N2
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The expectation value of hH2i can be computed by
expanding the terms in the square of the Hamiltonian, and
the surviving terms in the variance arise only from terms
with repeated spin indices; for operator products applied on

different spin components of the state the expectation value
of the product is the same as the product of the expectation
values. In general terms with more repeated spin indices
will produce lower powers of N in the nth central moment
of the Hamiltonian. The variance can be written in the form

ΔH2 ¼ c1N þ c0: ð8Þ

The term c0 has the form

c0 ¼
NANB

4N2
ð1 − ðn̂A · n̂BÞÞ2; ð9Þ

which vanishes when n̂A ¼ n̂B since this state is an
eigenstate of total spin. We also note that it contains no
term proportional to Ω, therefore it stems only from the
ν − ν interaction term in the Hamiltonian. As the one body
term alone cannot generate interparticle correlation effects,
if c0 dominates the variance for some finite value of N, we
expect to be in the regime in which many-body effects will
be significant due to the finite size. It is therefore important
to study the ratio c0=ðc1NÞ as this will control the size of N
where mean-field-like behavior (which works directly in
the N → ∞ limit) can possibly emerge. Critically, if c1
vanishes for some choice of parameters, we expect that
there exists no value of N such that the many-body and
mean field solutions will agree.
Next we find that c1 is a second order polynomial in Ω.

The second order term comes from the square of the one-
body term, the zeroth order from the square of the two-body
term, and the first order from the product of the two. We
write the variance as

c1 ¼ c1;2Ω2 þ c1;1Ωþ c1;0: ð10Þ

For arbitrary initial polarizations we find that the coeffi-
cients are

c1;2 ¼
1

16

"
NA

N
jB⃗ × n̂Aj2 þ

NB

N
jB⃗ × n̂Bj2

%
; ð11Þ

c1;1 ¼
NANB

4N2
B⃗ · ðn̂B − n̂AÞð1þ n̂A · n̂BÞ; ð12Þ

and c1;0 ¼
NANB

4N2
ð1 − ðn̂A · n̂BÞ2Þ: ð13Þ

If c1 is to vanish identically, then it must be the case that
either each of the c1;i coefficients must equal zero inde-
pendently, or Ω must take some special value such that the
Ω polynomial vanishes. The zeros of the c1 polynomial in
Ω are found with a straightforward application of the
quadratic formula, and we find that the discriminant
(c21;1 − 4c1;2c1;0) is always negative for any choice of
polarizations (n̂A=B) or population fraction NA=N. This

FIG. 1. Histogram of the number of energy states of the many-
body Hamiltonian (blue) in the JA ¼ NA=2, JB ¼ NB=2 sub-
space forN ¼ 3600 spins. Energy bins have a width of 10 in units
of μ. The energy distribution corresponds to the choice of energy
asymmetry (Ω) and population fraction for case 2 the bipolar
mode solution as specified in Table I. Also shown are three initial
conditions projected over the energy spectrum (red, pink, and
cyan histograms). The red histogram corresponds to an initial
polarization in energy space which results in bipolar oscillations
in the large N limit (case 2 in Table I). Similarly, the pink
corresponds to an initial polarization which results in collective
precession of the flavor polarization vectors in the large N limit
(case 2 in Table II). Finally, the cyan represents randomly chosen
polarizations for the n̂A=B unit vectors (case 6 in Table III).
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We find that in the case θ ≪ 0.1, the evolution of the
many-body solution departs quickly and significantly from
the behavior of the mean-field. In this case, increasing N
lengthens the time at which a significant difference accu-
mulates in the polarization vectors calculated in the two
formalisms. When θ is Oð:1Þ we find that for N ¼ 128
there is already significant disagreement between the two
formalisms before the minimum of the first major oscil-
lation. However by increasing the number of spins to N ¼
2048 we achieve c0=c1N ≈ 0.2 ≪ 1, and we begin to see
the mean-field behavior emerge in the one-body expect-
ation values of the many-body solution.

2. Collective precession

Another evolution modewhich arises from the mean field
EOMs are those such that there is no dynamic evolution
along ê3, but the polarization vectors merely precess in the
ê1 − ê2 plane. Such solutions require that the polarization
vectors all be coplanar initially and precess with the same
oscillation frequency denoted Ωc [9,11,38,39].
We can find such solutions for our mean-field two-block

example system by first taking the ansatz

P⃗A=B ¼

0

BB@

sinðθA=BÞ cosðΩctÞ
sinðθA=BÞ sinðΩctÞ

cosðθA=BÞ

1

CCA: ð24Þ

In order that these ansatz polarization vectors satisfy the
equations of motion, the two polar angles θA=B must satisfy
the (nonlinear) system of equations

L ¼ NA

N
cosðθAÞ þ

NB

N
cosðθBÞ; ð25Þ

Ω sinðθAÞ sinðθBÞ

¼ sinðθA − θBÞ
!
NA

N
sinðθAÞ þ

NB

N
sinðθBÞ

"
: ð26Þ

Here, the quantity L represents the fractional population
difference between initially ν1 neutrinos and initially ν2
neutrinos summed over both beams which is a quantity
conserved by both the many-body and mean-field equa-
tions of motion. In what follows, we will choose it
somewhat arbitrarily in order to investigate a range of
values for Ωc.
Given that we know L, Ω, and the population fraction of

spins in each block, we can find the polarization angles
(θA=B) necessary such that our ansatz initial condition will
precess with frequency Ωc. By taking a time derivative of
P⃗A · ê1, we can find an explicit expression for Ωc in terms
of the initial condition and physical parameters. We can do
the same with P⃗B, and find two equations which are equal
by assumption. These are

Ωc ¼ −
Ω
2
þ NB

N
sinðθA − θBÞ

sinðθAÞ
; ð27Þ

Ωc ¼ Ω
2
−
NA

N
sinðθA − θBÞ

sinðθBÞ
: ð28Þ

As in the bipolar case, we can also compute the variance
of the many-body Hamiltonian for initial polarizations
which result in collective precession modes. We find that
the values of c1 and c0 take the form

c0 ¼
NANB

4N2
ð1 − cosðθA − θBÞÞ2; ð29Þ

c1 ¼
!
Ωc

2

"
2
!
NA

N
sin2ðθAÞ þ

NB

N
sin2ðθBÞ

"
: ð30Þ

While c0 follows straightforwardly from Eq. (9), we find
that c1 is proportional to the square of the collective
precession frequency. This then provides an ideal play-
ground for testing for our hypothesis, as we can simply find
precession solutions which precess slowly or rapidly in
order to maximize or minimize c0=c1N.
We present two examples of collective precession mode

solutions in both the many-body and mean-field approxi-
mation in Fig. 3 with two precession oscillation frequencies
which differ by three orders of magnitude. In the top panel,
we show a precession mode with a precession frequency of
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FIG. 2. Evolution of the three components of the polarization
vector as a function of time in both the mean field approximation
(orange line) and many-body simulations with Ne ¼ Nx ¼ 64
(black line), Ne ¼ Nx ¼ 1024 (turquoise line), and Ω ¼ 0.5 (all
lines and panels). Panels (a),(b) show the x component, panels
(c),(d) the y component, and panels (e),(f) the z component of the
polarization vector. The top row [panels (a),(c),(e)] are for a small
mixing angle θ ¼ 0.001 (c0=c1 ≈ 4.0 × 106) while the bottom
row [panels (b),(d),(f)] use a large mixing angle θ ¼ 0.1
(c0=c1 ≈ 4.054 × 102). Note that these two results correspond
to cases 3 and 7 in the next subsection.

CLASSICAL AND QUANTUM EVOLUTION IN A SIMPLE … PHYS. REV. D 105, 083020 (2022)

083020-7

Comparison of mean-field and full time evolution

Bipolar Oscillations

θ = 0.001

θ = 0.1

Agreement improves with larger N, higher density of states



mean-field behavior for each N and parameter set. In this
figure, color denotes the choice of physical parameters,
tabulated by case number (# column) in Tables I–III.
Square markers represent bipolar mode solutions, circle
markers represent precession mode solutions, and dia-
monds represent randomly chosen parameters. We note
that there is a categorical difference in solution behavior in
the regime in which c0=c1N ≫ 1, and the case such that
c0=c1N ≪ 1. For all cases in which c0=c1N ≫ 1, the
deviation between many-body and mean-field solutions
is approximately maximal on our solution interval, but

when c0=c1N approaches 0.1 there is a knee in the
deviation of the solutions past which increasing N results
in improving agreement between the many-body and mean-
field approaches. Thus we observe that the ratio condition
c0=c1 ≈ N can be used as a heuristic for determining the
number of spins which must be included to observe mean-
field-like behavior emerge in full many-body calculations,
however these curves are not identical so further refine-
ments on a per-calculation-basis are still required to
demonstrate full convergence of one-body observables.
We also note the qualitative differences in the con-

vergence behaviors of the three categories of flavor
oscillations. Bipolar mode oscillations are characterized
by large values of c0=c1 due both to the smallness of
sin2ð2θÞ in the denominator of this ratio and the limit
placed on Ω by the inequality of Eq. (22). Precession
mode solutions display a wide range of values for c0=c1
determined by the collective precession frequency Ωc.
When the initial polarizations, population fractions and
vacuum oscillation frequency are chosen at random, the

FIG. 4. Each marker indicates the largest difference between
the many-body (MB) and mean-field (MF) polarization vectors
for a choice of solution mode (marker shapes), and each color
represents a choice of parameter set tabulated in one of the
Tables I–III. Squares represent bipolar mode solutions, circles
represent collective precession modes, and diamonds represent
solutions for randomly chosen parameters. The multiplicity of
markers is due to increasing values of N, with increasing N from
right to left in a given marker shape and color.

TABLE II. Parameters utilized in collective precession mode
solutions to both the many-body and mean-field EOMs. Param-
eters were chosen to span a wide range of Ωc, but were otherwise
taken arbitrarily. They are presented with seven significant
figures. As in the bipolar case, the table is ordered by ascending
values of c0=c1.

No. NA=N Ω θA ϕA θB ϕB c0=c1

1 0.51 1.2 0.5978067 0.0 0.2175694 0.0 0.0902
2 0.45 1.5 1.050692 0.0 0.2942370 0.0 0.482
3 0.51 0.2 1.443493 0.0 1.248403 0.0 5.32
4 0.48 0.9 2.012938 0.0 1.079368 0.0 3.34 × 102

5 0.27 1.37 1.568292 0.0 0.3723205 0.0 6.70 × 103

6 0.33 1.2 1.618388 0.0 0.5131689 0.0 3.40 × 105

7 0.52 0.75 2.051478 0.0 1.286571 0.0 1.25 × 106

TABLE I. Parameters utilized in bipolar mode solutions to both
the many-body and mean-field EOMs. Ne=N and Ω were chosen
arbitrarily but satisfy the inequality in Eq. (22). Finally, the table
is ordered by ascending values of c0=c1.

No. Ne=N Ω θA ϕA θB ϕB c0=c1
1 0.5 0.5 π − 0.4 π 0.4 0.0 1.06 × 102

2 0.55 1.5 π − 0.1 π 0.1 0.0 1.77 × 102

3 0.5 0.5 π − 0.2 π 0.2 0.0 4.05 × 102

4 0.25 0.5 π − 0.1 π 0.1 0.0 1.20 × 103

5 0.55 0.33 π − 0.1 π 0.1 0.0 3.65 × 103

6 0.75 0.18 π − 0.1 π 0.1 0.0 9.29 × 103

7 0.5 0.5 π − 0.002 π 0.002 0.0 4.00 × 106

TABLE III. Parameters chosen at random (except case 6 for
which only the polarization angles were chosen at random.
The population fractions and Ω were chosen to match cases 1
and 2 in the bipolar and precession modes, respectively). We
chose Ω ∈ ð−3.0; 3.0Þ, NA=N ∈ ð0; 1.0Þ, each polar angle
θA=B ∈ ð0; πÞ, and each azimuthal angle ϕA=B ∈ ð0; 2πÞ, and
values are specified with four significant figures. As in the
previous two solution categories, this table is ordered by
ascending values of c0=c1.

No. NA=N Ω θA ϕA θB ϕB c0=c1

1 0.66 −1.396 2.920 4.854 2.386 2.027 0.115
2 0.81 0.3134 1.972 4.179 2.771 5.550 0.277
3 0.18 −1.859 0.4564 1.451 1.278 4.236 0.280
4 0.49 1.464 0.8108 3.545 0.3045 0.1005 0.342
5 0.83 2.371 2.339 2.258 1.133 3.828 0.356
6 0.45 1.5 1.881 4.263 2.175 2.174 0.485
7 0.29 2.032 1.996 0.6419 0.5526 3.708 1.62
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Ωc ≈ 1.35 × 10−4, while the bottom panel precesses with
frequency Ωc ≈ 2.77 × 10−1. As c0=c1 is approximately
seven orders of magnitude larger for the top panels, we
expect to need a proportionally larger number of spins to
see the emergence of mean-field-like behavior for that
choice of parameters. However, we do note that the many-
body solution still respects the precession requirement that
the polarization vectors do not dynamically evolve along B⃗
even in the case that there is no transient agreement
between the mean-field and many-body formalisms (top
panels of Fig. 3). We leave the investigation of this
intriguing behavior for future work.

B. One-body observables and mean-field
emergence in many-body solutions

In order to demonstrate the large N behavior of the
many-body system and compare it with the mean-field
solutions, we investigated seven cases in each of three
categories of solution to the many-body and mean-field
neutrino oscillations problem. We then inspect the
deviation between the large N many-body calculations,
and the mean-field approximation. We concentrate on one-
body observables like the flavor content versus beam (more
generally energy and angle), which are the observables that
can be detected in terrestrial neutrino observatories.

The first class of solution are bipolar modes, the mean-
field configurations and solutions of which are described in
the previous subsection. For the different choices of
physical parameter, we solved the corresponding many-
body problem with N ¼ ½700; 1000; 1300; 1600; 3600#.
The second are collective precession solution modes, also
as described previously. Finally we randomly chose the
values of Ω ∈ ð−3.0; 3.0Þ and NA=N ∈ ð0; 1.0Þ as well as
the polarizations of the two spin blocks, n̂A=B. For all of the
precession modes, and random parameter calculation sets
we chose N ¼ ½100; 200; 300; 400; 800#. We used signifi-
cantly more spins in the bipolar cases in light of our insight
that the bipolar modes represent very sparse distributions in
energy space, and a sufficiently large N is necessary for the
energy distribution to be approximately Gaussian.
For every choice of parameters and total number of spins

(N), we solved the systems to a time

tf ¼ 3

ffiffiffiffiffiffiffiffiffiffi
N

ΔH2

r
¼ 3

ffiffiffiffiffi
c1

p

0

B@
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ c0
c1N

q

1

CA: ð31Þ

This time has an N-independent term and a correction term
resulting from the finite size of the many-body system. This
correction goes to zero in the large N limit, and thus this
time represents a natural scale over which the system’s size-
invariant behavior in the many-body case may be expected
to be observed. As this is a persistent timescale as N
becomes large, it is natural to employ in comparisons with
mean-field evolution. We do indeed observe that this
timescale is directly proportional to the inverse of the
collective precession frequency of the mean-field preces-
sion modes.
Furthermore, in the large system size limit it is expected

that at some finite time the mean-field and many-body
predictions for the evolution of the one body operators will
diverge. Because the above time approaches a constant asN
becomes large, it does not represent this divergence time
which should depend on N. Because of its invariance for
sufficiently large systems and our observation that it is
directly related to the evolution timescale of at least one
mean-field evolution mode, we employ this timescale for
evolving our systems in order to self-consistently compare
results between different oscillation modes and parameter
choices which evolve on significantly differing timescales.
As a simple measure of agreement between the mean-

field and many-body single “beam” observables, we define
the polarization vectors in the many-body system according
to Eq. (18) and calculate the magnitude of the vector
difference between the many-body and mean-field P⃗
vectors for both blocks A and B. We then take the largest
magnitude value which occurs in both spin blocks of this
vector difference over our solution interval.
In Fig. 4 we show the behavior of the largest deviation in

polarization between the many-body and corresponding
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FIG. 3. Evolution of the three components of the polarization
vectors describing beam A for two precession mode solutions.
The top panels represent a precession mode with Ωc ≈ 1.35 ×
10−4 (c0=c1 ≈ 1.25 × 106), and the bottom panels have Ωc ≈
2.77 × 10−1 (c0=c1 ≈ 9.018 × 10−2). The black and cyan curves
employ N ¼ 100 and N ¼ 1000 total spins, respectively. For the
larger precession frequency, c0=c1N ≪ 1 may be obtained with
many fewer spins than for the lower precession frequency, and the
qualitative correctness of the mean-field prediction is maintained
over longer time periods by increasing N once c0=c1N ≪ 1 is
reached. The plotted curves utilize the parameters in cases 7 (top
panels) and 1 (bottom panels) provided in Table II.
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Maximum Time

Beyond this time resolving  energies

Within gaussian distribution

Mean Field works quite well for large N, modest times

ratio c0=c1 is close to Oð1Þ implying that in the majority
of arbitrary cases will only require a moderate number of
total spins N to observe behavior in agreement with an
equivalent mean-field calculation.

C. Special cases

As mentioned above, the model in Eq. (3) can be solved
numerically exactly using the Bethe ansatz but for particu-
lar choices of the parameters the full time evolution can be
computed analytically. For models without the vacuum
contribution, i.e. setting Ω ¼ 0, and for NA ¼ NB with
θA ¼ 0 and θB ¼ π, Friedland and Lunardini have shown
how to express the evolved state analytically in terms of
appropriate Clebsh-Gordan coefficients [40]. In this limit,
the mean-field equation of motion Eq. (19) predicts no
flavor evolution while the full many-body treatment shows
significant oscillations. The timescale for these oscillations
grows however very quickly with system size as t ¼
Oð

ffiffiffiffiffiffiffi
NA

p
Þ and quickly diverges for large systems, indicating

that the mean-field prediction is qualitatively correct. These
results were later extended in Ref. [41] to the asymmetric
case NA ≠ NB and it was shown that the amplitude of
oscillations in these models decays as a polynomial in
jNA − NBj, once again showing the qualitative correctness
of the mean-field approximation. In recent work by one of
us [31] it was shown, using a many-body simulation
employing Matrix Product States (MPS), that a system
with NA ¼ NB starting in a product state can develop an
entanglement entropy scaling as S ¼ OðlogðNAÞÞ showing
that there exist observables which will fail to be predicted
correctly in a mean-field calculation (which by construction
have S ¼ 0 at all times.) We will investigate the behavior of
entanglement measures in the next section.

V. ENTANGLEMENT AS ORDER PARAMETER
FOR INSTABILITY

The use of entanglement measures to characterize differ-
ent phases of matter and to classify many-body states in
terms of their correlation structure and topological proper-
ties has a long history in condensed matter physics (see e.g.
[42–44]) and more recently has been applied to systems in
nuclear and high-energy physics producing interesting
insights (see e.g. [45–47]). In the context of collective
neutrino oscillations the role of quantum correlations is not
fully understood yet, on one hand entanglement has been
associated with a speed-up of flavor conversion [48,49] and
on the other hand has been argued to not play any role in
neutrino systems that are prepared in a mean-field state
[40,50]. Recent work adopting Tensor Network methods
has shown how these, seemingly conflicting, results could
be reconciled adopting the point of view that many-body
coherent speed-up of flavor dynamics are generated when
the neutrino systems under study undergoes a dynamical
phase transition [30,31]. In particular the scaling of

entanglement with the size of a neutrino systems has been
shown to be a strong indicator for the presence of bipolar
modes [30,31] suggesting it could possibly be employed in
conjunction with linear stability analysis to detect insta-
bilities in a neutrino system. Recent work employing exact
diagonalization techniques in small neutrino systems has
also shown how entanglement can signal the presence of
spectral splits in the neutrino spectrum [19] (see also
[20,51] for studies of entanglement in small neutrino
systems and [29] for an extension of the work in [31] to
larger system sizes).
In this section we generalize the results presented in

Refs. [30,31] to the more general bipolar case described by
the Hamiltonian in Eq. (3). The crucial difference is that,
for values of the mixing-angle θA and θB different from
integer multiples of π, the mean-field approximation also
predicts flavor evolution. Throughout this section when
considering bipolar modes we will denote θB ¼ θA þ π and
simply denote θA=2 as θ.
We used the strategy described after Eq. (5) (exploiting

the high degree of symmetry of the systemand the sparsity of
the Hamiltonian) to simulate large systems beyond the reach
of MPS simulations [limited to N ¼ Oð100Þ on a work-
station] and report the results for the value of the maximum
entanglement entropy in the minority beam in Fig. 5. We
have checked, using MPS simulations on systems with
N ¼ 64 and various population asymmetries, that for these
models this is indicative of themaximumbipartite entropy in
the system. Figures 5(b)–5(d) show the entanglement
entropy, defined as SðNminÞ ¼ −Trðρlog2ðρÞÞ, where ρ is
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FIG. 5. Entanglement entropy when the system is divided into
the two beams. Panels (b–d) show the beam entanglement
entropy as a function of the energy asymmetry Ω for three
different population asymmetries η ¼ Ne=N: panel (b) uses
η ¼ 1=2, panel (c) uses η ¼ 4=5 and panel (d) is for η ¼ 8=9.
Panel (a) instead shows the evolution of the beam entanglement
entropy for fixed Nx ¼ 64 for different values of Ne (correspond-
ing to increasing η.) The vertical orange dashed lines correspond
to the threshold values of the bipolar instability obtained from the
analysis of the mean-field approximation in Eq. (22).
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Time development of entanglement entropy vs. N

Symmetries limit entanglement entropy to log2 (N)

θ ¼ 0.1. The most significant difference between these
results is that the maximum of the entanglement entropy
≈ log2ðNeÞ is reached at the first peak for θ ¼ 0.001,
consistently with what was found at θ¼ 0 in Refs. [30,31],
while for larger mixing angles the maximum is reached only
after the fourth oscillation. Interestingly, the value of the
entropy in the first peaks seems to stop scaling proportion-
ally to logðNeÞ (as the maximum does) and reaches a
constant value for large enough system sizes. For small
mixing angles instead all peaks seem to scale logarithmi-
cally in system size. The convergence of the entropy value
as a function of system size is shown more explicitly in
Fig. 9(b) where we compare results obtained with Ne ¼
½64; 256; 1024% and θ ¼ 0.1.
Similarly to the expectation values shown in Fig. 2, we

observe good convergence for the first two oscillations
while deviations persist at longer times. These results
suggest that, in the large system size limit and for finite
mixing angles, the entanglement entropy presents oscil-
lations on a timescale similar to the one for flavor
oscillations with maxima which are system size indepen-
dent but increasing at each oscillation period until even-
tually reaching the expected value ≈ logðNeÞ at long times.
In order to test this scenario we have also simulated the
entropy evolution for a mixing angle θ ¼ 0.5, for which the
convergence to the mean-field behavior is much faster, and
show the results with different system sizes in Fig. 9(c). As
expected the entropy shows an increase at every oscillation
with peaks at late time displaying a slower convergence and
reaching values close the maximum. This shows that it is
not necessarily correct to understand the results presented
in Sec. IV B as a full convergence to the mean field state in
the large system size limit since the full evolution creates

states with nonzero entanglement. A possibly better char-
acterization is that the mean field predictions of one-body
observables become quantitatively correct in the large
system size limit, at least for short enough times. For
astrophysical neutrinos, of which we do not have direct
access to many-body observables, the effect of entangle-
ment might not be observable in practice.
These results presented in this section support the

intuition gained in previous work withMPS in Refs. [30,31]
that entanglement properties in out-of-equilbrium neutrino
systems can serve as a diagnostic for the presence of unstable
modes. The precession modes may evade this classification
as it is currently unclear under what conditions the pre-
cession modes are unstable to perturbations. Furthermore,
we observe that the presence of collective precession
modes is not correlated with maximization of entanglement.
However, the time evolution of entanglement can still be
useful to uncover characteristic timescales in this regime.
In order to explore two extreme regimes, we will now
look at entanglement properties of case 1 (corresponding
to c0=c1 ≈ 0.09) and of case 7 (corresponding to
c0=c1 ≈ 1.25 × 106) characterized by the parameters shown
in Table II above.
We present in Fig. 10 the purity of the majority species

for the same simulations used to show the evolution of
the flavor polarization in Fig. 3 in Sec. IVA 2. The time
interval 600μ−1 is the same used there. An interesting
feature that can be noticed from these results is that the

0 10 20 30 40 50 60
Time [μ−1

]

0
1
2
3
4
5
6
7
8
9

10
11

En
tan

gle
me

nt 
en

tro
py

θ=0.001
θ=0.1

0 10 20 30 40 50 60 70
Time [μ−1

]

0
1
2
3
4
5
6
7
8

En
tan

gle
me

nt 
en

tro
py

0
1
2
3
4
5
6
7
8
9
10

En
tan

gle
me

nt 
en

tro
py

Ne=64
Ne=256
Ne=1024

log2(Ne)N=[1024,1024]

θ=0.1

θ=0.5

(a)

(b)

(c)

FIG. 9. Panel (a) shows the time evolution of the entanglement
entropy for the same systems considered in Fig. 2 with
Ne ¼ Nx ¼ 1024, Ω ¼ 0.5, and θ ¼ 0.001 (black solid line)
or θ ¼ 0.1 (blue dashed line). Panels (b) and (c) show the entropy
for three different system sizes: Ne ¼ 64 (black line), Ne ¼ 256
(red line), and Ne ¼ 1024 (turquoise line). Panel (b) is for
θ ¼ 0.1 while panel (c) for a larger value θ ¼ 0.5.
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FIG. 10. Time evolution of the purity in two models showing
precession solutions: panel (a) corresponds to case 7 in Table II
with Ωc ≈ 1.35 × 10−4 and panel (b) to case 1 with a much larger
precession frequency Ωc ≈ 2.77 × 10−1. The black solid lines
correspond to a total system size N ¼ 100 while the turquoise to
N ¼ 1000. We also indicate with black circles the time tf from
Eq. (31) for the small models with N ¼ 100 and with a turquoise
diamond the tf time for N ¼ 1000 in the model of case 1 [for this
model tfðN ¼ 1000Þ − tfðN ¼ 100Þ ≈ 0.02μ−1]. For case 7 we
have tf ¼ 1363μ−1 and is out of scale. These two models are the
same as those shown in Fig. 3.
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Dense neutrino gasses form in extreme astrophysical sites, and the flavor content of the neutrinos

likely has an important impact on their subsequent dynamical evolution. Through coherent forward

scattering, the evolution of the flavor content of the neutrino gas evolves under a potential which

can be modeled in a quantum many-body formalism as an all-to-all spin-spin interaction. This

two body potential generically introduces entanglement and greatly complicates the study of these

systems. In this work we investigate one and two body entanglement measures in order to assess

under what conditions mean-field or semi-classical approximations may su�ciently capture one-body

observables of interest. We do so by considering both uniform and randomly generated product

state initial conditions and momentum configurations with a dynamic two-body interaction. For

a special category of prototypical initial conditions, we find agreement with previous work both

in the two-momenta approximation and for distributions of momenta for a small number of spins

(N  16). However, for initial conditions with broader distributions in the invariant subspaces of

the Hamiltonian, we find that the typically employed mean-field approximation is insu�cient to

capture the evolution of one body operators. We also observe that the behavior of the two-body

concurrence suggests that the evolution may be well approximated as a classical mixture of separable

states. We show that in the invariant subspaces of the Hamiltonian the expectation values of one

body operators may be approximated by taking the average with respect to a one parameter fit

statistical mixed state.

I. INTRODUCTION

Josh Some stu↵ about why this problem is important.
In this work, we will study the quantum many-body

(MB) evolution of a small system of interacting neutri-
nos. We will work in the two flavor approximation such
that the flavor content of each considered neutrino can be
expressed as a two level subsystem, and thus represented
in terms of SU(2) spinors which we denote as flavor spin.
We also neglect the intrinsic Fermionic nature of the con-
sidered neutrinos.

The Hamiltonian we will study has the form [1]

H = Hvac +H⌫⌫(t) (1)

where

Hvac =
X

i

!i

2
~B · ~�i, (2)

In the mass basis, ~B = (0, 0,�1), and we take

!i = i
16!0

N
(i 2 [1, N ]) . (3)

for the one-body couplings. This for the N = 16 case,
this results in an integer spaced grid of vacuum oscillation
frequencies in units of the characteristic frequency !0.

The neutrino-neutrino interaction Hamiltonian is
SU(2) invariant, and takes the form of an all-to-all cou-
pled Heisenberg model

H⌫⌫(t) =
µ(t)

2N

X

i<j

(1� vi · vj)~�i · ~�j . (4)

where we employ the parameterization of µ(t) given in
[2].

µ(t) = 16µ0

0

@1�

s

1�
✓

R⌫

r0 + t

◆2
1

A
2

(5)

with R⌫ = 32.2!�1
0 , and r0 = 210.64!�1

0 . We choose µ0

such that µ(t = 0) = 80!0. Our Hamiltonian di↵ers by
a factor of 1/N relative to that of [2], thus we choose
the overall factor of 16 in our definition of µ(t) in order
to match the Hamiltonian employed by that work when
vi = 0 and N = 16.
In this work, we will study initial conditions of the

form

| (t = 0;n)i =
nO

i=1

|⌫eii
NO

j=n+1

|⌫⌧ ij . (6)

We take each neutrino state to be |⌫ei or |⌫⌧ i.
The Hamiltonian 1 commutes with the total projected

angular momentum in the mass basis

Jz =
1

2

NX

i=1

�
(i)
z

(7)

and thus the projections of the quantum state into the
di↵erent Jz invariant subspaces evolve fully decoupled
from one another. We also note that for any choice of
couplings, the total squared angular momentum operator

J
2 =

1

4

NX

i,j=1

~�
(i) · ~�(j) (8)
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to match the Hamiltonian employed by that work when
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and thus the projections of the quantum state into the
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commutes with the two-body Hamiltonian (H⌫⌫).
Any initial condition which is populated by product

states of all equal polarization are eigenstates of J2 with
maximal J quantum number. Because J2 commutes with
H⌫⌫ regardless of the choice of couplings, this state is also
an eigenstate of H⌫⌫ , and therefore approximately also of
H at early time when H⌫⌫ � Hvac. Once evolution be-
gins, and assuming that in each invariant subspace the
evolution remains adiabatic, then the final flavor configu-
ration will be of the form of a split-state (denoted |hmi)
in each invariant subspace. These split states take the
form

|hmi =
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m+N
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This is true independent of the couplings in H⌫⌫ , un-
less a very special choice of parameter is made such that
the energy gap between the highest and second highest
energy states is made su�ciently small at some point dur-
ing the evolution. For all cases we consider, this does not
occur, and we observe the prototypical split state even
when the couplings are chosen at random.

For the state polarized as uniformly ⌫e initially, we
compute the expectation values of �z in the mass basis, as
well as considering the entropy of the one-body reduced
density matrices. We show that the state obtained at
late time is i

In addition to the one-body entropy, we consider the
two-body concurrence. We find that the concurrence is
localized to nearest neighbor states within the split re-
gion. This can be understood by noting that for the
equally polarized initial states, each Jz subspace ends up
in the highest energy state of the one-body Hamiltonian
in the subspace with the quantum number m. These
states take the form of a split in the m subspace. The

final state is therefore

| (t ! 1)i =
N
2X

m=�N
2

p
pme

�i⌘m |hmi (9)

where |hmi is a state with m + N

2 spins with the low-
est m + N

2 ! values taking the |⌫1i mass states. The
remaining N

2 �m spins in the highest ! values take |⌫2i
mass states. ⌘m represents the phase which accumulates
on |hmi at a time t, su�ciently large that the two body
Hamiltonian can be neglected.
In order to compute the concurrence, we define

Mij = ⇢ij

⇣
�
(i)
y

⌦ �
(j)
y

⌘
⇢
⇤
ij

⇣
�
(i)
y

⌦ �
(j)
y

⌘
(10)

We diagonalize this matrix, and find its four eigenvalues,
ordered greatest to least in increasing i, {�i}. We then
compute the concurrence

C(⇢ij) = max
n
0,
p
�1 �

p
�2 �

p
�3 �

p
�4

o
(11)

We find that C(⇢) is only nonzero when j = i+1. (See ap-
pendix). So all of the two-body quantum correlations are
between nearest neighbor spins in the asymptotic states.

II. SPLIT INITIAL CONDITIONS

When we consider an initial condition with some num-
ber of |⌫⌧ i states in eq. 6, we no longer begin in the high-
est energy states of each Jz subspace. This is because
the highest energy state in the m subspaces are states
with

��J2 = N

2

�
N

2 + 1
�
;m

↵
. However, to form a state in

the fully uncoupled basis of the form of eq. 6, we require
linear combinations of states from all J2 subspaces with
J � m. Thus the initial condition will be distributed in a
given Jz subspace across a range of initial energy states.
For these initial states which have intermediate aver-

age energy in a given Jz subspace, there are two primary
complicating factors which are relevant for the time evo-
lution of the system. Firstly, there generically appear
approximate level crossings in the spectrum of the Hamil-
tonian at times for which Hvac ⇠ H⌫⌫ . Transiting these
crossings nonadiabatically will result in substantial evo-
lution of the state in the spectrum of the Hamiltonian,
and there is no a priori reason to believe that under such
conditions an initial product state will remain approxi-
mately a product state.
Secondly, when the initial condition is extended in the

spectrum of the Hamiltonian and the vacuum oscillation
frequencies and two-body couplings are chosen randomly
then phases which contribute to the coherence of trace-
reduced partitions of the many-body system may average
to zero. If this occurs then few-body reduced density
matrices will be approximately statistically mixed states
amenable to description by a few parameter statistical
distribution.

Initial state all νe
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energy states is made su�ciently small at some point dur-
ing the evolution. For all cases we consider, this does not
occur, and we observe the prototypical split state even
when the couplings are chosen at random.

For the state polarized as uniformly ⌫e initially, we
compute the expectation values of �z in the mass basis, as
well as considering the entropy of the one-body reduced
density matrices. We show that the state obtained at
late time is i

In addition to the one-body entropy, we consider the
two-body concurrence. We find that the concurrence is
localized to nearest neighbor states within the split re-
gion. This can be understood by noting that for the
equally polarized initial states, each Jz subspace ends up
in the highest energy state of the one-body Hamiltonian
in the subspace with the quantum number m. These
states take the form of a split in the m subspace. The

final state is therefore

| (t ! 1)i =
N
2X

m=�N
2

p
pme

�i⌘m |hmi (9)

where |hmi is a state with m + N

2 spins with the low-
est m + N

2 ! values taking the |⌫1i mass states. The
remaining N

2 �m spins in the highest ! values take |⌫2i
mass states. ⌘m represents the phase which accumulates
on |hmi at a time t, su�ciently large that the two body
Hamiltonian can be neglected.
In order to compute the concurrence, we define

Mij = ⇢ij

⇣
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(j)
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⇤
ij
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(j)
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We diagonalize this matrix, and find its four eigenvalues,
ordered greatest to least in increasing i, {�i}. We then
compute the concurrence

C(⇢ij) = max
n
0,
p
�1 �

p
�2 �

p
�3 �

p
�4

o
(11)

We find that C(⇢) is only nonzero when j = i+1. (See ap-
pendix). So all of the two-body quantum correlations are
between nearest neighbor spins in the asymptotic states.

II. SPLIT INITIAL CONDITIONS

When we consider an initial condition with some num-
ber of |⌫⌧ i states in eq. 6, we no longer begin in the high-
est energy states of each Jz subspace. This is because
the highest energy state in the m subspaces are states
with

��J2 = N

2

�
N

2 + 1
�
;m

↵
. However, to form a state in

the fully uncoupled basis of the form of eq. 6, we require
linear combinations of states from all J2 subspaces with
J � m. Thus the initial condition will be distributed in a
given Jz subspace across a range of initial energy states.
For these initial states which have intermediate aver-

age energy in a given Jz subspace, there are two primary
complicating factors which are relevant for the time evo-
lution of the system. Firstly, there generically appear
approximate level crossings in the spectrum of the Hamil-
tonian at times for which Hvac ⇠ H⌫⌫ . Transiting these
crossings nonadiabatically will result in substantial evo-
lution of the state in the spectrum of the Hamiltonian,
and there is no a priori reason to believe that under such
conditions an initial product state will remain approxi-
mately a product state.
Secondly, when the initial condition is extended in the

spectrum of the Hamiltonian and the vacuum oscillation
frequencies and two-body couplings are chosen randomly
then phases which contribute to the coherence of trace-
reduced partitions of the many-body system may average
to zero. If this occurs then few-body reduced density
matrices will be approximately statistically mixed states
amenable to description by a few parameter statistical
distribution.

Initial state all : all initial spins parallel 
Spectral Split in full quantum treatment

νe

• Spectral Split observed!

• Agreement between mean-field and many-body

• Uniform coupling and grid couplings similar

• Entanglement entropy peaks near swap energy


Is this general or special behavior?



Properties of Initial State where spectral split observed


• All initial spins aligned: maximum of neutrino-neutrino interaction

• Initial state can be split into components of fixed M that do not mix

• Initial state is maximal energy state within each subspace


Density of states for N=12, # up = 8

Initial State component  
w/ N=12, Nup=8

• More typically some finite fraction of both flavors

• (Neutronization burst ~90/10%, others 40/60%)

• Distributions spread in energy and angle 

   with significant overlap


• All such initial states are far from 
    the edges of the spectrum,


• Both the total spectrum and  within individual M

More typical initial product states


This case is equivalent to adiabatic state preparation

within each subspace



Time-dependent spectrum

Energy levels vs time

Large Gap / Adiabatic evolution

Spectral swap / Dynamical phase transition

Avoided level crossing 
More general dynamics

Large Gap / Adiabatic evolution


Interior Spectrum
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Single-spin expectation values


(Initial and Final)

At end (large radius), Hamiltonian is H1 only


Variance is 
⟨H2⟩ − ⟨H⟩2

N
= (1/N)∑

i

w2
i [1 − σz(i)2]

Knowledge of N moments = knowledge of all  

‘Perfect’ spectral split: variance computed with final H  

 same with initial and final state

⟨σz(i)⟩

Many-Body

Mean Field
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What does evolution look like in spectral swap case?

Mean Field works:



A `typical’ case
3

We consider the entanglement of this system in both
the one- and two-body sectors as before. However, while
we do observe substantial one-body entanglement, the
two-body concurrence is approximately 0 at all times
during the evolution. This implies that the entanglement
resides in larger many-body partitions of the system. At
late times, when the two body Hamiltonian may be safely
neglected, the one-body reduced density matrices in the
mass basis we observe to be approximately diagonal. We
then choose to fit each one-body RDM (⇢i) with a Boltz-
mann distribution of the form

⇢i =
e
�!i/2+µ|⌫1ih⌫1|+ e

��!i/2�µ|⌫2ih⌫2|
2 cosh(�!i/2 + µ)

(12)

We then find the values of � and µ such that we are
able to reproduce the total average h�zi polarization (a
constant of the evolution) and the average energy at late
time hHvaci. This amounts to solving the two parameter
coupled set of equations

hHvaci = �
X

i

!i

2
tanh
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2
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⌘
(13)

X
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X
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2
+ µ

⌘
(14)

for � and µ. We denote this parameterization of the
statistically mixed one-body RDM states as scheme A.

Using the scheme A statistical mixture we can compute
the expected value of the (log2) von Neumann entropy.

Denoting the RDM of eq. 12 as ⇢(A)
i

, we find that
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Because each Jz invariant subspace evolves indepen-
dently, we can also find statistically mixed states which
match the average energy in each invariant subspace by
finding �m such that

Em(t) ⌘
X

n,n02m

h (t)|n0ihn0|H|nihn| (t)i

=
Tr(e��mH

H)

Tr(e��mH)
(16)

Once obtained, we can compute the expectation value of

h�(i)
z i assuming statistically mixed m subspaces by eval-

uating

h�(i)
z
i =

X

m

Tr(e��mH
�
(i)
z )

Tr(e��mH)
(17)

In figure INSERT FIG REF we consider the evolu-
tion of a 16 spin state with mixing angle ✓vac = 0.584
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FIG. 2. Survival probability for ⌫e flavor neutrinos at large t.

for which all spins corresponding to !i > 12!0 begin in
(approximately) the |⌫⌧ i configuration. In order to avoid
artificial numeric symmetry arising from equal grid spac-
ing in both ! and vi we make the following adjustments.
First, we choose

III. CONCLUSION

In this work, we have provided evidence that a general
(not uniformly polarized) initial product state under the
action of a Hamiltonian with generic one and two body
couplings quickly develops entanglement among many-
particle subsystems. This entanglement, when combined
with the dense avoided level crossings in the time de-
pendent Hamiltonian, leads to one-body reduced density
matrices which are well described by few parameter sta-
tistical mixtures, and a loss of coherence

Initial state all low-E ; three highest states νe νμ

Mean Field and Many-Body differ significantly 

• One-body expectation values can be fit 
    with 


• Overall fit shown

• Can be fit within subspace with different 

exp[−β̃Ei]

β̃M

Knowledge of 1 moment apparently 

enough to reconstruct single spin expectation values


On occasion mean-field off in <H> by ~20%



Coherent Neutrinos Conclusion/Outlook:

• Mean-field solutions produced enticing 
neutrino flavor physics in dense neutrino environments 

• Spectral splits survive in full many-body treatment 
when adiabatic evolution applies 

• In general full quantum treatment modifies the solution 
    from standard mean-field evolution


• Single-spin observables appear to be describable in 
    a statistical treatment 

• Hopes for improved mean-field like treatment (<< 2N states)


• Intriguing analogues to traditional (local) quantum spin Hamiltonians


