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* Astrophysical Neutrinos (Supernovae, Neutron Star Mergers)
 Mean field (product state) treatments

* Quantum Computing Approaches

* Dynamics: Quench

 Dynamics: Time-Dependence

* Qutlook

25000

20000

15000

ME)

10000

5000

Q090

000@

—-1500 -1000 —500 0 500 IOOGOl)

E

(@|E)|?



Flavor evolution of neutrinos and antineutrinos in
supernovae and NS mergers (dense neutrino environments)
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Energy (momentum Magnitude)

Two Dimensional Lattice for Neutrinos
(Momentum space)
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Comparison of Neutrino Problem vs. Heisenberg-like spin problem
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Space-Time
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dependence
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Response
Time Evolution Quench,... Sty

2-body decays

Measurement Along H Flavor Basis



Product Initial State and Time Evolution:

Initial State is a product of SU(2) spinors

* Assuming initial distribution is incoherent from
wlt = 0] = H¢ij coupling to dense hadronic matter in the interior
L]

o Initial Flavor angular and energy distributions encoded in qﬁi,j

grid, couplings encode angular & energy dependent flux
Mean-field (product state) evolution:
W[t + 61 = | | it + 60 ~ exp[—iHi] P[i]
i * Approximate truncated Hilbert space to enable evolution
2N amplitudes instead of 2N for full problem
* Typically of order 100 Energies x 100 angles = 10K amplitudes

Time dependent Hamiltonian: start at radius RO and integrate to large radius

Time dependence from (1) geometry (relative angles decreasing with time)
Matter Density decreasing with distance (time)

Time dependence from (1) geometry (relative angles decreasing with time)
Matter Density decreasing with distance (time)




Even mean field can be computationally challenging

U, survival probability versus radius for different # angle bins, tolerances

Duan, Fuller, Carlson, Qian; PRD 2006



Spectral Swap

In many cases, find the neutrinos ‘swap’ spectra
at and above some energy
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] Above the transition muon neutrinos — electron neutrinos
C .
(©) - and vice versa

Final state is what can be observed terrestrially (e.g. DUNE)
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Depends upon many things:

Initial energy spectra
Initial angular distributions

Normal/Inverted neutrino mass hierarchy

Intermediate time evolution influences
Energy deposition in the shock

Nucleosynthesis

Rich possibilities, multiple swaps, etc.
CP-violations, matter effects, ....

Is product state evolution reliable? When?

Duan, Fuller, Carlson, Qian; PRD 2006



Beyond Mean Field

2N
P[r] = 2 ¢ (1) Binary representation of many-body state - each spin up (1) or down(0)
a=1
W[t + 61 = exp[—iHf Y[{] In flavor basis:
216 = 65K amplitudes
220 = 1M amplitudes H, , 0, is diagonal in flavor
Hamiltonian is somewhat sparse. Each state connects to H, , « cos(20)0, + sin(20)c, Diagonal plus bit flip
N Spin flip states plus | |
N2 Spin exchange states H2 X O; GJ D|agOna| plUS SPpIn eXChange

Fairly reasonable to do 16-24 spins
on a laptop/desktop

However, neutrino masses (with matter)
lead to short oscillation lengths



Simplify Problem by adding symmetries
Doing quench (time-dependent H) only

Two Beam Hamiltonian

72 '(JA_JB)+NJA']Ba

Ja/B = D iea/B Oil 2.

No 2-body coupling within a beam
Total Hamiltonian has term
proportional to Beam A . Beam B spin

Propagate with time-independent Hamiltonian (quench):

Investigate Entanglement Entropy, Purity, ...

When does the mean-field (product state approximation) work?
# of spins, time, ...

Possible dynamic phase transitions in low-energy regime of Hamiltonian

Initial State (product)

) = [71) @ i) OV

. Oa/B . (OB ;
’”A/B>:COS( 2/)\V1>+51n( 2/ ePre|by),

Initial state and Hamiltonian
symmetric under exchange
Of any two spins within a beam



Density of States
And Initial state distributions

Initial product states sharply peaked in energy
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Comparison of mean-field and full time evolution
Bipolar Oscillations
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Agreement improves with larger N, higher density of states



Maximum Difference

Comparison of mean-field and full time evolution:
Maximum Differences

N
AH?

Beyond this time resolving energies
Within gaussian distribution

Mean Field works quite well for large N, modest times

Maximum Time tf — 3

Entanglement Entropy
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Time development of entanglement entropy vs. N
Symmetries limit entanglement entropy to logz (N)
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What about time- (radius) dependent Hamiltonian?

Eliminate (most) symmetries

Limits studies to order 12-25 spins : 2N states

Sample problem: Pehlivan, Balaneekin, Kajino, Yoshida PRD 2011
Patwardhan, Cervia, Balentekin ( arXiv:2109.08995)

Hamiltonian
H = Hvac + Huu(t)

1

(1)

Hor) =55

Z(l—vi°Vj)5i°5j.

1<J

010 (1- (Tf:t)f

Two-body term reduces with time

Note all magnetic fields aligned, can
keep Jz as a good quantum number.

J2 commutes with H

Initial State (1st case)
[W(t=0;n)) = é [Ve),; ® ‘V7'>j :

J=n+1

Initial state all 7,
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Initial state all »,: all initial spins parallel
Spectral Split in full quantum treatment
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e Spectral Split observed!

 Agreement between mean-field and many-body
e Uniform coupling and grid couplings similar
 Entanglement entropy peaks near swap energy

Is this general or special behavior?



Properties of Initial State where spectral split observed

 All initial spins aligned: maximum of neutrino-neutrino interaction
 |nitial state can be split into components of fixed M that do not mix
 [nitial state is maximal energy state within each subspace

More typical initial product states

* More typically some finite fraction of both flavors
* (Neutronization burst ~90/10%, others 40/60%)
e Distributions spread in energy and angle

with significant overlap

Initial State component
w/ N=12, Nup=8

* All such initial states are far from
the edges of the spectrum,
* Both the total spectrum and within individual M

| This case Is equivalent to adiabatic state preparation
—20 0 20 40 °0 80 100 within each subspace

Density of states for N=12, # up =8



Time-dependent spectrum
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Energy and variance versus time
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i

Knowledge of N moments = knowledge of all (az(i))

‘Perfect’ spectral split: variance computed with final H
same with initial and final state
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What does evolution look like in spectral swap case?
Mean Field works:
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A typical’ case
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Initial state all low-E v,; three highest states v,

Mean Field and Many-Body differ significantly

* One-body expectation values can be fit
with exp[—E;]

e QOverall fit shown

. Can be fit within subspace with different /3,

Knowledge of 1 moment apparently
enough to reconstruct single spin expectation values

On occasion mean-field off in <H> by ~20%



Coherent Neutrinos Conclusion/Outlook:

 Mean-field solutions produced enticing
neutrino flavor physics in dense neutrino environments

» Spectral splits survive in full many-body treatment
when adiabatic evolution applies

* |In general full quantum treatment modifies the solution
from standard mean-field evolution

e Single-spin observables appear to be describable in
a statistical treatment

 Hopes for improved mean-field like treatment (<< 2N states)

* |ntriguing analogues to traditional (local) quantum spin Hamiltonians



