### Entanglement in nuclear models and matter



Thomas Papenbrock

University of Tennessee & Oak Ridge National Laboratory

Quantum Computing for Many-Body problems (QCMB): atomic nuclei, neutrinos, and other strongly correlated Fermi systems

IJCLab, Orsay, France, Nov 22 – 24, 2022

## Entanglement in nuclei

Correlations, wave-function complexity, entanglement, ...

#### **Correlations**: quantified by correlation energy

- Shina Tan's contact and its generalizations [Weiss, Bazak, Barnea 2015]
- RG approaches: resolution scale and short-range correlations [Tropiano, Bogner, Furnstahl 2021]
- Methods: coupled-cluster theory, QRPA approach, VMC

#### Wave function complexity: quantified by statistics

- Random matrix theory; level repulsion; Porter-Thomas distributions
- Spectral fluctuations and chaos in nuclear spectra [Bohigas, Haq, Panday 1985; Zelevinsky, Brown, Frazier
   & Horoi 1996; TP & Weidenmüller 2007; Mitchell, Richter, Weidenmüller 2010; ...]

#### **Entanglement**: quantify by entanglement entropies

- Density matrix renormalization group [White 1992], adopted in nuclear physics [Dukelsky & Dussel 1999;
   Dukelsky & Pittel 2001; Dukelsky, Pittel, Dimitrova, Stoitsov 2002; TP & Dean 2005; Rotureau et al 2007;
   Legeza, Veis, Poves, Dukelsky 2015; ... ] see Kevin Fossez' page <a href="https://kevinfossez.github.io/misc/DMRG/">https://kevinfossez.github.io/misc/DMRG/</a>
- Entanglement in nuclear forces and nuclei: Beane, Kaplan, Klco, Savage 2019; Robin, Savage, Pillet 2021;
   Kruppa et al 2022; Tichai et al 2022; Faba, Martin, Robledo 2021; ...

# Entanglement between two regions A and B

Hilbert space is a product  ${\cal H}={\cal H}_A\otimes {\cal H}_B$ 

Density matrix of ground state  $ho = |\Phi
angle \langle \Phi|$ 

Reduced density matrix  $ho_A={
m Tr}_B\,
ho$ 

Réyni (1961) entropies  $S_{lpha}=rac{1}{1-lpha}\ln{
m Tr}\,
ho_{A}^{lpha}$ 

Von Neumann (1932) entropy  $S_1 = \lim_{lpha o 1} S_lpha = -\operatorname{Tr}(
ho_A \ln 
ho_A)$ 

**Key question**: How do entanglement entropies scale with the size of the region A?

# Entanglement between two regions A and B

Two main results for free fermions: Gioev & Klich, Phys. Rev. Lett. 96, 100503 (2006)

1. Area law (with log corrections) in d dimensions for region A of linear size L.

$$S_1 \sim L^{d-1} \log L$$

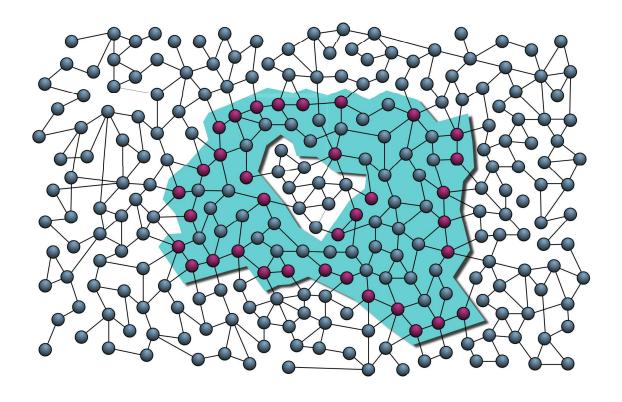
2. Particle number fluctuation in region A sets bounds on entropy

$$4(\Delta N)^2 \le S_1 \le \mathcal{O}(\log L)(\Delta N)^2$$

**Extensions of these results**: to Reyni entropies: Barthel, Dusuel, Vidal, Phys. Rev. Lett. 97, 220402 (2006); to an exactly solvable interacting system: Plenio, Eisert, Dreissig, and M. Cramer, Phys. Rev. Lett. 94, 060503 (2005); conditions for area laws: Masanes, Phys. Rev. A 80, 052104 (2009); ...

Masanes (2009): Area law if "(i) the state has sufficient decay of correlations and (ii) the number of eigenstates with vanishing energy density is not exponential in the volume."

### Expect area laws in lattice systems with local interactions



Eisert, Cramer, Plenio, Rev. Mod. Phys. 82, 277–306 (2010) Lattice systems with local interactions intuitively fulfill area laws.

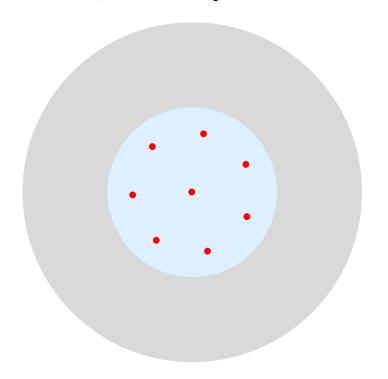
Masanes (2009): Area law if "(i) the state has sufficient decay of correlations and (ii) the number of eigenstates with vanishing energy density is not exponential in the volume."

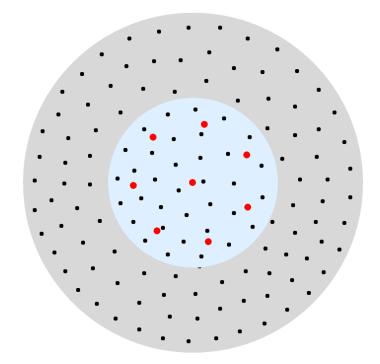
## Expect volume law in nuclei

- Perform HF calculation
- 2. Apply unitary transformations in particle and hole spaces to get localized basis states
- 3. Entanglement is between hole and particle space

**Hole space**: Localized occupied HF basis functions (red points) inside nucleus (blue); distance of points  $\sim k_F^{-1}$ .

**Particle space**: Localized unoccupied HF basis functions (black points); distance of points  $\sim \Lambda^{-1}$ .





We expect a volume law for nuclei as the cutoff and Fermi momentum approximately fulfill  $\Lambda\gg k_F$ 

# Analytical results for interacting systems

Reference state (hole state)

$$|\Phi_0\rangle = \prod_{i=1}^N \hat{a}_i^{\dagger} |0\rangle$$

Coupled-cluster theory

$$|\Psi_{\rm CC}\rangle = e^{\hat{T}}|\Phi_0\rangle \approx \left(1 + \hat{T}_2\right)|\Phi_0\rangle = |\Phi_0\rangle + \frac{1}{4}\sum_{abij}t_{ij}^{ab}|\Phi_{ij}^{ab}\rangle$$

Rényi entropy

$$S_{\alpha} \approx \frac{t^{2\alpha} - \alpha t^2}{1 - \alpha} + \mathcal{O}(t^4)$$
  $t^2 \equiv \frac{1}{4} \sum_{i_1 i_2 a_1 a_2} t_{i_1 i_2}^{a_1 a_2} t_{i_1 i_2}^{a_1 a_2}$ 

Rényi entropy vs. number fluctuation

$$S_{\alpha} = \frac{\alpha}{4(\alpha - 1)} \operatorname{Var}(N_H) + \mathcal{O}(t^4)$$

$$N_H \equiv \sum_i \hat{a}_i^{\dagger} \hat{a}_i$$

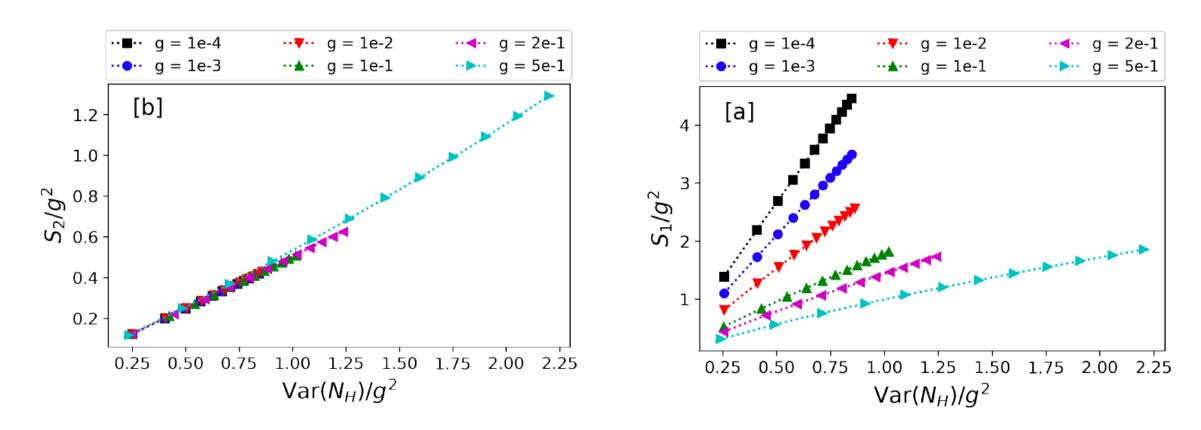
Caveat: For  $\alpha \to 1$  need  $t^2 < (\alpha - 1)^{\frac{1}{\alpha - 1}}$ .

Open: Would like to understand how  $t^2$  depends on number of hole states

[Chenyi Gu, TP et al, in prep]

# Numerical results for pairing model

$$\hat{H} = \delta \sum_{p\sigma} (p-1) a_{p\sigma}^{\dagger} a_{p\sigma} - \frac{1}{2} g \sum_{pq} a_{p+}^{\dagger} a_{p-}^{\dagger} a_{q-} a_{q+}$$

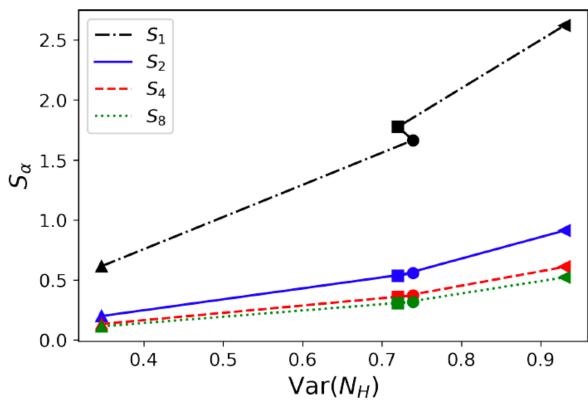


Entanglement entropies proportional to particle number fluctuation

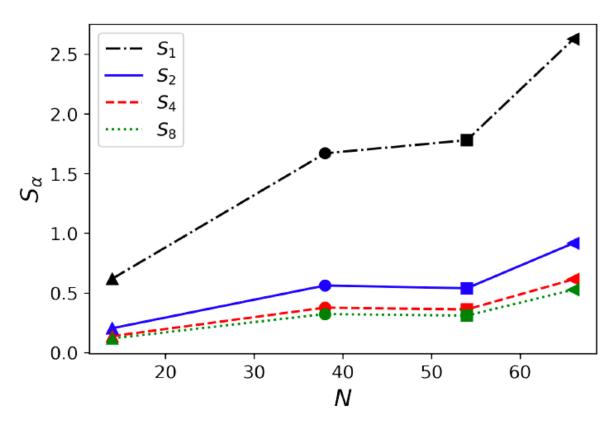
[Chenyi Gu, TP et al, in prep]

## Entanglement entropies for neutron matter

(Interaction: Minnesota potential)



Entanglement entropies proportional to particle number fluctuation; with N=14 (triangle up), N=38 (circle), N=54 (square), N=66 (triangle left)



Entanglement entropies follow volume laws; possibly some shell effects visible

[Chenyi Gu, TP et al, in prep]

#### Intermission

- Obtained analytical expressions for entanglement entropy and number variation for weakly interacting systems via coupled-cluster doubles
- $S_{\alpha} \propto (\Delta N)^2$  expected to hold generally for nuclei
- General arguments for nuclei: volume law for entanglement entropy
- Results confirmed by pairing model and neutron matter

How can one reduce entanglement?

### Renormalization of correlations in coupled-cluster theory

Coupled cluster theory: Expansion in particle-hole correlations; CCSD economical; captures about 90% of the correlation energy;  $e^T |\psi\rangle = e^{T_1 + T_2 + T_3 + \dots} |\psi\rangle$ 

Proposal: Apply Lepage's insights for renormalization to many-body computations

- CCSD includes 1p-1h, 2p-2h but lacks 3p-3h correlations
- Hypothesis: Energy gain from 3p-3h are dominated by short-range correlations; renormalize via three-body contact, following Lepage (1997)
- See Bedaque, Hammer, van Kolck, Nucl. Phys. A 64

| Interaction    | Name                    | $c_E$                                                    |
|----------------|-------------------------|----------------------------------------------------------|
| A A renorm.    | 1.8/2.0(EM)             | -0.12 [52] -0.0665                                       |
| B<br>B renorm. | $\Delta NNLO_{GO}(394)$ | $ \begin{array}{c c} -0.002 & [67] \\ 0.11 \end{array} $ |

|                     | Interaction and method |                    |           |         |        |
|---------------------|------------------------|--------------------|-----------|---------|--------|
|                     | A renorm.              | A                  | B renorm. | В       | Exp.   |
|                     | CCSD                   | $\Lambda$ -CCSD(T) | CCSD      | CCSDT-1 |        |
| $^{16}\mathrm{O}$   | 127.8                  | 127.8              | 127.5     | 127.5   | 127.62 |
| $^{24}O$            | 166                    | 165                | 169       | 169     | 168.96 |
| $^{40}\mathrm{Ca}$  | 346                    | 347                | 341       | 346     | 342.05 |
| $^{48}\mathrm{Ca}$  | 420                    | 419                | 419       | 420     | 416.00 |
| $^{78}\mathrm{Ni}$  | 642                    | 638                | 636       | 639     | 641.55 |
| $^{90}{ m Zr}$      | 798                    | 795                | 777       | 782     | 783.90 |
| $^{100}\mathrm{Sn}$ | 842                    | 836                | 816       | 818     | 825.30 |

Zhonghao Sun, Charles Bell, G. Hagen, TP, arXiv:2205.12990

# Why does it work?

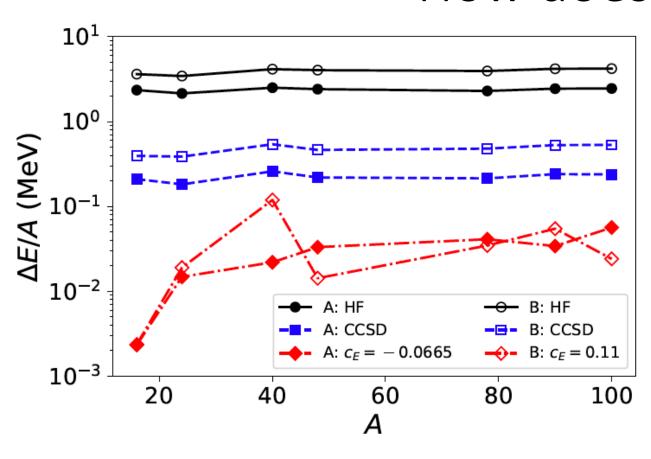
Three-body scattering equation [Bedaque, Hammer, van Kolck, Nucl. Phys. A 646, 444 (1999); Phys. Rev. Lett. 82, 463 (1999).]

$$t(k,p) = \frac{mg^2}{pk} \ln \left( \frac{p^2 + pk + k^2 - mE}{p^2 - pk + k^2 - mE} \right) + h + \frac{2\lambda}{\pi} \int_0^{\Lambda} dq \frac{t(k,q)q^2}{-\frac{1}{a_2} + \sqrt{\frac{3q^2}{4} - mE}} \left[ \frac{1}{pq} \ln \left( \frac{p^2 + pq + q^2 - mE}{p^2 - pq + q^2 - mE} \right) + \frac{h}{mg^2} \right]$$

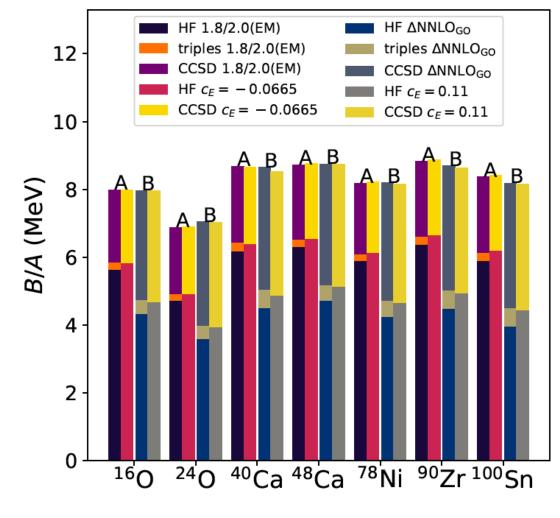
- Two-body physics RG invariant (scattering length  $a_2$  enters)
- Variation of three-body cutoff  $\Lambda$  requires three-body contact (denoted as h)

Thought experiment: Removing triples excitations corresponds to reducing three-body cutoff  $\Lambda$  to Fermi momentum.

#### How does it work?

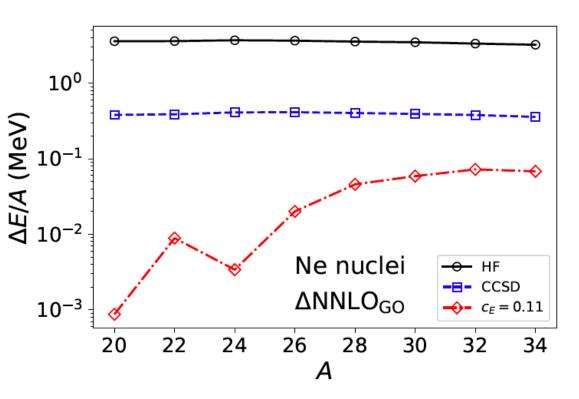


- $\Delta E = \text{differences to full triples}$
- Systematic ("order-of-magnitude") improvement from renormalization

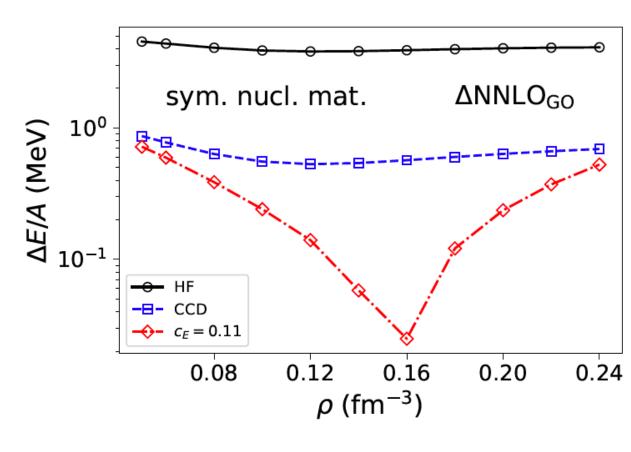


Energy from renormalization essentially goes to HF

## Weakly bound nuclei and nuclear matter



Renormalization less accurate as the dripline is approached: dilute neutron densities



Nuclear matter only accurate around saturation as  $\Delta E \propto c_E \, \rho^3$  in HF

Proposed to link correlations to the renormalization group: Renormalization reduces entanglement

Zhonghao Sun, Charles Bell, G. Hagen, TP, arXiv:2205.12990

## Summary

- Studied entanglement in nuclear systems
- Analytical expressions for entanglement entropies between hole and particle space
- Volume laws for pairing model and nuclear matter
- How to reduce entanglement?
- Renormalize Hamiltonian when 3p-3h excitations are removed
- Proposal links particle-hole excitations to ideas from EFT and RG