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Roadmap

Qubitization schemes
Introduce and study proposals for Hamiltonian formulations of
gauge theories
Learn some lessons about qubitization strategies

Quantum Compilation
Minimize depth of quantum circuits simulating given Hamiltonians
to study gauge theories
Compare efficiency of different models of SU(2) gauge theory

Considerations formulating gauge theories on quantum hardware
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Articles

Basis for this talk:

Edison M. Murairi, Michael J. Cervia, Hersh Kumar, Paulo
F. Bedaque, and Andrei Alexandru
“How many quantum gates do gauge theories require?”
PRD 106, 094504 (2022). arXiv:2208.11789

Andrei Alexandru, Paulo F. Bedaque, Andrea Carosso, Michael
J. Cervia, and Andy Sheng
“Qubitization strategies for bosonic field theories,” (2022).
arXiv:2209.00098

Michael J. Cervia & Edison M. Murairi
manuscript(s) in preparation
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“Qubitization”
Bosonic fields on a quantum computer

Lattice: spatial volume Rd → (aZL)d (“domain”)

Bosonic field’s Hilbert space H → Htrunc (“target”)

Generically, need Htrunc → H as well as
L→∞ & a→ 0. Not just inconvenient, but...

}
Qubitization

Each dim of Htrunc may be costly!
More on this later...
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A Fuzzy SU(2)?
Motivating Truncations of the gauge group

Standard gauge theory: U is a 2× 2 unitary matrix

H =
∑
x

[
g2K(x)− 1

g2

∑
µ>ν

Wµν(x)

]
Wµν = tr

[
U(x, µ)U(x+ µ̂, ν)U(x+ ν̂, µ)†U(x, ν)†

]
Kogut-Susskind

Promote Uab ∈ C to an operator on an infinite local Hilbert space:

U = g41 + igkσk ←→ U = 1⊗ Γ4 + iσk ⊗ Γk

Left/right gauge group transformation symmetries:

U 7→ LUR†

L = eiαkσk/2,

R = eiβkσk/2

⇐⇒
U 7→RLUL†R†

L = eiαkJ
L
k /2,

R = eiβkJ
R
k /2
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Qubitizing SU(2)
Options from SO(5) irreps

Algebraic rules for qubitizing SU(2) LGT:

Promote U = 1⊗ Γ4 + iσk ⊗ Γk

Left & right SU(2) generators JL,Rk

}
SO(5) algebra

Crossroads: which irrep of SO(5) do we take?
N = 4 (spinor)

[(1⊗ 2)⊕ (2⊗ 1)]

(Orland & Rohrlich, 1990)

N = 5 (fundamental)
[1⊕ (2⊗ 2̄)]

(Horn, 1981) 6 / 17



Hamiltonian Simulation
An Outline

Goal: Break global time evolution operator U(t) = exp(−iHT ) into
elementary quantum gates, minimizing noisy gates

1 Trotterization e−iHT ≈
(∏

k e
−ihkδt

)T/δt
2 Decomposition into Pauli strings H =

∑
j cjPj

3 Collection of commuting Pauli strings [P,Q]∓ = 0?

4 Diagonalizing commuting strings {P ′1, P ′2, . . .} ⊆ {I, Z}⊗n
5 Exponentiating Pauli strings exp(iφP ′)

Guiding philosophy: make the terms in the Hamiltonian “share” as
many CNOTs as possible!
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Trotter-Suzuki Methods
Applications to LGT, in three stages

1 Break long-time evolution into many shorter ones T 7→ Ntδt
2 Bipartition plaquettes into “Even” and “Odd” commuting sets

e−iHt =

(∏
E

e−iHEt

)(∏
O

e−iHOt

)
+O

(
‖[HE , HO]‖t2

)

All evens (odds) run in parallel with no Trotter error
=⇒ Problem reduces to compiling a circuit for one plaquette

3 Need to trotterize each plaquette itself... 8 / 17



Trotterizing the Plaquette
Sharing CNOTs between commuting terms

Remaining Problem: Still need to decompose the single plaquette
evolution operator exp(−iW )

W =
∑
i,j,k,l

cijklΓi ⊗ Γj ⊗ Γk ⊗ Γl

1 Embed Γ in 2n × 2n matrix (n qubits/link)

2 Write Γ =
∑
cjPj with “Pauli strings” Pj from {I,X, Y, Z}⊗n

3 Gather the commuting Pj , diagonalize together: graph theory
(color graph: vertices V ≡ {Pi}, edges E ≡ {[Pi, Pj ]+ = 0})

4 Clifford group theory: O(n2) CNOTs to diagonalize each cluster

=⇒ Just need to find the circuit for a diagonal unitary now...
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Exponentiating a Pauli String
The Final Step, Näıvely

Remaining Problem: Still need to exponentiate a collection
diagonal Pauli strings Pj ∈ {I, Z}⊗4n

Easy for one Pauli string: e.g., ZZZ

e−iφZZZ

• • • •

=

e−iφIZZ

= • •

Rz(2φ)

Problem: We want to make the strings “share” CNOTs
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Exponentiating Many Pauli Strings
The Final Step: Tree method

Goal: Make Pauli strings share CNOTs on the circuit when possible

Example: H = IIZ + IZI + IZZ + ZZZ
0 0 1, 0 1 0, 0 1 1, 1 1 1

Traverse a tree representing H, depth-first search (DFS)

root

0

0 1

1

0

1

1 1 1

=⇒

Rz (2 δt)

Rz (2 δt) Rz (2 δt) • •

Rz (2 δt) • •

Formalism reveals linear lower bound on CNOT cost per string
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Results for Basic Examples
Proof of Concept

How does our CNOT cost fare?

Optimal for a general, diagonal 2n × 2n unitary: 2n − 2 CNOTs
Competitive with state-of-the-art on various random, diagonal
Hamiltonians of N Pauli strings:

e.g., n = 8 qubits =⇒
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● Current Method

■ Tomesh et. al. 2021

▲ Lower Bound
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Resources for Z2 theory
A circuit to simulate Z2 theory with fermions

Consider a Hamiltonian for Z2 theory with staggered fermions

E.g., 4-site chain with open boundary

Existing methods: 8 qubits, 36 CNOTs

Our circuit: 7 qubits, 18 CNOTs

Rz(2ϕ) • H Rz(−ϕ) Rz(ϕ) H •

Rx(4ϕ) • •

Rz(−2ϕ) • • • H Rz(−ϕ) Rz(ϕ) H •

Rx(4ϕ) • •

Rz(2ϕ) • H Rz(−ϕ) Rz(ϕ) H • • •

Rx(4ϕ) • •

Rz(−2ϕ) • •

e−ih1δt e−ih2δt e−ih3δt

EMM, MJC, HK, PFB, AA (2022)
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Resource Estimates for Truncated Models
CNOT costs for qubitized SU(2) models’ time step

Resources to simulate one time step of SU(2) plaquette

Spinor rep: 2 qubits/link
=⇒ 64 Pauli strings
=⇒ 180 CNOTs

Fundamental rep: 3 qubits/link
=⇒ 64× 44 = 16, 384 strings
=⇒ 16,384+128 CNOTs

Adding one qubit for a link
=⇒ order(s) of magnitude cost!!!
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Summary of compilation
What can our quantum circuits tell us?

Assembly of state-of-the-art circuit compilation methods, with
our own augmentations

Automatic procedure — stay tuned for code you can use!

Foundation for resource estimates of simulations

Cautionary tale about the importance of small qubitization
schemes!
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Future Work
Strategies to make LGT simulations viable in NISQ era

Algorithms exploiting particular initial states |Ψ(t = 0)〉

Derive Hamiltonian models that already incorporate gauge
constraints (i.e., Gauss’s Law)

Determine which qubitizations are in the correct universality class

Valid truncations in reps of the symmetry group G
Models derived from subgroups S < G
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- THANK YOU -
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Gauss’s Law
Non-local gauge constraint

Gauss’s law op defined at each vertex of a
square lattice, x ∈ Λ:

Gi(x) ≡
d∑

µ=1

EiL(x, µ) + EiR(x− µ̂, µ)

is conserved. EiL/R are “left/right” copies
of group generators on a D-truncated
gauge link V ;

[EiL, V ] = −1

2
(σi ⊗ 1D×D)V

[EiR, V ] = +
1

2
V (σi ⊗ 1D×D).

The Physical Hilbert space is smaller! i.e., Gi(x) |phys〉 = 0
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Trotterizing the Plaquette
Sharing CNOTs between commuting terms

Remaining Problem: Still need to decompose the single plaquette
evolution operator exp(−iW )

W =

4∑
i,j,k,l=1

cijklΓi ⊗ Γj ⊗ Γk ⊗ Γl

1 Embed Γ in 2n × 2n matrix (n qubits/link)

2 Write Γ =
∑
cjPj with “Pauli strings” Pj ∈ {I,X, Y, Z}⊗n

N.B.: Qubitized Hamiltonian is 4n-local...
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Gathering commuting Pauli strings, efficiently
A Graph Coloring Problem

Problem: H =
∑N

j=1 cjPj . Gather commuting Pj , diagonalize
together
Solution: Graph G = (V,E) coloring

Vertices V ≡ {Pi}
Edges E ≡ {[Pi, Pj ]+ = 0}
Same color =⇒ commute IX

IY

IZ

YZ

XY

XZ

XX

XI

YI
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Diagonalizing Pauli strings together
Diagonalizing w/ CNOTs together, Part I

Need unitary matrices diagonalizing {Pj} ⇐⇒ Clifford gates

Generated by Hadamard (H), phase (S, S†), and CNOT gates

e.g., H = IXX + ZY Z +XXI → V H V † = IZI − IZZ + ZII

V

• H

= • H

S H

=⇒ Induce sharing of CNOTs by simultaneously diagonalizing

Clifford group theory: O(n2) CNOTs to diagonalize each cluster

21 / 17


