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Roadmap

@ Qubitization schemes

e Introduce and study proposals for Hamiltonian formulations of
gauge theories
e Learn some lessons about qubitization strategies

@ Quantum Compilation

e Minimize depth of quantum circuits simulating given Hamiltonians
to study gauge theories
o Compare efficiency of different models of SU(2) gauge theory

@ Considerations formulating gauge theories on quantum hardware
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Basis for this talk:

¥ Edison M. Murairi, Michael J. Cervia, Hersh Kumar, Paulo
F. Bedaque, and Andrei Alexandru
“How many quantum gates do gauge theories require?”
PRD 106, 094504 (2022). arXiv:2208.11789

¥ Andrei Alexandru, Paulo F. Bedaque, Andrea Carosso, Michael
J. Cervia, and Andy Sheng
“Qubitization strategies for bosonic field theories,” (2022).
arXiv:2209.00098

¥ Michael J. Cervia & Edison M. Murairi
manuscript(s) in preparation
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“Qubitization”

Bosonic fields on a quantum computer

o Lattice: spatial volume R? — (aZp)?¢ (“domain”) o
. ) Qubitization
@ Bosonic field's Hilbert space H — Hirune (“target”)

o Generically, need Hirync — H as well as
L — 00 & a — 0. Not just inconvenient, but...

Each dim of H;,.,c. may be costly!
More on this later...
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A Fuzzy SU(2)?

Motivating Truncations of the gauge group

@ Standard gauge theory: U is a 2 X 2 unitary matrix

H=Y" [92K(93) -5 WW(:':)]

z v Kogut-Susskind
W = tr[U(z, p)U(z + f,v)U(z + D, w)'U (z, I/)T]
@ Promote U, € C to an operator on an infinite local Hilbert space:
U=g4l +igror +— U=1001+io, T}

o Left/right gauge group transformation symmetries:

U LUR' U—RLULIR
I — eiakak/Q’ — L= eiakJ,f/Q’
R:eiﬁka'k/2 R:elﬁng/Z
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Qubitizing SU(2)

Options from SO(5) irreps

Algebraic rules for qubitizing SU(2) LGT:
@ Promote U =1®I'y+iop ®I'%
o Left & right SU(2) generators JkL’R

Crossroads: which irrep of SO(5) do we take?
N =4 (spinor) N =5 (fundamental)
(1®2)e(201)] 1o(2®2)

@ a0

(Orland & Rohrlich, 1990) (Horn, 1981) 6/17

} SO(5) algebra




Hamiltonian Simulation
An Outline

Goal: Break global time evolution operator U(t) = exp(—iHT') into
elementary quantum gates, minimizing noisy gates

@ Trotterization e T ~ (1, e‘ihk‘”)T/at
@ Decomposition into Pauli strings H = Zj ¢ P;
© Collection of commuting Pauli strings [P, Q]+ =07
@ Diagonalizing commuting strings {P|,P},...} C{I,Z}®"
@ Exponentiating Pauli strings exp(ipP’)

Guiding philosophy: make the terms in the Hamiltonian ‘“share” as
many CNOTs as possible!
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Trotter-Suzuki Methods

Applications to LGT, in three stages

© Break long-time evolution into many shorter ones T+ N;dt
@ Bipartition plaquettes into “Even” and “Odd” commuting sets

E

o—iHt _ ( H eiHEt> (1;{ eiHot>

E
+O(|[[Hg, Hol||t?)

000
B0
006

All evens (odds) run in parallel with no Trotter error
— Problem reduces to compiling a circuit for one plaquette
© Need to trotterize each plaquette itself... 8 /17



Trotterizing the Plaquette

Sharing CNOTs between commuting terms

Remaining Problem: Still need to decompose the single plaquette
evolution operator exp(—iWW)

W = Z Cijlei ® Fj R I
i7j7k7l

© Embed I' in 2" x 2" matrix (n qubits/link)

@ Write I' = )" ¢; P; with “Pauli strings” P; from {I, X,Y, Z}®"

© Gather the commuting P;, diagonalize together: graph theory
(color graph: vertices V = {P;}, edges E = {[P;, P;]+ = 0})

@ Clifford group theory: O(n?) CNOTSs to diagonalize each cluster

= Just need to find the circuit for a diagonal unitary now...
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Exponentiating a Pauli String
The Final Step, Naively

Remaining Problem: Still need to exponentiate a collection
diagonal Pauli strings P; € {I, Z}®4"

o Easy for one Pauli string: e.g., ZZZ

— eT0227 \— = S & = —D &
o—i0122
— — — D R.(29) -O——

@ Problem: We want to make the strings “share” CNOTs
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Exponentiating Many Pauli Strings
The Final Step: Tree method

Goal: Make Pauli strings share CNOTSs on the circuit when possible

o Example: H=IIZ+IZI+1ZZ + ZZZ
001, 010, 011, 111

@ Traverse a tree representing H, depth-first search (DFS)

N

> R (20t) Fp—

N
%

@
0 0 {Rz (20t) e

@ Formalism reveals linear lower bound on CNOT cost per string

@ ® — {Rz(zat)ﬁ;{ﬂtz(%ﬂ}
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Results for Basic Examples
Proof of Concept

How does our CNOT cost fare?
@ Optimal for a general, diagonal 2™ x 2™ unitary: 2™ — 2 CNOTs
@ Competitive with state-of-the-art on various random, diagonal
Hamiltonians of A/ Pauli strings:

350 ]
..
.
300} . ]
e
.
250 L 2
o .n":::’
E __.' ....- R
S 200F L300 Lurt ]
3 podt it
. = 08 aat
e.g., n =8 qubits = S 150} TH ]
0p?
© .OQ:" AAAA‘
ou " A
1001 .32-' st o Current Method ]
. N
ot! AAA“ = Tomesh et. al. 2021
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.-' Lt + Lower Bound
o
ofest ‘ ‘ ‘ ‘ e
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EMM, MJC, HK, PFB, AA (2022)
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Resources for Z, theory

A circuit to simulate Zsy theory with fermions

Consider a Hamiltonian for Zy theory with staggered fermions
@ E.g., 4-site chain with open boundary
e Existing methods: 8 qubits, 36 CNOTs
@ Our circuit: 7 qubits, 18 CNOTs

—ih1dt o—ih2dt o—ihadt

EMM, MJC, HK, PFB, AA (2022)
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Resource Estimates for Truncated Models
CNOT costs for qubitized SU(2) models’ time step

Resources to simulate one time step of SU(2) plaquette

-
-

@ Spinor rep: 2 qubits/link
=> 64 Pauli strings
— 180 CNOTs Y

e Fundamental rep: 3 qubits/link
—> 64 x 4* = 16,384 strings
= 16,384+128 CNOTs >

Adding one qubit for a link
— order(s) of magnitude cost!!!
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Summary of compilation

What can our quantum circuits tell us?

@ Assembly of state-of-the-art circuit compilation methods, with
our own augmentations

@ Automatic procedure — stay tuned for code you can use!
@ Foundation for resource estimates of simulations

@ Cautionary tale about the importance of small qubitization
schemes!
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Future Work

Strategies to make LGT simulations viable in NISQ era

@ Algorithms exploiting particular initial states |V (¢ = 0))

@ Derive Hamiltonian models that already incorporate gauge
constraints (i.e., Gauss's Law)

@ Determine which qubitizations are in the correct universality class

e Valid truncations in reps of the symmetry group G
e Models derived from subgroups S < G

16 / 17



- THANK YOU -

|
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Gauss's Law

Non-local gauge constraint

Gauss's law op defined at each vertex of a
square lattice, z € A:

d AEL(7, p2)

Giw) = 3" B, u) + il — o) A
p=1 Eg(w — fur, ) Ep(x, 1)

—>—,—>—
is conserved. EE/R are “left/right” copies
of group generators on a D-truncated

gauge link V; A Er(z — fi2, pi2)

. 1
[EL,V] = —5(02‘ ® 1pxp)V

. 1
[E}p“ V] = +§V(O'Z‘ & 1D><D)-

The Physical Hilbert space is smaller! i.e., G*(z) |phys) = 0
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Trotterizing the Plaquette

Sharing CNOTs between commuting terms

Remaining Problem: Still need to decompose the single plaquette
evolution operator exp(—ilW)

A

4
W= > culiol;elel, Y
i,3,k,1=1

Y

© Embed T" in 2™ x 2™ matrix (n qubits/link)
@ Write I' = >~ ¢; P; with “Pauli strings” P; € {I, X,Y, Z}*"

N.B.: Qubitized Hamiltonian is 4n-local...
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Gathering commuting Pauli strings, efficiently
A Graph Coloring Problem

Problem: H = Zévzl c; Pj. Gather commuting P;, diagonalize
together
Solution: Graph G = (V, E) coloring

o Vertices V = {P;}

e Edges E = {[P,, Pj]; =0}

@ Same color = commute v7 IX

X e xze Y
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Diagonalizing Pauli strings together
Diagonalizing w/ CNOTSs together, Part |

o Need unitary matrices diagonalizing {P;} <= Clifford gates
o Generated by Hadamard (H), phase (S, ST), and CNOT gates

eg, H=IXX+ZYZ+XXI - VHVI=1ZI -1ZZ + ZII
T

—QVE = - H}-
1+ —eEm

fan)

= Induce sharing of CNOTs by simultaneously diagonalizing
Clifford group theory: O(n?) CNOTSs to diagonalize each cluster
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