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Quantum phase detection 
generalization from marginal 

quantum neural network models
Keypoint: 

using quantum convolutional neural network we study the phase diagram
of the Axial Next Nearest Neighbor Ising (ANNNI) model. We train on 
simplified and integrable models, obtaining promising generalization
performance.

Paper: 
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Quantum machine learning for quantum data

Huang, et al., Science 376, 6598 (2022) 

1. Work directly with quantum states.

2. Bypass any classical processing.

Task: Drawing phase diagrams

Cong, et al., Nat. Phys. 15, 1273–1278 (2019)

1. Supervised classification using a 
convolutional QNN using the 
groundstates as input data. 

2. Advantageous since quantum states are 
exponentially hard to save classically. 

3. Bottleneck: we need access to classical 
training labels!  Interpolation does not 
work.
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Quantum machine learning 

• Classical intractability: what useful 
problems can we solve on a quantum 
computer that we cannot on a classical 
computer? 

• Innovation: what new algorithms can we 
come up with?

• Computational complexity: how can we 
obtain certain speedups? 

• Can quantum supremacy be proved with 
QML? M.Schuld: QSI Seminar - Encoding Classical Data into Quantum States for ML
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You got your data: what’s next?

Unsupervised ML
Unlabeled data.
ML finds patterns in your data.
Indirect evaluation.

Supervised ML

Labeled data, i.e., data with 
defined output.

A model is trained giving this 
data and you have direct 
evaluation.

Quantum
Computing

Reinforcement
Learning

Supervised
Learning

Unsupervised
Learning

regression
classification

clustering
anomaly detec
feat reduction
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Variational algorithms - EXPLICIT
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1-A. Bogatskiy et al. "Lorentz group equivariant neural network for particle physics." PMLR, 2020
2-J. Meyer et al “Exploiting symmetry in variational quantum machine learning“, https://arxiv.org/abs/2205.06217
3-S.Jerbi at all., Quantum Machine Learning Beyond Kernel Methods https://arxiv.org/abs/2110.13162
4- Glick, Jennifer R., et al. "Covariant quantum kernels for data with group structure." arXiv:2105.03406 (2021)

QML models implementations for NISQ

Parametrized circuit
A linear model in the quantum feature space!

• Flexible parametric ansatz: design can 
leverage data symmetries1,2

• Can use gradient-free methods or
stochastic gradient-descent

• Data Embedding can be learned
• Better generalization2,3
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• Data Embedding can be learned
• Better generalization2,3

https://github.com/fizisist/LorentzGroupNetwork

A unitary representation of a symmetry

group S can arise from data symmetries

when the data points are suitably

encoded or alternatively from physical

considerations of a variational problem2. 
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Quantum convolutional networks
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• Can have as few as 𝑂𝑙𝑜𝑔(𝑛) parameters

• Related to hierarchical quantum circuits like 

tree-tensor networks and multi-scale 

entanglement renormalization ansatz

• Can be used to analyse classical data or 

quantum states

• Quantum phase recognition, quantum error 

correction, entanglement detection, …

• QCNNs are “naturally” shallow

Grant et al., npj Quant. Inf. 4, 65 (2018)
I. Cong et al., Nature Physics 15, 1273 (2019)
Pesah et al., arXiv:2011.02966 (2020) 



Model Convergence and Barren Plateau Open Problem

Given the size of the Hilbert space a compromise 
between expressivity, convergence and generalization
performance is needed. 

Quantum gradient decay exponentially in the number
of qubits

•Random circuit initialization
•Loss function locality in shallow circuits (M. Cerezo et al., 

arXiv:2001.00550) 
•Ansatz choice: TTN, CNN (Zhang et al., arXiv:2011.06258, A Pesah, et al., 
Physical Review X 11.4 (2021): 041011. ) 
•Noise induced barren plateau (Wang, S et al., Nat Commun 12, 6961 

(2021)) 

QCNNs are resistant to barren plateaus due to their distance
from low T2-design (Pesah et al., arxiv:2011.02966)

• variance of the gradient vanishes no faster than polynomially

• Pooling-based QCNN is trainable

J. McClean et al., arXiv:1803.11173 

QCNN: A Pesah, et al., Physical Review X 11.4 (2021): 041011 
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N = 6
μ

The Physics model: Axial Next Nearest Neighbor Ising (ANNNI)

Senk, Physics Reports, 170, 4 (1988)

Integrable only for:

● (x-axis)        

● (y-axis)
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Variational Quantum Eigensolver (VQE)
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Variational Quantum Eigensolver (VQE)

and      can assume 100 values each             10,000 total states to obtain through VQE!
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Quantum Convolutional Neural Network (QCNN)

Loss: 

Labels:

- [0,1] ferromagnetic

- [1,0] antiphase

- [1,1] paramagnetic

- [0,0]  trash label

Binary Cross-entropy
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Results
QCNN (95%)
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Training size

• Normalised (exact diagonalisation – VQE) 

• The accuracy is always above 99%. 

• The Peschel-Emery line is exhibited, 

unravelling new physics by comparing 

VQE with different approaches, such as 

DMRG



Conclusion

1. QCNN trained (NO BP) on few training point for 

Quantum Phase Recognition

2. QCNN gives quantitative predictions
[Banchi et all., Generalization in Quantum Machine Learning: A 

Quantum Information Standpoint, PRX QUANTUM 2, 040321 

(2021) ]

3. Performance increases with the system’s size. 

4. Adresses the bottleneck of needing expensive 

training labels

5. Potential Out of Distribution Generalization
[M..Caro et al., Out-of-distribution generalization for learning 

quantum dynamics, https://arxiv.org/abs/2204.10268]
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