Rodeo algorithm with controlled reversal gates

Dean Lee
Facility for Rare Isotope Beams
Michigan State University

Quantum Computing for Many-Body Problems:
Atomic Nuclei, Neutrinos, and Other Strongly Correlated Fermi Systems
[JCLab
November 23, 2022

NUELEI #)ouicH  %0ak RIDGE e

Nuclear Computational Low-Energy Initiative National Laboratory FACILITY
A SciDAC-4 Project

&’: £ MICHIGAN STATE
FRg UNIVERSITY




Qutline

Rodeo algorithm
Controlled reversal gates
Multi-state rodeo algorithm
Towards the future

Summary



Rodeo algorithm

Choi, D.L., Bonitati, Qian, Watkins, PRL 127, 040505 (2021)



Consider a single qubit and a Hadamard gate
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Consider another unitary operation that is a diagonal phase rotation
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Let us now start in the [(1)] state and perform these unitary operations

1 _ 1 _—it(Eopj—F)
Ut R(Eov;, E,t)U [O] — [% 2° ]
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and then project back to the [(1)] state
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This projection is done via quantum measurement and the success
probability is
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Let us couple this qubit, which we call the “arena” or “ancilla” qubit, to
another system that we call the “object”. We also promote the 2 x 2
matrices to become 2 x 2 matrices of operators acting on the object.
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0

o) and we perform the operations and then
init

We start from the state

measure if the arena qubit is in the {(1) state
OQ]%%fﬂ 77[0]:[0
0 G —fl o e @B [ G =) Wmio] Ly g P )

V2
By repeated successful measurements with random values of ¢, we reduce
the spectral weight of eigenvectors with energies that do not match F.

The convergence is exponential. For N cycles of the rodeo algorithm, the
suppression factor for undesired energy states is 1/4%.
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FIG. 1. (color online) Circuit diagram for the rodeo algorithm.
The object system starts in an arbitrary state |17). Each of the arena
qubits are initialized in the state |1) and operated on by a Hadamard
gate H. We use each arena qubit n = 1,--- , N for the controlled
time evolution of the object Hamiltonian, H,yj, for time ¢,. This
is followed by a phase rotation P(Et,) on arena qubit n, another
Hadamard gate H, and then measurement.

Choi, D.L., Bonitati, Qian, Watkins, PRL 127, 040505 (2021)
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Initial-state spectral function and state preparation. The example shown
below is for a 1D Heisenberg chain with ten sites, antiferromagnetic
interactions, and uniform magnetic field.

— 3 cvcles 6 cvcles — 9 cvcles TABLE I. Overlap probability with energy eigenvector |E;) after N
y y y cycles of the rodeo algorithm using Gaussian random values for ¢,,
S with trms = 5 and E = E;.
0.30¢ E; |[N=0|N=3/N=6/N=9
i o Exact —18.1| 0.110 | 0.746 | 0.939 | 0.997

—16.4 | 0.209 | 0.841 | 0.993 | 1.000
—~11.9 | 0.200 | 0.629 | 0.889 | 0.999
—9.76 | 0.0974 | 0.488 | 0.903 | 0.999
—8.38 | 0.0320 | 0.467 | 0.832 | 0.993
—6.63 | 0.0577 | 0.309 | 0.818 | 0.996
—5.81 | 0.0118 | 0.179 | 0.637 | 0.817
—5.52 | 0.115 | 0.456 | 0.766 | 0.997
—4.26 | 0.0171 | 0.144 | 0.696 | 0.995
—3.95 (0.004010.0430| 0.343 | 0.952
. —2.00 | 0.0139 | 0.158 | 0.593 | 0.942
10 20 ’ = 40 E —0.802| 0.0338 | 0.216 | 0.545 | 0.594
—0.704 0.0331 | 0.286 | 0.540 | 0.585

2.00 |0.0357 | 0.371 | 0.925 | 0.994
2.42 (0.002350.0122|0.0874| 0.521

FIG. 4. (color online) Initial-state spectral function for the

Heisenberg model. We plot the initial-state spectral function us- 2.68 10.0029110.0845! 0.639 | 0.929
ing the rodeo algorithm for the Heisenberg spin chain with 3 (thin 3.39 10.005920.0360! 0.754 | 0.943
blue line), 6 (thick green line), and 9 (medium red line) cycles. We 5.96 10.0033610.0951| 0.559 | 0.981
have averaged over 20 sets of Gaussian random values for ¢,, with 7.33 10.00650| 0.184 | 0.792 | 0.978
trms = 5. For comparison, we also show the exact initial-state 8.13 10.0039310.0832| 0.665 | 0.841
spectral function with black open circles. 8.24 10.00105/0.0275! 0.142 | 0.289

10.0 ]0.00397|0.0128| 0.295 | 0.902

|%init) = [0101010101)
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error in the wave function.

Comparison with other well-known algorithms. Let A be the norm of the
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Preconditioning with adiabatic evolution

The computational effort needed for the rodeo algorithm is inversely

proportional to the overlap probability between the initial state and the
desired eigenvector.

We can use adiabatic evolution to increase this overlap probability.

TABLE 1. Overlap probability with energy eigenvector |E;)
with E = E; = —18.1 after preconditioning with adiabatic evo-

lution for time #,p and the applying N cycles of the rodeo
algorithm using Gaussian random values for 7, with 7., = 5.

—18.1 0 0.110 0.746 0.939 0.997
—18.1 5 0.83074  0.99875 0.99988 0.99999
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Using IBM Q devices, we implement the rodeo algorithm for a one qubit
Hamiltonian. We consider a random Hamiltonian of the form

Hyp; = HO® = —0.084961 — 0.89134X + 0.26536Y + 0.57205%

We use mid-circuit measurements without resets for the ancilla qubit

______________________

1
' l
1
ancilla: H — P(Et;)
1

Operations dependent on ¢,
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Each circuit consists of three cycles of the rodeo algorithm,
corresponding to three controlled time evolutions and three ancilla
qubit measurements. We sweep through the target energy E to
perform an energy scan of the spectrum. We perform three separate
scans of the energy, each time zooming in with more resolution.

E?na:n

Emin

1st scan 2nd scan
3
_oooil Low High
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Single qubit Hamiltonian

o =2 (1st scan) -=-= og=2 (expected)
o=7 (2nd scan) -== og=17 (expected)

B o=12 (3rd scan) -== 0=12 (expected)
1 Noiseless simulation (1st scan)

E,  -1.1750(12) -1.1768

Rodeo Algorithm Exact

0.08% relative error

-
—— - .

IBM Casablanca

Z. Qian, J. Watkins, G. Given, J. Bonitati, K. Choi, D.L., arXiv:2110.07747
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Controlled reversal gates

A reversal gate, R, is a product of single qubit gates that anticommutes
with some subset of the terms in a Hamiltonian.

RH=—-HR

We note that
Re—thR — e—l—th

Let Cj be the controlled reversal gate that performs R if the ancilla qubit
is in the 1 state and does nothing if if the ancilla qubit is in the 0 state.

We note that Cg toggles the flow of time back and forth. Using Cy we can
reduce the number of gates needed for state preparation using the rodeo
algorithm or phase estimation by a factor of at least two.



Using IBM Q and Quantinuum devices, we implement the rodeo algorithm
using controlled for a two qubit Hamiltonian. This work was done in

collaboration with the Quantinuum Theory Group. Our Hamiltonian has
the form

Hopy = 1 X1 ® Za + 221 @ Xo

C1 = 2.5, Co — 1.5

The time evolution of the Hamiltonian can be written as

|0> ’[ Rm (201t) J\
|0) H R (2cat) H
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Using controlled reversal gates, one cycle of the rodeo algorithm is
implemented as

Controlled reversal gates

- - - —— -
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|0) H T
0) —Y l R.(2c1t)

|O> H ANV RZ(ZCQt)
The controlled reversal gates provide a fivefold reduction in the number

of gates. The comparison is made with respect to Qiskit-transpiled code
without controlled reversal gates.
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Bee-Lindgren, Qian, DeCross, Brown, Gilbreth, Watkins, Zhang, D.L., arXiv:2208.13557
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Two qubit Hamiltonian

N =

3, IBM_Perth
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0=4 (1st scan)
0 =14 (2nd scan)
W 0=24 (3rd scan)

[ 1 Noiseless simulation (1st scan)
—-—— 0=4 (expected)
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IBM_Perth

N =5,
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[ 1 Noiseless simulation (1st scan)
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5, Quantinuum H1-2 system
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IBM Perth IBM Perth |Quantinuum H1-2
Three Cycles| Five Cycles |Five Cycles

Exact

-4.0000 | -4.0022(49) | -4.0006(42) -3.9982(21)

[

-1.0000 | -0.9829(56) | -0.9927(40) -1.0083(39)

\V)

1.0000 | 1.0007(26) | 1.0008(19) 1.0028(22)

RSl RS RS RS

4.0000 | 4.0093(84) | 3.9982(25) 4.0036(17)




We can prepare an arbitrary linear combination of two eigenvectors with

Multi-state rodeo algorithm

two different energies.

- . U©,9) —>—
T
{E ~ o P(2Et) P[2(E' - E)t]
l% R.(2¢1t) 1’_]_7[
(&R (e (]
X Ncycles

Bee-Lindgren, Bonitati, Given, Qian, Watkins, D. L., et al., work in progress
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This allows us to create the general superposition state
6,6) = cos(0/2) |E) + €% sin(9/2) | E')

We can now measure the expectation value of any observable O

(0,6|010, ¢) = cos?(0/2) (E|O|E) + sin*(0/2) (E'|O| E')
+ R[e? sin(0) (E|O|E")]

From this we can extract the transition matrix element

(E|O|E)
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Towards the future

Nuclear Lattice
Effective Field
Theory

Quantum
Advantage

state preparation, spectral functions, real time dynamics
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Binding energy (MeV)
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Lu, Li, Elhatisari, D.L., Epelbaum, Meilner, PLB 797, 134863 (2019)
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A
=2

chemical potential u (MeV)

—T 7T 7 T T T
—— liquid-vapor coexistence line ]
~e. *  critical point i

pressure p (MeV / fm3)

OSSR N SR TR TR NN SN TR SN NN S SN SN N S S
0.2 0.4 0.6 0.8
reduced nucleon density p / po

T, = 15.80(0.32)(1.60) MeV
pe = 0.089(04)(18) fm °

fhe = —22.20(0.44)(2.20) MeV
0.260(05)(30) MeV fm™*

<0
[

Lu, Li, Elhatisari, D.L., Drut, Lahde, Epelbaum, Meiiner, PRL 125, 192502 (2020)
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(n)?
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H =

# qubits = 4L3

31



By/A (MeV)

Elhatisari, Bovermann, Epelbaum, Frame, Hildenbrand, Krebs, Lahde, D.L., Li, Lu, M. Kim, Y.

Binding energy per nucleon
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Kim, Ma, MeiRner, Rupak, Shen, Song, Stellin, arXiv: 2210.17488
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R, (fm)
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Wave function matching

“'-....'0
..‘O 0.“ H
. & ®
easily  op I .
computable "~ ese :
Hamiltonians %, .
0. ’0

unitary
transformation

‘“agpunt’

Elhatisari, Bovermann, Epelbaum, Frame, Hildenbrand, Krebs, Lahde, D.L., Li, Lu, M. Kim, Y.

Kim, Ma, MeiRner, Rupak, Shen, Song, Stellin, arXiv: 2210.17488
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Summary

We considered the rodeo algorithm. It is
exponentially faster than other well-known
algorithms for quantum state preparation.
It is accurate and resilient for determining
the energy spectrum in the presence of
noise. We then discussed the concept of
controlled reversal gates for reducing circuit
depth and showed some applications of the
rodeo algorithm on real quantum devices.
We then considered the multi-state rodeo
algorithm for preparing arbitrary linear
combinations of energy eigenstates in order
to compute transition matrix elements. We
concluded with some comments on future
nuclear lattice simulations with quantum
computers.
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