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Rodeo algorithm

Choi, D.L., Bonitati, Qian, Watkins, PRL 127, 040505 (2021)



Consider a single qubit and a Hadamard gate 

Consider another unitary operation that is a diagonal phase rotation

We then have
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Let us now start in the        state and perform these unitary operations

and then project back to the        state 

This projection is done via quantum measurement and the success 
probability is
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Let us couple this qubit, which we call the “arena” or “ancilla” qubit, to 
another system that we call the “object”.  We also promote the 2 x 2 
matrices to become 2 x 2 matrices of operators acting on the object.

We then consider the same combination



We start from the state          and we perform the operations and then  

measure if the arena qubit is in the      state

By repeated successful measurements with random values of t, we reduce 
the spectral weight of eigenvectors with energies that do not match E .  

The convergence is exponential.  For N cycles of the rodeo algorithm, the 
suppression factor for undesired energy states is 1/4N.
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Choi, D.L., Bonitati, Qian, Watkins, PRL 127, 040505 (2021)



Initial-state spectral function and state preparation.  The example shown 
below is for a 1D Heisenberg chain with ten sites, antiferromagnetic 
interactions, and uniform magnetic field.
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rodeo algorithm

phase estimation

adiabatic evolution
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Comparison with other well-known algorithms.  Let D be the norm of the 
error in the wave function.
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Preconditioning with adiabatic evolution

The computational effort needed for the rodeo algorithm is inversely 
proportional to the overlap probability between the initial state and the 
desired eigenvector.  

We can use adiabatic evolution to increase this overlap probability.  



Using IBM Q devices, we implement the rodeo algorithm for a one qubit 
Hamiltonian.  We consider a random Hamiltonian of the form

We use mid-circuit measurements without resets for the ancilla qubit
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Each circuit consists of three cycles of the rodeo algorithm, 
corresponding to three controlled time evolutions and three ancilla 
qubit measurements. We sweep through the target energy E to 
perform an energy scan of the spectrum.  We perform three separate 
scans of the energy, each time zooming in with more resolution.
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Single qubit Hamiltonian

Z. Qian, J. Watkins, G. Given, J. Bonitati, K. Choi, D.L., arXiv:2110.07747

Rodeo Algorithm Exact

E1 1.00681(66) 1.00690

E2 -1.1750(12) -1.1768

IBM Casablanca

0.08% relative error



Controlled reversal gates

A reversal gate, R, is a product of single qubit gates that anticommutes
with some subset of the terms in a Hamiltonian.

We note that 

Let CR be the controlled reversal gate that performs R if the ancilla qubit 
is in the 1 state and does nothing if if the ancilla qubit is in the 0 state.  

We note that CR toggles the flow of time back and forth.  Using CR we can 
reduce the number of gates needed for state preparation using the rodeo 
algorithm or phase estimation by a factor of at least two.



Using IBM Q and Quantinuum devices, we implement the rodeo algorithm 
using controlled for a two qubit Hamiltonian. This work was done in 
collaboration with the Quantinuum Theory Group.  Our Hamiltonian has 
the form

The time evolution of the Hamiltonian can be written as
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Using controlled reversal gates, one cycle of the rodeo algorithm is 
implemented as
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The controlled reversal gates provide a fivefold reduction in the number 
of gates. The comparison is made with respect to Qiskit-transpiled code 
without controlled reversal gates.

Bee-Lindgren, Qian, DeCross, Brown, Gilbreth, Watkins, Zhang, D.L., arXiv:2208.13557



Two qubit Hamiltonian
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Multi-state rodeo algorithm

Bee-Lindgren, Bonitati, Given, Qian, Watkins, D. L., et al., work in progress

We can prepare an arbitrary linear combination of two eigenvectors with 
two different energies.  
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This allows us to create the general superposition state

We can now measure the expectation value of any observable O

From this we can extract the transition matrix element 
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Towards the future

state preparation, spectral functions, real time dynamics



0 10 20 30 40 50

-400

-300

-200

-100

0

Ca
Ar
S

Si

Mg

Ne

O

C

Be
He

 Lattice
 Exp.

Bi
nd

in
g 

en
er

gy
 (M

eV
)

Mass number A

H Pion-less EFT Leading Order

29Lu, Li, Elhatisari, D.L., Epelbaum, Meißner, PLB 797, 134863 (2019)



Lu, Li, Elhatisari, D.L., Drut, Lähde, Epelbaum, Meißner, PRL 125, 192502 (2020) 30
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Binding energy per nucleon
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Elhatisari, Bovermann, Epelbaum, Frame, Hildenbrand, Krebs, Lähde, D.L., Li, Lu, M. Kim, Y. 
Kim, Ma, Meißner, Rupak, Shen, Song, Stellin, arXiv: 2210.17488
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Elhatisari, Bovermann, Epelbaum, Frame, Hildenbrand, Krebs, Lähde, D.L., Li, Lu, M. Kim, Y. 
Kim, Ma, Meißner, Rupak, Shen, Song, Stellin, arXiv: 2210.17488



Wave function matching
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Elhatisari, Bovermann, Epelbaum, Frame, Hildenbrand, Krebs, Lähde, D.L., Li, Lu, M. Kim, Y. 
Kim, Ma, Meißner, Rupak, Shen, Song, Stellin, arXiv: 2210.17488



Summary

We considered the rodeo algorithm. It is
exponentially faster than other well-known
algorithms for quantum state preparation.
It is accurate and resilient for determining
the energy spectrum in the presence of
noise. We then discussed the concept of
controlled reversal gates for reducing circuit
depth and showed some applications of the
rodeo algorithm on real quantum devices.
We then considered the multi-state rodeo
algorithm for preparing arbitrary linear
combinations of energy eigenstates in order
to compute transition matrix elements. We
concluded with some comments on future
nuclear lattice simulations with quantum
computers.
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