PSA Projects

Joa Ljungvall

November 22, 2022

We (I) would like to measure PSA performance with source

Has been done using imaging techniques ${ }^{2}$
${ }^{2}$ F. Recchia et al. NIM A 604 (1) (2009) $60-63$

Contributions to image resolution

Extracted resolution

We (I) would like to measure PSA performance with source

Reading about γ-ray tracking, I stumbled upon TANGO ${ }^{\text {a }}$
${ }^{a}$ S. Tashenov NIM A 622 (3) (2010) 592-601.
The energy of a γ ray that has interacted at least twice in AGATA can be estimated using the equation

$$
\begin{equation*}
E_{\gamma}=\frac{E_{1}}{2}+\sqrt{\frac{E_{1}^{2}}{4}+\frac{E_{1} m_{e} c^{2}}{\left(1-\cos \theta_{1}\right)}} \tag{1}
\end{equation*}
$$

By selecting good $1332 \mathrm{keV} \gamma$ rays (tracking or calorimetric) and using above formula I get an energy peak with a width that depends on the position resolution.

We (I) would like to measure PSA performance with source

So lets try to use this to estimate PSA performance

Extracted resolution

Energy distributions

AGATAGeFEM produces a good database but...

AGATAGeFEM

FEM based code with strong coupling to ROOT, geant4, and ADF.

Need to verify this using neutron damage corrections

- This is a bit tedious work. . .
- Calibrations...
- Tests. . .
- Calibrations...

But will be done at some point not to far in the future

What metric do we use for the moment?

$$
\begin{gathered}
\text { A sum like } \\
\sum_{i}\left(\left|y_{i}^{\text {exp }}-y_{i}^{\text {base }}\right|\right)^{0.3}
\end{gathered}
$$

This has been verified using both ADL and AGATAGeFEM (fig to the right) basis signals

What is (might be) missing?

- As the noise has the same magnitude for all points, no Δy in square sum
- But, what about $\Delta t\left(e . g . t_{0}\right)$?

$$
\chi^{2}=\sum_{i}\left(\frac{\text { Normal solution }}{y_{i}^{\text {exp }}-y_{i}^{\text {base }}}{ }^{\left(\Delta y_{i}\right)^{2}+\left(\frac{d_{d t}^{b s e s e}}{d t}\left(t_{i}\right) \Delta t\right)^{2}}\right)^{2}
$$

Note, that noise level suddenly matters as it has a magnitude compared to error induced by t_{0} determination. Idea is to implement this metric in PSA and test. ${ }^{1}$

[^0]
Continuation of a project that started 2021

- Try to use ML to count number of interactions in segments
- Idea was to use some kind of simple tracking that could correlate segment energies with number of interaction. . . fail
- Using energies together with pulse shapes was never done. Will be done now by D. Kovalenko (remote France-Ukraine grant).
(1) AGATA geant4 simulation gives γ-ray interactions AND energy deposition positions.
(2) AGATAGeFEM calculates pulse shapes from energy deposition positions.
(3) Gamma-ray interactions used to train NN to get \#interactions/segment.

[^0]: ${ }^{1}$ Old news, see P Désesquelles et al 2009 J. Phys. G: Nucl. Part. Phys. 36037001

