Testing likelihood accuracy for cluster count cosmology

Constantin Payerne

3rd year PhD student at LPSC, Grenoble Under the supervision of Dr. Céline Combet

Talk based on:

Testing likelihood accuracy for cluster abundance cosmology **C. Payerne,** C. Murray, C. Combet, C. Doux, A. Fumagalli, M. Penna-Lima, 2210.11093

Kick-off du GDR Cophy - 01/2023

Galaxy Clusters and Cosmology

Galaxy clusters: a brief introduction

- ⁻ Most massive bound systems with $M \in 10^{13} 10^{15} M_{\odot}$
- z < 2, last step of hierarchical structure formation process
- Densest regions in the cosmic web filaments

Probing cosmology with galaxy cluster abundance

⁻ Count clusters a function of redshift and mass

Number density $\frac{\partial^2 N_{\text{th}}}{\partial z \partial m} \propto \frac{dn(m, z)}{dm} \frac{dV(z)}{dz}$

- Depends on:
 - Halo Mass Function (matter content $\Omega_{\rm m}$, growth rate of structure $\sigma_8(z)$)
 - Volume (background cosmology)
- ⁻ Geometry + growth of structures in the Universe

Basic recipe for cluster abundance cosmology

- Observations
 - From a galaxy cluster survey with known redshifts, masses
 - Count the number $\overrightarrow{N}_{\rm obs}$ of galaxy clusters within bins of redshift and mass
- Cosmological analysis: define likelihood
 - $\vec{N}_{\rm th}$ at arbitrary cosmology
 - Statistics:
 - Count of discrete objects in bins
 - Poisson sampling
 - Intrinsic count variance: Shot noise $Var_{Poiss}(N_k) = N_k$
 - Fluctuation + clustering of the matter density field
 - Gaussian contributions: (Super) Sample Covariance
 - $\operatorname{Corr}_{\operatorname{SSC}}(N_k, N_l) \neq 0$
 - $\operatorname{Var}_{\mathrm{SSC}}(N_k) \sim b_k^2 \sim P_{\mathrm{mm}}(k) \sim N_k^2$
 - Non-linear physics of halo formation \rightarrow More complications
 - Observational systematics, ...

Likelihoods for cluster count cosmology

Likelihoods

- Ideally should describe completely abundance statistics
- There exist approximations
 - Poisson likelihood (Planck, 2015 ~ 500 clusters)
 - Accounts for Poisson sampling
 - Does not account for sample covariance
 - Valid for low number of clusters, Shot Noise >> Sample variance
 - Gaussian likelihood (DES, 2021 \sim 7000 clusters)
 - Sample covariance
 - Limited to continuous approximation
 - Valid for high number of clusters, Shot Noise ~ Sample variance
 - Gauss-Poisson Compound (GPC) (KiDS, 2021 ~ 4000 clusters)
 - Takes into account both Poisson sampling and sample covariance (Hu & Kravtsov, 2003)
 - Computationally expansive to compute

- Multidimensional integral
$$\mathscr{L}(\widehat{N} \mid \overrightarrow{\theta}) \propto \int d\overrightarrow{x} \, \mathscr{N}[\overrightarrow{x} \mid \overrightarrow{N}(\theta)] \times \prod_{k=1}^{n} \mathscr{P}[\widehat{N}_{k} \mid x_{k}]$$

- More precise, can we gain cosmological information?

Likelihoods for cluster count cosmology

Considering the count in 3 different mass-redshift bins

Bias on parameter inference

- Deviation of the analysis likelihood from the latent one may bias results
- Most robust constraints with analysis likelihood closest to latent one

Using simulations to test cluster abundance likelihoods

- Likelihood: statistical properties of the data at input cosmology
- With multiples simulations, can have access to "true" statistics of abundance

Framework for testing the accuracy of likelihoods

We use a set 1000 simulated dark matter halo catalogs

- PINOCCHIO algorithm (Monaco et al., 2013)
- Planck cosmology
- Masses calibrated on known halo mass function (Despali et al., 2015)
- Euclid-like sky area \sim ¼ of full-sky
- $\sim 10^5$ halos per simulation
- $M>10^{14}~M_{\odot}$

Abundance likelihood can be estimated from counts over the 1000 cosmological simulations

Constantin Payerne, Testing likelihood accuracy for cluster count cosmology

Framework for testing the accuracy of likelihoods

Frequentist Covariance of Bayesian Estimators

Methodology

- Estimate the posterior for each of the 1000 Pinocchio mocks
- Biases ? Compare the mean of each posterior to input cosmology
- Robustness of errors ? Compare individual posterior dispersion $\sigma_{\rm ind}$ to the spread of posterior means $\sigma_{\rm ens}$ (ensemble dispersion)

More than 1 parameter: compare covariances

$$\sigma_{\text{ind}}^2 \rightarrow C^{\text{ind}}$$
 Individual parameter covariance
 $\sigma_{\text{ens}}^2 \rightarrow C^{\text{ens}}$ Ensemble parameter covariance

Why comparing individual errors to the spread of means?

- Metric: Using correct likelihood gives $C^{\text{ens}} = C^{\text{ind}}$
- Likelihood and posterior are not always gaussians
- Rather closeness between individual errors and ensemble error
- Used as a metric to test likelihood accuracy C^{ind} + robustness $C^{\text{ens}} C^{\text{ind}} = ?$

Cosmological inference setup

- The Poisson, Gaussian and GPC likelihood are approximations
- Valid at linear scales (clusters are biased tracers of the density field)
- For given count magnitude N_k + for SSV/SN ratio $\sim N_k$
- These quantities can vary by changing the binning the mass-redshift plane

Methodology: Test accuracy of likelihoods for various regimes

For each likelihood

1. Compare C^{ens} , C^{ind} for the overall 1000 PINOCCHIO mocks

2. For 3 binning schemes

Binning setup Sample Variance Poisson sampling Mass bins Average # N/bin Redshift bins # of bins #1 16 5000 4 4 #2 20 30 600 150 #3 100 100 10000 10

 $\sim 10^4$ cosmological constraints ! Importance sampling (efficient for 2 parameters)

Results: Bias to input cosmology ?

Small constant bias between input and recovered cosmology

- Accuracy of the underlying halo model
- Numerical error

- Individual errors on each simulation (blue)
- Spread of best fits (red)

Parameter error

- Poisson underestimates the errors, since it not takes account of sample variance
- Gaussian = Gauss-Poisson Compound
 - Slightly underestimate errors, likely due to approximations made for the 2-pt statistics
 - The same level of constraints
- Fisher forecasts (circle) in agreement with individual errors
- Ensemble forecast (square) for the spread of posterior means

Results: all binning schemes

Parameter error

- Errors decreases with the number of bins (10% improvement from 16 to 10^4 bins)

- Poisson

- Underestimates the error, even for fine binning, does not account for sample variance

- Gaussian = Gauss-Poisson Comp.

- Over/under estimate constraints (approximation for computing the covariance matrix)
- The same level of constraints

Conclusions

Recap:

- Tested accuracy of cluster likelihoods with
 - 1000 simulated dark matter halo catalogs
 - By comparing posterior variances to spread of means over the 1000 simulations
 - Sensitive to both analysis and latent likelihood properties

Conclusions: For future Euclid or Rubin-like surveys

- Gaussian gives robust constraints over a wide range of inference setup
- No gain in using Gauss-Poisson Compound (same level of constraints but computationally expansive)
- Gauss-Poisson Compound = Gaussian (under/overestimating errors at most 5%)
- Poisson likelihood always underestimates errors