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Galaxy Clusters and Cosmology
Galaxy clusters: a brief introduction

- Most massive bound systems with M € 10"° — 101> M,

- 7z < 2, last step of hierarchical structure formation process
- Densest regions in the cosmic web filaments

Probing cosmology with galaxy cluster abundance

- Count clusters a function of redshift and mass
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Cosmology with galaxy cluster abundance

Basic recipe for cluster abundance cosmology

- Observations
- From a galaxy cluster survey with known redshifts, masses
- Count the number N, of galaxy clusters within bins of redshift and mass

- Cosmological analysis: define likelihood
- N, at arbitrary cosmology
- Statistics:

- Count of discrete objects in bins
- Poisson sampling
- Intrinsic count variance: Shot noise Varp; (V) = N,

- Fluctuation + clustering of the matter density field
- Gaussian contributions: (Super) Sample Covariance
- Corrggo (N, N) # 0
- Varggo(N,) ~ b} ~ P (k) ~ N/

- Non-linear physics of halo formation — More complications
- Observational systematics, ...
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Likelihoods for cluster count cosmology

Likelihoods
- Ideally should describe completely abundance statistics
- There exist approximations

- Poisson likelihood (Planck, 2015 ~ 500 clusters)
- Accounts for Poisson sampling
- Does not account for sample covariance
- Valid for low number of clusters, Shot Noise >> Sample variance

- Gaussian likelihood (DES, 2021 ~ 7000 clusters)
- Sample covariance
- Limited to continuous approximation
- Valid for high number of clusters, Shot Noise ~ Sample variance

- Gauss-Poisson Compound (GPC) (KiDS, 2021 ~ 4000 clusters)
- Takes into account both Poisson sampling and sample covariance (Hu & Kravtsov, 2003)
- Computationally expansive to compute

- Multidimensional integral Z(N | 6) [d? N INO X [] PINIx]

k=1
- More precise, can we gain cosmological information?
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Likelihoods for cluster count cosmology

Considering the count in 3 different mass-redshift bins
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Bias on parameter inference
- Deviation of the analysis likelihood from the latent one may bias results
- Most robust constraints with analysis likelihood closest to latent one

Using simulations to test cluster abundance likelihoods
- Likelihood: statistical properties of the data at input cosmology
- With multiples simulations, can have access to “true” statistics of abundance
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Framework for testing the accuracy of likelihoods

We use a set 1000 simulated dark matter halo catalogs
- PINOCCHIO algorithm (Monaco et al., 2013)
- Planck cosmology
- Masses calibrated on known halo mass function (Despali et al., 2015)
- Euclid-like sky area ~ Va of full-sky
-~ 10° halos per simulation
-M > 10" M,

Abundance likelihood can be estimated from counts over the 1000 cosmological simulations
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Framework for testing the accuracy of likelihoods

Frequentist Covariance of Bayesian Estimators

Methodology
e Estimate the posterior for each of the 1000
Pinocchio mocks

e Biases ? Compare the mean of each
posterior to input cosmology

® Robustness of errors ? Compare individual
posterior dispersion 6,4 to the spread of

posterior means o,,. (ensemble dispersion)

ens

More than 1 parameter: compare covariances
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Why comparing individual errors to the spread of means ?

Gaussian:
Latent likelihood £y (Zy)
Analysis likelihood &y (Zy)

- And can be forecasted (Fisher formalism)
/ [(CFISher)_l]aﬁ — ]\[;2;1]\],,3
Ces — Cind — 9

' £0ifZ, #3,

_ CFisher

=0ifZ, =3,

- Parameter errors are "robust”

is not sufficient
- C®™ can be forecasted
_ ¢~ Fish Ts—1 —1 ~Fish Fish
C;BS — (C 1S er]v’)aEY ZXZY (C 1S er]\]’)ﬂ # CG;S cr
- Example:
ZYii < ZXii then we have Cmdaa < ceorreet < C,,

- Metric: Using correct likelihood gives C" = '™

- Likelihood and posterior are not always gaussians

- Rather closeness between individual errors and ensemble error

- Used as a metric to test likelihood accuracy C'™ + robustness C*" — C™™ = 2
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Cosmological inference setup

- The Poisson, Gaussian and GPC likelihood are approximations

- Valid at linear scales (clusters are biased tracers of the density field)
- For given count magnitude N, + for SSV/SN ratio ~ N,
- These quantities can vary by changing the binning the mass-redshift plane

Methodology: Test accuracy of likelihoods for various regimes

For each likelihood
1.Compare C®™, C'™ for the overall 1000 PINOCCHIO mocks
2.For 3 binning schemes

Binning setup
Redshift bins | Mass bins | # of bins | Average # N/bin
#1 4 4 16 5000
#2 20 30 600 150
#3 100 100 10000 10

Buidwes uossiod
aouelep a|dwes

~ 10* cosmological constraints | Importance sampling (efficient for 2 parameters)
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Results: Bias to input cosmology ?

Only binning 4zx4m

Poissonian Gaussian GPC
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Small constant bias between input and
recovered cosmology
- Accuracy of the underlying halo model
- Numerical error

All binning scheme
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Results: (4 redshift bins)x(4 mass bins) case

- Individual errors on each simulation (blue)

- Spread of best fits (red) 4zxam
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Results: all binning schemes

4zx4m 20zx30m 100zx100m
(m]
Parameter error — 2.6 .
m
- Errors decreases with the number O o4 g x y s
. . — 0
of bins (10% improvement from 16 x @ X 5 y
to 10* bins) =
G 20-
. B @
- Poisson 18- o ®
- Underestimates the error, even ' ' ' ' ' ' '
. . . 4zx4m 20zx30m 100zx100m
for fine binning, does not 1.57%
account for sample variance —..B X x| B
" 1,
S @ - % %
. . (] x
- Gaussian = Gauss-Poisson Comp.  x ' = X
- Over/under estimate "0 12{ O Fisherforecast ] ] @ *
. . ) B @ [ Ensemble forecast
constraints (approximation for S X from Cens
. . 4 f Eind T ]
computing the covariance L fom | @ | 1 @ |
matrix) 06\’0(\ \)6(,‘\’00 QQC 0({\’0(\ \)6(,'\’00 (;?C’ 0({\’0(\ 065\’0(\ (‘,Q(’
. £\&° 2 Cx G Cx G
- The same level of constraints QO © Q0 O
Poisson sampling
— , — >
Gaussian likelihood remains an accurate description of the data Sample variance

<

12/13



Conclusions

Recap:
- Tested accuracy of cluster likelihoods with
- 1000 simulated dark matter halo catalogs
- By comparing posterior variances to spread of means over the 1000 simulations
- Sensitive to both analysis and latent likelihood properties

Conclusions: For future Euclid or Rubin-like surveys
- Gaussian gives robust constraints over a wide range of inference setup
- No gain in using Gauss-Poisson Compound (same level of constraints but computationally
expansive)
- Gauss-Poisson Compound = Gaussian (under/overestimating errors at most 5%)
- Poisson likelihood always underestimates errors
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