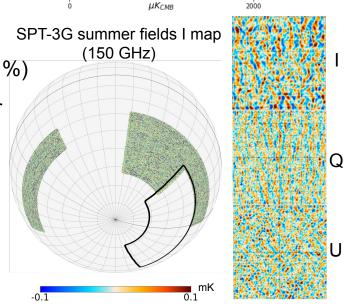
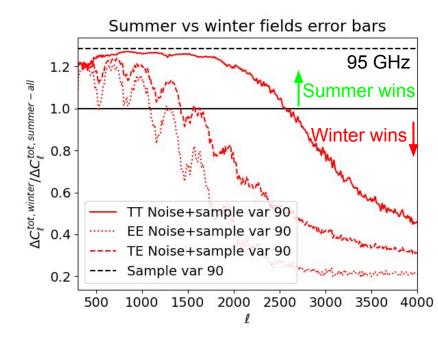

Constraining cosmology with the summer fields of the South Pole Telescope


Federica Guidi (IAP, Paris, guidi@iap.fr) on behalf of the NEUCosmoS team and the SPT-3G collaboration

GDR CoPhy Jan 2023 – Paris

SPT-3G Summer fields

- SPT-3G winter (baseline): 1700 deg2
 - See Dutcher et al. 2021, Balkenhol et al. 2021,2022
 - Analysis of the next release is ongoing
 - See talk by K. Benabed tomorrow
- Summer fields: extension of the SPT-3G winter field
 2800 deg2 (6.6%) = 1300 (3.1%) + 600 (1.4%) + 900 (2.1%)
 - Observing ~4 months per year during austral summer
 - Map depth of 2 years of summer observations is
 ~2.5 times lower than the 2019+2020 winter field
 - 3 times larger sky fraction than winter
 - → reduce sample variance


SPT-3G primary CMB anisotropies forecasts

SPT-3G Winter field

- ACDM constraints comparable with Planck, and largely independent from it
- SPT-3G TT/EE/TE + Planck will improve (most of the) ΛCDM parameters by a factor 2

2. SPT-3G Winter + Summer fields

- ΛCDM constraints with SPT-3G TT/TE/EE*
 improve by ~15–20% when including summer
- Summer fields will help to test
 extensions of ΛCDM:
 ΛCDM+Neff constraints with SPT-3G TT/TE/EE
 are expected to improve by up to ~40% when
 including summer

