# LSST Observing Strategy: status and impact on cosmology with SNe Ia

Ph. Gris - Laboratoire de Physique de Clermont - IN2P3/CNRS GDR CoPhy - January 19, 2023

### Vera C. Rubin Observatory project: 10-year Legacy Survey of Space and Time (LSST)





#### VRO

- Cerro Pachón in north-central Chile.
- ► 8.4-meter Simonyi Survey Telescope
- > 3-mirror design FoV ~ 9.6 deg<sup>2</sup>
- Camera: 3.2 gigapixels

### Science areas

- **D**ark energy and dark matter
- **G** Solar system
- **Transient** optical sky
- Milky way



### **Current schedule**

- May 2023 LSST cam on site
- April 2024 first photon
- July 2024 system first light (commissionning)
- Fall 2024 start 10-year LSST

# LSST Observing Strategy: how the decision will be made

- Survey Cadence Optimization Committee (SCOC) (2018)
  - standing committee through the Vera Rubin Operations
  - make specific recommendations for the cadence for the full 10 years
  - help communicate these recommendations to the scientific community
  - make specific recommendations for "Early Science" observations
  - during operations: track survey progress and make recommendations for survey changes
- SCOC members
  - 13 members: 10 voting, 1 chair, 2 "ex-officio" (simulation team)
  - chair: Federica Bianco (since 2022) (Zeljko Ivezic)

https://www.lsst.org/content/charge-survey-cadence-optimization-committee-scoc



### LSST Observing Strategy - decision timelines









# **Current OS contours**

- ~ 2 millions of visits
- Exposure time

obs. time +7%

- $\circ$  1x30s in *u*-band
- grizy: currently 2x15s -> 1x30s (commissioning)
- North Ecliptic Spur only in griz
  - Mainly for solar system objects
- Bulge and Plane have redder filter distribution
- Fewer observations in high extinction areas and in South Celestial Pole (high airmass)
- Low Dust WFD
  - Includes LMC/SMC and Virgo cluster
- Rolling cadence = baseline strategy (WFD)
- 5 deep drilling fields (6 pointings)



# **Rolling Cadence**

- Rolling cadence = cadence where a portion of the sky is emphasized in one rolling cycle, to then be de-emphasized in the following rolling cycles.
- Start after 1.5 years (first part of the sky with a complete season uniform cadence)
- baseline WFD strategy: half-sky 0.9-weight rolling cadence
- 3-band rolling also studied



# **Current DDF strategy**

- Deep Drilling Fields: large number of visits per obs. night (45' to 2h)
- 5% budget of the overall not sufficient for SNe Ia science
- Increase fraction of time (up to 7%) and change the cadence (choice of new cadence still in progress)
- 10 year DDF depth in COSMOS in the first few years "highly desirable"
- Euclid DF South as the 5th DDF (2-pointings observed collectively to the depth of other DDFs)



### DDF Science: cosmological measurements with Type Ia Supernovae

• SNe Ia collected by LSST

cosmological measurements : Hubble Diagram (HD)



## WFD: impact of rolling strategy - cadence

### Not rolling

### Rolling



Footprint with observed SNe Ia

# WFD: impact of rolling strategy - z<sub>complete</sub>

### Not rolling

### Rolling



### Footprint with observed SNe Ia

# WFD: impact of rolling strategy - $N_{SN}^{z \leq zcomplete}$

### Not rolling

### Rolling



Footprint with observed SNe Ia

# SNe Ia: optimized DD surveys

### Deep Universal (DU)

- 5 fields observed for ten years
  same cadence, z<sub>complete</sub> (N<sub>visits</sub>/band/obs. night)
- large N<sub>SN</sub>
- low z<sub>complete</sub> (budget -> low N<sub>visits</sub>/obs. night)
- difficult to have a regular and high cadence
- sub-optimal use of spectro. ressources





### Deep Rolling (DR)

Fields observed  $\sim$  2-3 years - high cadence



### In practice: instrumental and observational effects

• Dithering (translational and rotational)

-> DD fields = set of pixels on the sky

-> translational dithering -> pixels with various cadence and obs. parameters

-> the cadence decreases from the center to the field periphery -> loss SNe Ia

#### • Moon

- lunar phase < 20% -> z or y bands replaced by u-band
- SNe Ia LC -> Signal-to-Noise Ratio -> z<sub>complete</sub>
- Gaps (clouds, maintenance)
  - Intra-night gaps -> no observation -> cadence \
- Host-z spectro scenario
  - $\sigma_{r} \rightarrow SNe Ia parameters + HD$
  - Host-z spectro preferred
- Systematics
  - Minimized systematics:
    - Malmquist bias -> high z<sub>complete</sub>







# LSST OS: Next steps (2023)

- Early science recommendations (commissioning+first year)
- Tune remaining OS parameters
  - Microsurveys (northern stripe), nano surveys
  - ToO time likely 2-3% for followup
  - Filter balance (GP+SCP)
  - Footprint (GP)
  - Rolling cadence
- DDF
  - Strategy not defined yet
  - Crucial for SNe Ia cosmology
  - Develop accurate estimator to assess DDF strategies (SNe Ia)