ACDM is alive and well!

A. Blanchard, J.-Y. Héloret, B.Lamine, S. Ilić, I.Tutusaus

Paris, January 19th, 2023

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

\rightarrow predictive

 $\rightarrow {\rm predictive}$

ightarrow accurate parameters determination \sim % precision.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うらつ

 $\rightarrow \text{ predictive}$

ightarrow accurate parameters determination \sim % precision.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うらつ

Tensions.

 $\rightarrow \text{ predictive}$

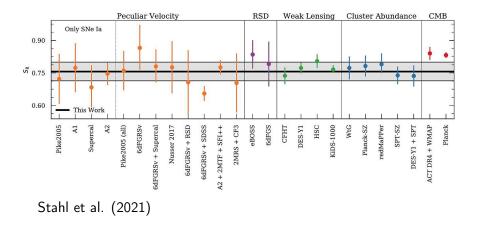
ightarrow accurate parameters determination \sim % precision.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うらつ

Tensions. *H*₀

 $\rightarrow \text{ predictive}$

ightarrow accurate parameters determination \sim % precision.

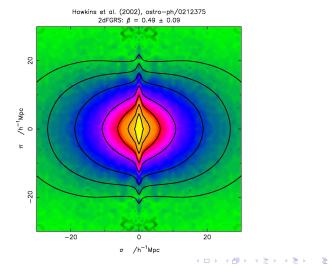

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うらつ

Tensions.

 H_0

 S_8

The amplitude of matter fluctuations tension, i.e. S_8 tension.



Paris 19/01/2023

• weak lensing

- weak lensing
- RSD (redshift space distorsion) $\rightarrow f\sigma_8$

- weak lensing
- RSD (redshift space distorsion) $\rightarrow f\sigma_8$

Paris 19/01/2023

Recipe:

Recipe:

• use only "local" data i.e. $z \ll 1000$

Recipe:

• use only "local" data i.e. $z \ll 1000$

・ロト ・雪・ ・雪・ ・雪・ ・ つくの

• work in the ACDM framework.

Recipe:

• use only "local" data i.e. $z \ll 1000$

- work in the ACDM framework.
- RSD

Recipe:

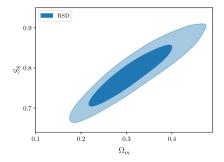
• use only "local" data i.e. z << 1000

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うらつ

- work in the ACDM framework.
- RSD
- SNIa diagram Pantheon+,

Recipe:

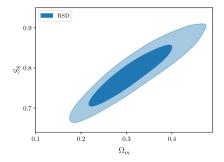
• use only "local" data i.e. $z \ll 1000$


<ロ> (四) (四) (三) (三) (三) (三)

- work in the ACDM framework.
- RSD
- SNIa diagram Pantheon+,
- WL from DES 3yr

RSD from surveys

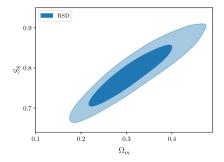
Survey	\mathbf{z}	$f\sigma_8$	Refs
2MFT	0.001	0.51 + / -0.085	[19]
6 dFGS	0.067	0.423 + / -0.055	[20]
SDSS DR13	0.1	0.48 + / -0.16	[21]
2dFGRS	0.17	0.51 + / -0.06	[22]
GAMA	0.18	0.36 + / - 0.09	[23]
WiggleZ	0.22	0.42 + / -0.07	[24]
SDSS LRG60	0.25	0.35 + / - 0.06	[25]
BOSS LOW Z	0.32	0.48 + / - 0.1	[26]
GAMA	0.36	0.44 + / - 0.06	[23]
SDSS LRG 200	0.37	0.46 + / - 0.04	[25]
WiggleZ	0.41	0.45 + / -0.04	[24]
CMASS BOSS	0.57	0.453 + / -0.02	[27]
WiggleZ	0.6	0.43 + / -0.04	[24]
VIPERS	0.6	0.48 + / -0.12	[28]
SDSS IV	0.69	0.447 + / -0.039	[29]
VIPERS	0.76	0.44 + / -0.04	[30]
SDSS IV	0.77	0.432 + / -0.038	[31]
WiggleZ	0.78	0.38 + / -0.04	[24]
SDSS IV	0.85	0.52 + / -0.10	[32]
VIPERS	0.86	0.48 + / -0.10	[28]
SDSS IV	0.978	0.379 + / -0.176	[31]
SDSS IV	1.23	0.385 + / - 0.1	[31]
Fastsound	1.4	0.494 + / -0.123	[33]
SDSS IV	1.52	0.426 + / -0.077	[34]
SDSS IV	1.944	0.364 + / -0.106	[31]


RSD from surveys: constraints

・ロト ・聞と ・ヨト ・ヨト

æ

RSD from surveys: constraints


・ロト ・日 ・ ・ ヨ ・

3 x 3

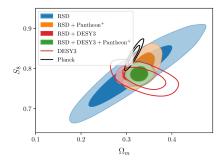
Not surprisingly strong degeneracy

Paris 19/01/2023

RSD from surveys: constraints

Not surprisingly strong degeneracy Need to combine with other low - z data

Paris 19/01/2023

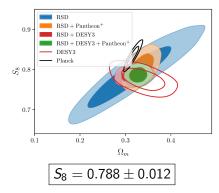

Pantheon+: SNIa Hubble diagram (Brout et al., 2022), for ACDM):

 $\Omega_{\textit{M}}=0.338\pm0.018$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Pantheon+: SNIa Hubble diagram (Brout et al., 2022), for ACDM):

$$\Omega_{M}=0.338\pm0.018$$

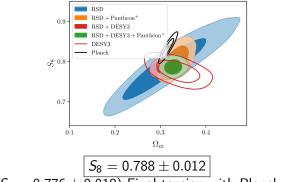


・ロト ・聞と ・ヨト ・ヨト

э

Pantheon+: SNIa Hubble diagram (Brout et al., 2022), for ACDM):

$$\Omega_{M}=0.338\pm0.018$$

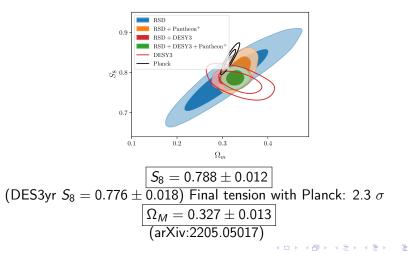


イロト イポト イヨト イヨト

э

Pantheon+: SNIa Hubble diagram (Brout et al., 2022), for ACDM):

$$\Omega_{M}=0.338\pm0.018$$



(DES3yr $S_8 = 0.776 \pm \overline{0.018}$) Final tension with Planck: 2.3 σ

イロト イポト イヨト イヨト

Pantheon+: SNIa Hubble diagram (Brout et al., 2022), for ACDM):

$$\Omega_M = 0.338 \pm 0.018$$

Paris 19/01/2023

Dark Energy Survey Year 3 Results: Constraints on extensions to Λ CDM with weak lensing and galaxy clustering (arXiv:2207.05766v2)

Dark Energy Survey Year 3 Results: Constraints on extensions to ACDM with weak lensing and galaxy clustering (arXiv:2207.05766v2)

"Overall, we find no significant evidence for physics beyond ACDM."

▲日 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ● ●

Paris 19/01/2023

E <)Q(</p>

Measuring the Tension

◆□▶ ◆□▶ ◆目▶ ◆目▶ ● ● ●

$$\chi^2 = \sum \frac{(H_0 - \alpha_i \times H_{0,i})^2}{\sigma_i^2} \tag{1}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

With H_0 from **SH0ES**, **TF**, **SBF**, CCHP, MCP, Miras, BAO, Planck

$$\chi^2 = \sum \frac{(H_0 - \alpha_i \times H_{0,i})^2}{\sigma_i^2} \tag{1}$$

With H_0 from **SH0ES**, **TF**, **SBF**, CCHP, MCP, Miras, BAO, Planck

Akaike Information Criterium (AIC):

$$\Delta \text{AIC} = \Delta \chi^2 + 2\Delta p \,. \tag{2}$$

▲日 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ● ●

for model comparison.

Paris 19/01/2023

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Model	χ^2	ΔΑΙΟ
ΛCDM	37.0	_

Model	χ^2	ΔΑΙΟ
ΛCDM	37.0	_
ACDM E1	17.3	-17.7

Model	χ^2	ΔΑΙΟ
ΛCDM	37.0	_
ACDM E1	17.3	-17.7
ACDM E2	6.7	-26.3

・ロト ・ 日 ・ ・ 田 ・ ・ 日 ・ うへの

Model	χ^2	ΔΑΙΟ
ΛCDM	37.0	_
ACDM E1	17.3	-17.7
ACDM E2	6.7	-26.3
ACDM E3	34.4	-0.6

◆□▶ ◆□▶ ◆目▶ ◆目▶ ● ● ●

Model	χ^2	ΔΑΙΟ
ΛCDM	37.0	_
ACDM E1	17.3	-17.7
ACDM E2	6.7	-26.3
ACDM E3	34.4	-0.6
ACDM E4	19.2	-15.76

◆□▶ ◆□▶ ◆目▶ ◆目▶ ● ● ●

Model	χ^2	ΔΑΙΟ
ΛCDM	37.0	_
ACDM E1	17.3	-17.7
ACDM E2	6.7	-26.3
ACDM E3	34.4	-0.6
ACDM E4	19.2	-15.76

Conclusion: this "model" is performing better than any alternative model build to solve the H_0 tension!

▲日 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ● ●

$\Omega_{\textit{M}}=0.327\pm0.013$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

$\Omega_{\textit{M}}=0.327\pm0.013$

◆ロト ◆聞 ▶ ◆臣 ▶ ◆臣 ▶ ○ 臣 ○ のへで

using SH0ES: $H_0 = 73.3 \pm 1.04 \text{ km/s/Mpc}$

$$\Omega_M = 0.327 \pm 0.013$$

using SH0ES: $H_0 = 73.3 \pm 1.04$ km/s/Mpc we can infer :

 $\omega_{\textit{M}}=0.1753\pm0.0069$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

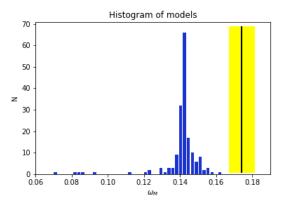
$$\Omega_M = 0.327 \pm 0.013$$

using SH0ES: $H_0 = 73.3 \pm 1.04$ km/s/Mpc we can infer :

 $\omega_{\textit{M}}=0.1753\pm0.0069$

compared to Planck (+ext):

$$\omega_M = 0.1425 \pm 0.0012$$


▲日 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ● ●

4.7 σ away for ΛCDM

Let's take the \sim 200 models summarized in Di Valentino et al. (2021) In the realm of the Hubble tension – a review of solutions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Let's take the \sim 200 models summarized in Di Valentino et al. (2021) In the realm of the Hubble tension – a review of solutions

ヘロト ヘアト ヘリト ヘ

 $\exists \rightarrow$

• ACDM is a 40-years old theory that matches remarkably well data at cosmological scales.

• ΛCDM is a 40-years old theory that matches remarkably well data at cosmological scales.

• Tensions are a serious concern anyway.

- ΛCDM is a 40-years old theory that matches remarkably well data at cosmological scales.
- Tensions are a serious concern anyway.
- S_8 tension seems not strong enough, i.e. no significant tension!

- ΛCDM is a 40-years old theory that matches remarkably well data at cosmological scales.
- Tensions are a serious concern anyway.
- S_8 tension seems not strong enough, i.e. no significant tension!
- \bullet Low redshift universe seems to have $\Omega_M \sim 0.32$

- ΛCDM is a 40-years old theory that matches remarkably well data at cosmological scales.
- Tensions are a serious concern anyway.
- S_8 tension seems not strong enough, i.e. no significant tension!
- \bullet Low redshift universe seems to have $\Omega_M\sim 0.32$
- A bias in Cepheid scale is preferred over existing alternatives to $\Lambda\text{CDM}.$

- ΛCDM is a 40-years old theory that matches remarkably well data at cosmological scales.
- Tensions are a serious concern anyway.
- S₈ tension seems not strong enough, i.e. no significant tension!
- \bullet Low redshift universe seems to have $\Omega_M\sim 0.32$
- A bias in Cepheid scale is preferred over existing alternatives to ΛCDM .
- ω_M provides a metric for extensions likely to be more discriminant.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うらつ

- ΛCDM is a 40-years old theory that matches remarkably well data at cosmological scales.
- Tensions are a serious concern anyway.
- S_8 tension seems not strong enough, i.e. no significant tension!
- \bullet Low redshift universe seems to have $\Omega_M \sim 0.32$
- A bias in Cepheid scale is preferred over existing alternatives to $\Lambda\text{CDM}.$
- ω_M provides a metric for extensions likely to be more discriminant.
- This would mean for $H_0 \sim 73 \ \omega_M$ is in serious conflict with Planck.

ション ふゆ メ リン イロン シックション

- ΛCDM is a 40-years old theory that matches remarkably well data at cosmological scales.
- Tensions are a serious concern anyway.
- S_8 tension seems not strong enough, i.e. no significant tension!
- \bullet Low redshift universe seems to have $\Omega_M \sim 0.32$
- A bias in Cepheid scale is preferred over existing alternatives to $\Lambda\text{CDM}.$
- ω_M provides a metric for extensions likely to be more discriminant.
- This would mean for $H_0 \sim 73 \ \omega_M$ is in serious conflict with Planck.

Thank You and and the second

Paris 19/01/2023