PNG: Primordial non-Gaussianity

- Tiny deviations from Gaussianity of primordial fluctuations
- Shape (e.g. local, equilateral, orthogonal) and amplitude $f_{\rm NL}$ depending on the model of inflation
- Current best constraints from CMB measurements (Planck)
- In the future: LSS surveys, requires to model accurately gravitational non-linearities

PNG: Primordial non-Gaussianity

- Tiny deviations from Gaussianity of primordial fluctuations
- Shape (e.g. local, equilateral, orthogonal) and amplitude $f_{\rm NL}$ depending on the model of inflation
- Current best constraints from CMB measurements (Planck)
- In the future: LSS surveys, requires to model accurately gravitational non-linearities

Simulation-based approach with Quijote-PNG

W. Coulton, GJ, F. Villaescusa-Navarro, D. Karagiannis, D. Jamieson, M. Liguori, M. Baldi, L. Verde, B. Wandelt

4000 N-body simulations with PNG

- 3 PNG shapes: local, equilateral and orthogonal
- Volume: 1 $(\text{Gpc}/h)^3$
- 512³ dark matter particles
- Run with GADGET-III

 \Rightarrow Information content of the non-linear matter and halo density fields studied in: 2206.01624, 2206.01619, 2206.15450, 2211.07565

All simulations are publicly available! https://quijote-simulations.readthedocs.io/en/latest/png.html

PNG: Primordial non-Gaussianity

- Tiny deviations from Gaussianity of primordial fluctuations
- Shape (e.g. local, equilateral, orthogonal) and amplitude $f_{\rm NL}$ depending on the model of inflation
- Current best constraints from CMB measurements (Planck)
- In the future: LSS surveys, requires to model accurately gravitational non-linearities

Simulation-based approach with Quijote-PNG

W. Coulton, **GJ**, F. Villaescusa-Navarro, D. Karagiannis, D. Jamieson, M. Liguori, M. Baldi, L. Verde, B. Wandelt

4000 N-body simulations with PNG

- 3 PNG shapes: local, equilateral and orthogonal
- Volume: 1 $(\text{Gpc}/h)^3$
- 512³ dark matter particles
- Run with GADGET-III

 \Rightarrow Information content of the non-linear matter and halo density fields studied in: 2206.01624, 2206.01619, 2206.15450, 2211.07565

All simulations are publicly available! https://quijote-simulations.readthedocs.io/en/latest/png.html

Bispectrum

3-point correlation function in Fourier space

 $\left\langle \delta(\boldsymbol{k}_1) \delta(\boldsymbol{k}_2) \delta(\boldsymbol{k}_3) \right\rangle = (2\pi)^3 \delta_D(\boldsymbol{k}_1 + \boldsymbol{k}_2 + \boldsymbol{k}_3) B_\delta(\boldsymbol{k}_1, \boldsymbol{k}_2, \boldsymbol{k}_3)$

Standard summary statistic to study PNG

GDR CoPhy (18/01/23)

Joint Fisher analyses of Λ CDM cosmological parameters and PNG amplitudes f_{NL} Using ~25000 simulations (Quijote + Quijote-PNG) at z = 1, up to $k_{max} = 0.5 h/Mpc$, volume: 1 (Gpc/h)³

Joint Fisher analyses of Λ CDM cosmological parameters and PNG amplitudes $f_{\rm NL}$ Using ~25000 simulations (Quijote + Quijote-PNG) at z = 1, up to $k_{\rm max} = 0.5 h/{\rm Mpc}$, volume: 1 (Gpc/h)³

Dark Matter field

Fisher constraints from the **power spectrum** and **bispectrum**, up to **non-linear scales** $k_{\text{max}} = 0.5 h/\text{Mpc}$

 \Rightarrow Bispectrum results on PNG are improved significantly by including the power spectrum in the analysis!

Joint Fisher analyses of Λ CDM cosmological parameters and PNG amplitudes $f_{\rm NL}$ Using ~25000 simulations (Quijote + Quijote-PNG) at z = 1, up to $k_{\rm max} = 0.5 h/{\rm Mpc}$, volume: 1 (Gpc/h)³

Dark Matter field

Fisher constraints from the **power spectrum** and **bispectrum**, up to **non-linear scales** $k_{\text{max}} = 0.5 h/\text{Mpc}$

 \Rightarrow Bispectrum results on PNG are improved significantly by including the power spectrum in the analysis!

GDR CoPhy (18/01/23)

Joint Fisher analyses of Λ CDM cosmological parameters and PNG amplitudes $f_{\rm NL}$ Using ~25000 simulations (Quijote + Quijote-PNG) at z = 1, up to $k_{\rm max} = 0.5 h/{\rm Mpc}$, volume: 1 (Gpc/h)³

Dark Matter field

Fisher constraints from the **power spectrum** and **bispectrum**, up to **non-linear scales** $k_{\text{max}} = 0.5 h/\text{Mpc}$

 \Rightarrow Bispectrum results on PNG are improved significantly by including the power spectrum in the analysis!

GDR CoPhy (18/01/23)