Quantum signatures in cosmological perturbations?

J. Martin, A. Micheli, and V. Vennin, arXiv:2211.10114 J. Martin, A. Micheli, and V. Vennin, JCAP. 2022, 051 A. Micheli and P. Peter, arXiv:2211.00182 in Handbook of Quantum Gravity

Amaury Micheli

IJCLab, Orsay IAP, Paris

Kick-Off meeting GDR CoPhy - 19th January 2023

Inhomogeneities in the early Universe - I

beginning of inflation stretched to cosmological scales by expansion.

Primordial inhomogeneities come from (vacuum) quantum fluctuations at the

Inhomogeneities in the early Universe - I

beginning of inflation stretched to cosmological scales by expansion.

Primordial inhomogeneities come from (vacuum) quantum fluctuations at the

 Indirect proof : very good agreement with observational data¹.

1. [Planck-Collaboration et al., 2020]

Inhomogeneities in the early Universe - I

beginning of inflation stretched to cosmological scales by expansion.

Questions

- Direct proof that initial fluctuations cannot be classical? Would show quantisation of gravity.
- If quantum then and classical now, how did the transition happen? Quantum-toclassical transition problem.

Primordial inhomogeneities come from (vacuum) quantum fluctuations at the

 Indirect proof : very good agreement with observational data¹.

1. [Planck-Collaboration et al., 2020]

- I. Quantum description of the state of the perturbations
- II. Quantum signatures
- III. Decoherence: Destruction of quantum signatures

I - Quantum state of perturbations

• GR $g_{\mu\nu}$ with a single inflaton field ϕ :

$$S = \int d^4x \sqrt{-g} \left[\frac{R}{16\pi G} - \frac{1}{2} g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi - V(\phi) \right]$$

- GR $g_{\mu\nu}$ with a single inflaton field ϕ :
- <u>Background</u>: Inflation, slowly rolling homogeneous $\phi_0(t)$ leading to a FLRW metric with an accelerated expansion $\ddot{a} > 0$.

$$S = \int d^4x \sqrt{-g} \left[\frac{R}{16\pi G} - \frac{1}{2} g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi - V(\phi) \right]$$

- GR $g_{\mu\nu}$ with a single inflaton field ϕ :
- <u>Background</u>: Inflation, slowly rolling homogeneous $\phi_0(t)$ leading to a FLRW metric with an accelerated expansion $\ddot{a} > 0$.

$$S = \int d^4x \sqrt{-g} \left[\frac{R}{16\pi G} - \frac{1}{2} g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi - V(\phi) \right]$$

• Focus on scalar perturbations, described by Mukhanov-Sasaki v, at linear order

- GR $g_{\mu\nu}$ with a single inflaton field ϕ :
- <u>Background</u>: Inflation, slowly rolling homogeneous $\phi_0(t)$ leading to a FLRW metric with an accelerated expansion $\ddot{a} > 0$.
- Focus on scalar perturbations, described by Mukhanov-Sasaki v, at linear order
- $v_{\pm\mathbf{k}}'' + \left(k^2 \frac{z''}{z}\right)v_{\pm\mathbf{k}} = 0$ Dynamics generate independent $\pm \mathbf{k}$ pairs, collection of parametric oscillators:

where
$$z = M_{\rm Pl} a \sqrt{2\epsilon_1}$$
 and $\epsilon_1 = -\dot{H}/\epsilon_1$

$$S = \int d^4x \sqrt{-g} \left[\frac{R}{16\pi G} - \frac{1}{2} g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi - V(\phi) \right]$$

 $/H^2$ slow-roll parameter

- GR $g_{\mu\nu}$ with a single inflaton field ϕ :
- <u>Background</u>: Inflation, slowly rolling homogeneous $\phi_0(t)$ leading to a FLRW metric with an accelerated expansion $\ddot{a} > 0$.
- Focus on scalar perturbations, described by Mukhanov-Sasaki v, at linear order
- $v_{\pm\mathbf{k}}'' + \left(k^2 \frac{z''}{z}\right)v_{\pm\mathbf{k}} = 0$ Dynamics generate independent $\pm \mathbf{k}$ pairs, collection of parametric oscillators:

where
$$z = M_{\rm Pl} a \sqrt{2\epsilon_1}$$
 and $\epsilon_1 = -\dot{H}/\epsilon_1$

 In slow-roll, amplification of perturbations for super-Hubble modes $k(aH)^{-1} \gg 1$

$$S = \int d^4x \sqrt{-g} \left[\frac{R}{16\pi G} - \frac{1}{2} g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi - V(\phi) \right]$$

 $/H^2$ slow-roll parameter

. Quantisation: Conjugated field $\hat{\pi}_{\pm \mathbf{k}} =$

$$\hat{v}'_{\pm \mathbf{k}} - \frac{z'}{z} \hat{v}_{\pm \mathbf{k}} \text{ and } [\hat{v}_{\mathbf{k}}, \hat{\pi}_{\mathbf{k}'}] = \hbar \delta (\mathbf{k} + \mathbf{k}')$$

- . <u>Quantisation</u>: Conjugated field $\hat{\pi}_{+k} =$
- Assuming vacuum initial state and solving Schrödinger equation, modes $\pm \mathbf{k}$ described by a 2-mode squeezed state.

$$\hat{v}'_{\pm \mathbf{k}} - \frac{z'}{z} \hat{v}_{\pm \mathbf{k}}$$
 and $[\hat{v}_{\mathbf{k}}, \hat{\pi}_{\mathbf{k}'}] = \hbar \delta (\mathbf{k} + \mathbf{k}')$

- . <u>Quantisation</u>: Conjugated field $\hat{\pi}_{+k} =$
- Assuming vacuum initial state and solving Schrödinger equation, modes $\pm \mathbf{k}$ described by a 2-mode squeezed state.
- Gaussian state represented in $X = (v^r, \pi^r)$ phase-space by Wigner function

$$W(v^{\mathrm{r}},\pi^{\mathrm{r}}) = \frac{1}{\pi\hbar\sqrt{\det\gamma^{\mathrm{r}}}} e^{-\frac{X^{\mathrm{T}}(\gamma^{\mathrm{r}})^{-1}X}{\hbar}} \text{ where }$$

$$\hat{v}'_{\pm \mathbf{k}} - \frac{z'}{z} \hat{v}_{\pm \mathbf{k}}$$
 and $[\hat{v}_{\mathbf{k}}, \hat{\pi}_{\mathbf{k}'}] = \hbar \delta (\mathbf{k} + \mathbf{k}')$

 $\gamma_{11} = 2k \left\langle \hat{v}_{\mathbf{k}} \hat{v}_{\mathbf{k}}^{\dagger} \right\rangle$ $\gamma^{\mathrm{r}} = \begin{pmatrix} \gamma_{11} & \gamma_{12} \\ \gamma_{21} & \gamma_{22} \end{pmatrix} \quad \text{with} \quad \gamma_{12} = \gamma_{21} = \left\langle \hat{v}_{\mathbf{k}} \hat{\pi}_{\mathbf{k}}^{\dagger} + \hat{\pi}_{\mathbf{k}} \hat{v}_{\mathbf{k}}^{\dagger} \right\rangle$ $\gamma_{22} = \frac{2}{k} \left\langle \hat{\pi}_{\mathbf{k}} \hat{\pi}_{\mathbf{k}}^{\dagger} \right\rangle$

- . <u>Quantisation</u>: Conjugated field $\hat{\pi}_{\pm \mathbf{k}} =$
- Assuming vacuum initial state and solving Schrödinger equation, modes $\pm \mathbf{k}$ described by a 2-mode squeezed state.

Gaussian state represented in
$$X = (v^{r}, \pi^{r})$$
 phase-space by Wigner function
 $\gamma_{11} = 2k \left\langle \hat{v}_{k} \hat{v}_{k}^{\dagger} \right\rangle$
 $\gamma_{12} = \gamma_{21} = \left\langle \hat{v}_{k} \hat{\pi}_{k}^{\dagger} + Y_{22} \right\rangle$
with $\gamma_{12} = \gamma_{21} = \left\langle \hat{v}_{k} \hat{\pi}_{k}^{\dagger} + Y_{22} \right\rangle$
 $\gamma_{22} = \frac{2}{k} \left\langle \hat{\pi}_{k} \hat{\pi}_{k}^{\dagger} \right\rangle$

(All 0.50 a FDF 101 ituutuations of v_k and n_k

$$\hat{v}'_{\pm \mathbf{k}} - \frac{z'}{z} \hat{v}_{\pm \mathbf{k}}$$
 and $[\hat{v}_{\mathbf{k}}, \hat{\pi}_{\mathbf{k}'}] = \hbar \delta (\mathbf{k} + \mathbf{k}')$

- . <u>Quantisation</u>: Conjugated field $\hat{\pi}_{+k} =$
- Assuming vacuum initial state and solving Schrödinger equation, modes $\pm \mathbf{k}$ described by a 2-mode squeezed state.

Gaussian state represented in
$$X = (v^{r}, \pi^{r})$$
 phase-space by Wigner function
 $\gamma_{11} = 2k \left\langle \hat{v}_{k} \hat{v}_{k}^{\dagger} \right\rangle$
 $\gamma_{12} = \gamma_{21} = \left\langle \hat{v}_{k} \hat{\pi}_{k}^{\dagger} + \gamma_{22} \right\rangle$
with $\gamma_{12} = \gamma_{21} = \left\langle \hat{v}_{k} \hat{\pi}_{k}^{\dagger} + \gamma_{22} \right\rangle$
 $\gamma_{22} = \frac{2}{k} \left\langle \hat{\pi}_{k} \hat{\pi}_{k}^{\dagger} \right\rangle$

(Almost) a PDF for fluctuations of $v_{\mathbf{k}}$ and $\pi_{\mathbf{k}}$

<u>Geometric picture: contours levels are ellipses</u>

$$\hat{v}'_{\pm \mathbf{k}} - \frac{z'}{z} \hat{v}_{\pm \mathbf{k}}$$
 and $[\hat{v}_{\mathbf{k}}, \hat{\pi}_{\mathbf{k}'}] = \hbar \delta (\mathbf{k} + \mathbf{k}')$

- . <u>Quantisation</u>: Conjugated field $\hat{\pi}_{+k} =$
- Assuming vacuum initial state and solving Schrödinger equation, modes $\pm \mathbf{k}$ described by a 2-mode squeezed state.
- Gaussian state represented in $X = (v^r, \pi^r)$ phase-space by Wigner function

$$W(v^{\mathrm{r}},\pi^{\mathrm{r}}) = \frac{1}{\pi\hbar\sqrt{\det\gamma^{\mathrm{r}}}} e^{-\frac{X^{\mathrm{T}}(\gamma^{\mathrm{r}})^{-1}X}{\hbar}} \text{ where }$$

(Almost) a PDF for fluctuations of $v_{\mathbf{k}}$ and $\pi_{\mathbf{k}}$

- <u>Geometric picture: contours levels are ellipses</u>
- Area S_k controlled by the purity p_k of the state $S_k = \pi \hbar / \sqrt{p_k}$, here $p_k = 1$

$$\hat{v}'_{\pm \mathbf{k}} - \frac{z'}{z} \hat{v}_{\pm \mathbf{k}}$$
 and $[\hat{v}_{\mathbf{k}}, \hat{\pi}_{\mathbf{k}'}] = \hbar \delta (\mathbf{k} + \mathbf{k}')$

 $\gamma_{11} = 2k \left\langle \hat{v}_{\mathbf{k}} \hat{v}_{\mathbf{k}}^{\dagger} \right\rangle$ $\gamma^{\mathrm{r}} = \begin{pmatrix} \gamma_{11} & \gamma_{12} \\ \gamma_{21} & \gamma_{22} \end{pmatrix} \quad \text{with} \quad \gamma_{12} = \gamma_{21} = \left\langle \hat{v}_{\mathbf{k}} \hat{\pi}_{\mathbf{k}}^{\dagger} + \hat{\pi}_{\mathbf{k}} \hat{v}_{\mathbf{k}}^{\dagger} \right\rangle$ $\gamma_{22} = \frac{2}{k} \left\langle \hat{\pi}_{\mathbf{k}} \hat{\pi}_{\mathbf{k}}^{\dagger} \right\rangle$

• Parametrise length $e^{\pm r_k}$ by squeezing parameter r_k and direction by squeezing angle φ_k

and direction by squeezing angle φ_k

II - Quantum signatures of the state

of subsystems $\mathcal{S} = \mathcal{S}_1 \cup \mathcal{S}_2$ for this state.

• Paradigm: Quantumness of a state for a system $\mathcal{S} = Quantumness$ of correlations

• Paradigm: Quantumness of a state for a system $\mathcal{S} = Quantumness$ of correlations of subsystems $\mathcal{S} = \mathcal{S}_1 \cup \mathcal{S}_2$ for this state. Goal: Show that correlations are stronger than classically allowed e.g. Bell inequality

- Paradigm: Quantumness of a state for a system $\mathcal{S} = Quantumness$ of correlations of subsystems $\mathcal{S} = \mathcal{S}_1 \cup \mathcal{S}_2$ for this state. <u>Goal</u>: Show that correlations are stronger than classically allowed e.g. Bell inequality
 - Another instance is the Quantum Discord $\mathcal{D}(\mathcal{S}_1, \mathcal{S}_2)$

- Paradigm: Quantumness of a state for a system $\mathcal{S} = Quantumness$ of correlations of subsystems $\mathcal{S} = \mathcal{S}_1 \cup \mathcal{S}_2$ for this state. <u>Goal</u>: Show that correlations are stronger than classically allowed e.g. Bell inequality
- Another instance is the Quantum Discord $\mathscr{D}\left(\mathscr{S}_{1},\mathscr{S}_{2}\right)$ $\mathscr{D}\left(\mathscr{S}_{1},\mathscr{S}_{2}\right) \equiv I(\mathscr{S}_{1},\mathscr{S}_{2}) \max_{\{\hat{\Pi}_{i}^{\mathscr{S}_{2}}\}} J\left(\mathscr{S}_{1},\mathscr{S}_{2},\{\hat{\Pi}_{j}^{\mathscr{S}_{2}}\}\right)$

with I, J two measures of mutual information between $S_{1/2}$.

- Paradigm: Quantumness of a state for a system $\mathcal{S} = Quantumness$ of correlations of subsystems $\mathcal{S} = \mathcal{S}_1 \cup \mathcal{S}_2$ for this state. <u>Goal</u>: Show that correlations are stronger than classically allowed e.g. Bell inequality
- Another instance is the Quantum Discord $\mathscr{D}\left(\mathscr{S}_{1},\mathscr{S}_{2}\right)$ $\mathscr{D}\left(\mathscr{S}_{1},\mathscr{S}_{2}\right) \equiv I(\mathscr{S}_{1},\mathscr{S}_{2}) \max_{\{\hat{\Pi}_{i}^{\mathscr{S}_{2}}\}} J\left(\mathscr{S}_{1},\mathscr{S}_{2},\{\hat{\Pi}_{j}^{\mathscr{S}_{2}}\}\right)$
 - with I, J two measures of mutual information between $S_{1/2}$.
 - If \mathcal{S}_i described by classical probabilities $\mathcal{D}(\mathcal{S}_1, \mathcal{S}_2) = 0$.
 - Quantum setting $\mathscr{D}(\mathscr{S}_1, \mathscr{S}_2) \geq 0$.

- Paradigm: Quantumness of a state for a system $\mathcal{S} = Quantumness$ of correlations of subsystems $\mathcal{S} = \mathcal{S}_1 \cup \mathcal{S}_2$ for this state. <u>Goal</u>: Show that correlations are stronger than classically allowed e.g. Bell inequality
- Another instance is the Quantum Discord $\mathscr{D}\left(\mathscr{S}_{1},\mathscr{S}_{2}\right)$ $\mathscr{D}\left(\mathscr{S}_{1},\mathscr{S}_{2}\right) \equiv I(\mathscr{S}_{1},\mathscr{S}_{2}) \max_{\{\hat{\Pi}_{i}^{\mathscr{S}_{2}}\}} J\left(\mathscr{S}_{1},\mathscr{S}_{2},\{\hat{\Pi}_{j}^{\mathscr{S}_{2}}\}\right)$
 - with I, J two measures of mutual information between $S_{1/2}$.
 - If \mathcal{S}_i described by classical probabilities $\mathcal{D}(\mathcal{S}_1, \mathcal{S}_2) = 0$.

Quantum setting $\mathscr{D}(\mathscr{S}_1, \mathscr{S}_2) \ge 0$.

Discord of ±k pairs

Discord of ±k pairs

$$\mathscr{D}_{\pm \mathbf{k}} = f\left[\cosh\left(2r_k\right)\right] \quad \text{with} \quad f(x) = \left(\frac{x+1}{2}\right)\log_2\left(\frac{x+1}{2}\right) - \left(\frac{x-1}{2}\right)\log_2\left(\frac{x-1}{2}\right)$$

• Discord of $\pm k$ pairs

$$\mathscr{D}_{\pm \mathbf{k}} = f \left[\cosh \left(2r_k \right) \right]$$
 with $f(x) =$

• For large squeezing $\mathcal{D}_{+\mathbf{k}} \approx 2r_k/\ln 2 \approx 2N/\ln 2$

• Discord of $\pm \mathbf{k}$ pairs

$$\mathscr{D}_{\pm \mathbf{k}} = f \left[\cosh \left(2r_k \right) \right]$$
 with $f(x) =$

- For large squeezing $\mathcal{D}_{+\mathbf{k}} \approx 2r_k/\ln 2 \approx 2N/\ln 2$
- The state also violates a Bell inequality²

2. [arXiv:2211.10114 Martin, Micheli, and Vennin]

• Discord of $\pm \mathbf{k}$ pairs

$$\mathscr{D}_{\pm \mathbf{k}} = f \left[\cosh \left(2r_k \right) \right]$$
 with $f(x) =$

- For large squeezing $\mathcal{D}_{+\mathbf{k}} \approx 2r_k/\ln 2 \approx 2N/\ln 2$
- The state also violates a Bell inequality²

Take Home Message 1

Squeezing generates strong quantum correlations between $\pm k$ modes in the sense of several nonclassicality criteria.

2. [arXiv:2211.10114 Martin, Micheli, and Vennin]

• Discord of $\pm \mathbf{k}$ pairs

$$\mathscr{D}_{\pm \mathbf{k}} = f \left[\cosh \left(2r_k \right) \right]$$
 with $f(x) =$

- For large squeezing $\mathcal{D}_{+\mathbf{k}} \approx 2r_k/\ln 2 \approx 2N/\ln 2$
- The state also violates a Bell inequality²

Take Home Message 1

Squeezing generates strong quantum correlations between $\pm k$ modes in the sense of several nonclassicality criteria.

Is this due to oversimplified models?

2. [arXiv:2211.10114 Martin, Micheli, and Vennin]

III - Decoherence: Destruction of quantum correlations

Decoherence : how to destroy quantum features

Current situation

Decoherence : how to destroy quantum features

Decoherence : how to destroy quantum features

Interactions with extra d.o.f lead to decoherence of quantum systems.

- $\cdot S = \text{ pair of cosmological perturbations modes } \pm \mathbf{k}$.
- $\cdot \mathscr{E} = \text{other } \pm \mathbf{k}' \text{ pairs and other fields.}$

- $\cdot S = pair of cosmological perturbations modes \pm k$.
- $\cdot \mathscr{E} = \text{other } \pm \mathbf{k}' \text{ pairs and other fields.}$

. Generic model:
$$\hat{H}_{int}(\tau) = g \int d^3 \mathbf{x} \, \hat{v}(\mathbf{x})$$

preserve Gaussianity, independence of $\pm \mathbf{k}$ pairs.

x) $\bigotimes \hat{E}(\tau, \mathbf{x})$ interaction taken linear to of $\pm \mathbf{k}$ pairs.

- $\cdot S = \text{pair of cosmological perturbations modes } \pm \mathbf{k}$.
- $\cdot \mathscr{E} = \text{other } \pm \mathbf{k}' \text{ pairs and other fields.}$

. Generic model:
$$\hat{H}_{int}(\tau) = g \int d^3 \mathbf{x} \, \hat{v}(\mathbf{x})$$

preserve Gaussianity, independence of $\pm \mathbf{k}$ pairs.

- Under a few generic assumptions (perturbative coupling, & large w.r.t & and stationnary³) can derive Lindblad equation (non-unitary) and show that state becomes mixed 2-mode squeezed state⁴ parametrized by r_k , φ_k and the purity $0 \le p_k \le 1$.
- 3. [arXiv:2209.01929 Colas, Grain and Vennin]
- 4. [arXiv:2112.05037 Martin, Micheli and Vennin]

(x) $\bigotimes \hat{E}(\tau, \mathbf{x})$ interaction taken linear to of $\pm \mathbf{k}$ pairs.

•Geometrically: growth of the ellipse area $S_k = \pi \hbar / \sqrt{p_k}$

•Geometrically: growth of the ellipse area $S_k = \pi \hbar / \sqrt{p_k}$

•Geometrically: growth of the ellipse area $S_k = \pi \hbar / \sqrt{p_k}$

•Geometrically: growth of the ellipse area $S_k = \pi \hbar / \sqrt{p_k}$

How does decoherence affect quantumness of correlations?

• Discord in presence of $\mathscr{D}_{\pm \mathbf{k}} = f \left[p_k^{-1/2} \cos \frac{\partial p_k}{\partial t} \right]$

2. [arXiv:2211.10114 Martin, Micheli, and Vennin]3. [arXiv:2112.05037 Martin, Micheli and Vennin]

$$\operatorname{sh}(2r_{k}) - 2f(p_{k}^{-1/2}) + f\left[\frac{p_{k}^{-1/2}\cosh(2r_{k}) + p_{k}^{-1/2}\cosh(2r_{k}) + p_{k}^{-1/2}$$

2. [arXiv:2211.10114 Martin, Micheli, and Vennin]3. [arXiv:2112.05037 Martin, Micheli and Vennin]

$$\operatorname{sh}(2r_{k}) - 2f(p_{k}^{-1/2}) + f\left[\frac{p_{k}^{-1/2}\cosh(2r_{k}) + p_{k}^{-1/2}\cosh(2r_{k}) + p_{k}^{-1/2}$$

Take Home Message 2

Presence or absence of quantum correlations is the result of a competition between correlation build up and interaction erasing quantum features.³

Future directions

Future directions

 Is there some quantum correlations left? Get/use realistic estimations of the level of decoherence to see where we are in the previous plot⁴.

4. [arXiv:2211.11046 Burgess et al.]

Future directions

 Is there some quantum correlations left? Get/use realistic estimations of the level of decoherence to see where we are in the previous plot⁴.

level⁵ or consider more complicated models⁶.

- 5. [arXiv:2001.09149 Green and Porto]
- 6. [arXiv:1508.01082 Maldacena]

• Observability: So far no proposed protocol to measure these criteria. To evade that problem would require, either to have several times, or go beyond Gaussian

^{4. [}arXiv:2211.11046 Burgess et al.]

Thank you for your attention!

Bibliography

Based on:

J. Martin, A. Micheli, and V. Vennin, *Comparing Quantumness Criteria*, arXiv:2211.10114. J. Martin, A. Micheli, and V. Vennin, *Discord and Decoherence*, JCAP. 2022, 051 (2022). A. Micheli and P. Peter, Quantum Cosmological Gravitational Waves?, Handbook of Quantum Gravity, Springer,

arXiv:2211.00182.

and:

L. P. Grishchuk and Y. V. Sidorov, Squeezed Quantum States of Relic Gravitons and Primordial Density Fluctuations, Phys. Rev. D 42, 3413 (1990) D. Polarski and A. A. Starobinsky, *Semiclassicality and Decoherence of Cosmological Perturbations*, Class. Quantum Grav. 13, 377 (1996) A. Albrecht, P. Ferreira, M. Joyce, and T. Prokopec, *Inflation and Squeezed Quantum States*, Phys. Rev. D 50, 4807 (1994).C. Kiefer and D. Polarski, Emergence of Classicality for Primordial Fluctuations: Concepts and Analogies, Ann. Phys. **510**, 137 (1998). D. Campo and R. Parentani, Inflationary Spectra and Partially Decohered Distributions, Phys. Rev. D 72, 045015

(2005).

Limit Wigner to a Dirac delta

Apparent classicality - II

Can decompose the Wigner function a

where
$$P(v) = \left(\frac{k}{\pi \hbar \gamma_{11}}\right)^{1/2} e^{-\frac{kv^2}{\hbar \gamma_{11}}}$$

probability distribution for v

•

Cosmological perturbations: Inflation leads to very strong squeezing $r_k \sim 60$.

as
$$W^{\mathrm{s}}(v,\pi) = P(v)\sqrt{\frac{\gamma_{11}}{k\pi\hbar}}e^{-\frac{\gamma_{11}}{\hbar k}\left(\pi - \frac{\gamma_{12}}{\gamma_{11}}kv\right)^2}$$

$$\delta\left(\pi - \frac{\gamma_{12}}{\gamma_{11}} k v\right)$$

Apparent classicality - II

Can decompose the Wigner function as
$$W^{s}(v, \pi) = P(v) \sqrt{\frac{\gamma_{11}}{k\pi\hbar}} e^{-\frac{\gamma_{11}}{\hbar k} \left(\pi - \frac{\gamma_{12}}{\gamma_{11}} kv\right)^{2}}$$

where $P(v) = \left(\frac{k}{\pi\hbar\gamma_{11}}\right)^{1/2} e^{-\frac{kv^{2}}{\hbar\gamma_{11}}}$
probability distribution for v

•

Cosmological perturbations: Inflation leads to very strong squeezing $r_k \sim 60$.

Sub-fluctuant mode

• Semi-minor axis $p_k^{-1/4}e^{-r_k}$ can remove sub-fluctuant direction.

Take Home Message 5

Large quantum Discord and nonseparability for cosmological perturbations require existence of a sub-fluctuant direction.⁵

3. [Martin, Micheli and Vennin, 2022 (to be published)] 5. [arXiv:2112.05037 Martin, Micheli and Vennin, 2021]

2.00

• Semi-minor axis $p_k^{-1/4}e^{-r_k}$ can remove sub-fluctuant direction.

3. [Martin, Micheli and Vennin, 2022 (to be published)] 5. [arXiv:2112.05037 Martin, Micheli and Vennin, 2021]

$I(\mathcal{S}_1, \mathcal{S}_2) = S(\mathcal{S}_1) + S(\mathcal{S}_2) - S(\mathcal{S}_1, \mathcal{S}_2)$

$S(\mathcal{S}_1 | \mathcal{S}_2)$

$S(\mathcal{S}_1 | \mathcal{S}_2)$

$S(\mathcal{S}_2 | \mathcal{S}_1)$

Classically, Bayes' theorem $p(\mathcal{S}_1, \mathcal{S}_2) = p\left(\mathcal{S}_1 \cap \mathcal{S}_2\right)/p\left(\mathcal{S}_2\right)$ implies $J(\mathcal{S}_1, \mathcal{S}_2) = I(\mathcal{S}_1, \mathcal{S}_2)$

$$S(\mathcal{S}_{2})$$

$$I(\mathcal{S}_{1}, \mathcal{S}_{2}) = S(\mathcal{S}_{1}) + S(\mathcal{S}_{2}) - S(\mathcal{S}_{1})$$

$$J(\mathcal{S}_{1}, \mathcal{S}_{2}) = S(\mathcal{S}_{1}) - S(\mathcal{S}_{1} | \mathcal{S}_{2})$$

 $_1, \mathcal{S}_2$

 $\frac{2}{2}$

Classically, Bayes' theorem $p(\mathcal{S}_1, \mathcal{S}_2) = p(\mathcal{S}_1 \cap \mathcal{S}_2)/p(\mathcal{S}_2)$ implies $J(\mathcal{S}_1, \mathcal{S}_2) = I(\mathcal{S}_1, \mathcal{S}_2)$

 $J\left(\mathcal{S}_{1},\mathcal{S}_{2};\left\{\hat{\Pi}_{j}^{\mathcal{S}_{2}}\right\}\right)=S\left(\mathcal{S}_{1}\right)-S\left(\mathcal{S}_{1}|\mathcal{S}_{2};\left\{\hat{\Pi}_{j}^{\mathcal{S}_{2}}\right\}\right)$

Quantum Discord - II

$$\begin{split} S\left(\mathcal{S}_{1} | \mathcal{S}_{2}; \left\{\hat{\Pi}_{j}^{\mathcal{S}_{2}}\right\} \\ \text{Define} \quad J\left(\mathcal{S}_{1}, \mathcal{S}_{2}; \left\{\hat{\Pi}_{j}^{\mathcal{S}_{2}}\right\}\right) = S \\ \text{and} \end{split}$$

$$\left\{ \right\} \equiv \Sigma p_{j} S\left(\hat{\rho}_{\mathcal{S}_{1}|\{\hat{\Pi}_{j}^{\mathcal{S}_{2}}\}}\right)$$
$$S\left(\mathcal{S}_{1}\right) - S\left(\mathcal{S}_{1}|\mathcal{S}_{2};\{\hat{\Pi}_{j}^{\mathcal{S}_{2}}\}\right)$$

Quantum Discord - II

$S\left(\mathcal{S}_{1} | \mathcal{S}_{2}; \{\hat{\Pi}_{j}^{\mathcal{S}_{2}}\}\right)$ Define $J\left(\mathcal{S}_{1}, \mathcal{S}_{2}; \{\hat{\Pi}_{j}^{\mathcal{S}_{2}}\}\right) = S$ and $\delta\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right) \equiv I(\mathcal{S}_{1}, \mathcal{S}_{2}) - I(\mathcal{S}_{1}, \mathcal{S}_{2}) - I(\mathcal{S}_{1}, \mathcal{S}_{2}) - I(\mathcal{S}_{1}, \mathcal{S}_{2}) = I(\mathcal{S}_{1}, \mathcal{S}_{2}) - I(\mathcal{S}_{1}, \mathcal{S}_{2}) - I(\mathcal{S}_{1}, \mathcal{S}_{2}) - I(\mathcal{S}_{1}, \mathcal{S}_{2}) = I(\mathcal{S}_{1}, \mathcal{S}_{2}) - I(\mathcal{S}_{1}, \mathcal{S}_{2}) - I(\mathcal{S}_{1}, \mathcal{S}_{2}) = I(\mathcal{S}_{1}, \mathcal{S}_{2}) - I(\mathcal{S}_{1}, \mathcal{S}_{2}) - I(\mathcal{S}_{1}, \mathcal{S}_{2}) = I(\mathcal{S}_{1}, \mathcal{S}_{2}) - I(\mathcal{S}_{$

$$\begin{cases} \end{pmatrix} \equiv \Sigma p_{j} S\left(\hat{\rho}_{\mathcal{S}_{1}|\{\hat{\Pi}_{j}^{\mathcal{S}_{2}}\}}\right) \\ S\left(\mathcal{S}_{1}\right) - S\left(\mathcal{S}_{1}|\mathcal{S}_{2};\{\hat{\Pi}_{j}^{\mathcal{S}_{2}}\}\right) \\ - \max_{\{\hat{\Pi}_{j}^{\mathcal{S}_{2}}\}} J\left(\mathcal{S}_{1},\mathcal{S}_{2},\{\hat{\Pi}_{j}^{\mathcal{S}_{2}}\}\right) \ge 0 \end{cases}$$

. Quantum counterpart of $S(S_1|S_2)$ requires to specify set of measurements $\{\hat{\Pi}_i^{S_2}\}_i$ applied to 'learn' the state of \mathcal{S}_2

$$\begin{split} S\left(\mathcal{S}_{1} \mid \mathcal{S}_{2}; \left\{\hat{\Pi}_{j}^{\mathcal{S}_{2}}\right\}\right) &\equiv \Sigma p_{j}S\left(\hat{\rho}_{\mathcal{S}_{1} \mid \left\{\hat{\Pi}_{j}^{\mathcal{S}_{2}}\right\}}\right) \\ \text{Define} \qquad J\left(\mathcal{S}_{1}, \mathcal{S}_{2}; \left\{\hat{\Pi}_{j}^{\mathcal{S}_{2}}\right\}\right) &= S\left(\mathcal{S}_{1}\right) - S\left(\mathcal{S}_{1} \mid \mathcal{S}_{2}; \left\{\hat{\Pi}_{j}^{\mathcal{S}_{2}}\right\}\right) \\ \text{and} \qquad \delta\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right) &\equiv I(\mathcal{S}_{1}, \mathcal{S}_{2}) - \max_{\left\{\hat{\Pi}_{j}^{\mathcal{S}_{2}}\right\}}J\left(\mathcal{S}_{1}, \mathcal{S}_{2}, \left\{\hat{\Pi}_{j}^{\mathcal{S}_{2}}\right\}\right) \geq 0 \end{split}$$

Quantum Discord - II

- Von Neumann entropy $S(\mathcal{S}_i) = \hat{\rho}_i \log S_i$
- . Quantum counterpart of $S(S_1|S_2)$ requires to specify set of measurements $\{\hat{\Pi}_i^{S_2}\}_i$ applied to 'learn' the state of \mathcal{S}_2

$$S\left(\mathcal{S}_{1} | \mathcal{S}_{2}; \left\{\hat{\Pi}_{j}^{\mathcal{S}_{2}}\right\}\right) \equiv \Sigma p_{j}S\left(\hat{\rho}_{\mathcal{S}_{1} | \left\{\hat{\Pi}_{j}^{\mathcal{S}_{2}}\right\}}\right)$$
$$\mathcal{S}_{1}, \mathcal{S}_{2}; \left\{\hat{\Pi}_{j}^{\mathcal{S}_{2}}\right\}\right) = S\left(\mathcal{S}_{1}\right) - S\left(\mathcal{S}_{1} | \mathcal{S}_{2}; \left\{\hat{\Pi}_{j}^{\mathcal{S}_{2}}\right\}\right)$$
$$\mathcal{S}_{1}, \mathcal{S}_{2}\right) \equiv I(\mathcal{S}_{1}, \mathcal{S}_{2}) - \max_{\left\{\hat{\Pi}_{j}^{\mathcal{S}_{2}}\right\}} J\left(\mathcal{S}_{1}, \mathcal{S}_{2}, \left\{\hat{\Pi}_{j}^{\mathcal{S}_{2}}\right\}\right) \ge 0$$

Define J(S)and $\delta(S)$

$$(\hat{\rho}_i)$$

