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» Indirect proot :very good
agreement with observational
datal.
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Inhomogeneities In the early Universe - |

» Primordial inhomogeneities come from (vacuum) quantum fluctuations at the
beginning of inflation stretched to cosmological scales by expansion.
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- Direct proof that initial fluctuations canno * Indirect proof:very good
be classical? Would show quantisation of agrelement with observational
gravity. datal.
- If guantum then and classical now, how
. " 5 o
did the transition happen' Quantum-to 1. [Planck-Collaboration et al., 2020] 2 /17

classical transition problem.




l.  Quantum description of the state of the perturbations
Il. Quantum signatures

lll. Decoherence: Destruction of quantum signatures
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I - Quantum state of perturbations
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Classical cosmological perturbations in inflation

R 1
. GR g, withasingle inflaton field ¢p: S = Jd4X\/—g [167:G — Eg’waﬁaﬁ — V(¢)]

- Background: Inflation, slowly rolling homogeneous ¢,(7) leading to a FLRW
metric with an accelerated expansion a > 0.

» Focus on scalar perturbations, described by Mukhanov-5Sasaki v, at linear order

- Dynamics generate independent £k pairs, collectionof v (22 ), _
parametric oscillators: +k +k

where z = Mpay/2€, and €, = — H/H? slow-roll parameter
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. R 1 1%
g,, With a d: S= Jd4x\/fg [16nG - Egﬂ 0,40, — V(gb)]

- Background: Inflation, leading to a

with an accelerated expansion a > 0.

» Focus on perturbations, described by at

- Dynamics generate | , collection of Vi + (k2 _ Z_) Vo = 0

where 7 = Mpay/2¢, and ¢, = — H/H* slow-roll parameter

» In slow-roll, of perturbations for
k(aH) ' > 1 5 /17
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Quantum state of perturbations - |

/

n ~/ <, A A /
. Quantisation: Conjugated field 7 = V) — —V,y and [vk, JZ'k/] = nho (kK + k')
$

- Assuming vacuum initial state and solving Schrodinger equation, modes £k
described by a Z-mode squeezed state.
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/

n ~/ <A A A :
. Quantisation: Conjugated field 7 = V) — —V,y and [vk, m| = ho (K +K’)
$

- Assuming and solving modes K
described by a

state represented in X = (vr, . ) by
_ i =2k B )
W(vr, ﬂr) _ 1 ) XT<7/2 'x where 7 = (?’11 712) With 71, = 75, = <‘A’k7ATT 1+ 2 9T>
why/det yt Y21 Y22 \ kT "K'k
V22 = ; <7%k7%;£>
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(Almost) a PDF for fluctuations of vy and 7,
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Quantum state of perturbations - Ii

. Parametrise length ¢~ by squeezing parameter 1y,
and direction by squeezing angle ¢,
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Quantum state of perturbations - Ii

. Parametrise length ¢~ by squeezing parameter 1y,
and direction by squeezing angle ¢,

N =-20 J N =0.0 J N =05
Vacuum
’ ' k1/2h6—1/2vz | é 3 : ' ]€1/2hé—1/2vlsc i é 3 ’ ' kl/Qhé_l/Qvfc i
N =1.0 N =15 N =3.0
# # A ST
L i L 4 - Inflationary dynamics: very strong
2-mode squeezed state | squeezing r;, ~ /N in the direction of

S wmoeg g v amplified fluctuation of vy, 7 /17
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Quantum correlations - |

- Paradigm: Quantumness of a state for a system & = Quantumness of correlations
of subsystems & = &1 U &, for this state.
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Quantum correlations - |

- Paradigm: Cuantumness of a state for a system & = Quantumness of correlations
of subsystems & = &1 U &, for this state.

Goal: Show that correlations are stronger than classically allowed e.g. Bell inequality

- Another instance is the Quantum Discord & (oS’l, 05’2)

), (05)19 52) = (&', ) — max J(CS’I, S, {ﬁgz})
{11°2} J
with I, J two measures of mutual information between &' ,.

If &', described by classical probabilities ) (& &) = 0,

Quantum setting -/ (cS’l, 05’2) > 0.

9 /17
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Is this due to oversimplified models?



I1II - Decoherence: Destruction of
guantum correlations



Decoherence : how to destroy quantum features

Current situation

S
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Decoherence : how to destroy quantum features
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Decoherence : how to destroy quantum features

Actual situation E
Interactions

Interactions with extra d.o.f lead to cecoherence of quantum systems. 12117



Environment destroys quantum correlations

- & = pair of cosmological perturbations modes *K.
- & = other £K'pairs and other fields.
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Environment destroys quantum correlations

- & = pair of cosmological perturbations modes *K.
- & = other £K'pairs and other fields.

. Generic model: H. (1) = ng3X (X)) @ E(T, X) interaction taken linear to

1Int

preserve Gaussianity, independence of =K pairs.
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- & = pair of cosmological perturbations modes *Kk.

- & = other =K’ pairs and other fields.

. Generic model: ﬁint(f) =g Jd3x V(X) ® E(T, X) interaction taken to
preserve ,
- Under a (perturbative coupling, & large w.r.t & and
stationnary3) can derive (non-unitary) and show that
becomes parametrized by and
3. [arX1v:2209.01929 Colas, Grain and Vennin] 13/17

4. [arX1v:2112.05037 Martin, Michelr and Vennin]
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14/17



Environment destroys quantum correlations

.Geometrically: growth of the ellipse area §, = nh/\ /p;

2-mode squeezed state

—1/2_
T

_1/2h

k

14/17



Environment destroys quantum correlations

.Geometrically: growth of the ellipse area §, = nh/\ /p;

2-mode squeezed state

—1/2_
T

—

_1/2h
]{:—1/2}1—1/27_‘_15c

k

Mixed 2-mode squeezed state

0
k1/2h_1/2v,§

14/17



Environment destroys quantum correlations

.Geometrically: growth of the ellipse area §, = nh/\ /p;

2-mode squeezed state

—1/2_
T

—

_1/2h
k_l/Qh_1/27Tli

k

Mixed 2-mode squeezed state

0
kl/zh_l/%,f;

How does decoherence affect quantumness of correlations?
14/17



Environment destroys quantum correlations

Pr 12 cosh (Zrk) + pr 1
pi 2 cosh (2r;) + 1

. dDéch;c;]redrlennggggence of @ik =flpk—1/2 cosh (27k>] . 2]( (pk—l/Z) +f [

2. [arX1v:2211.10114 Martin, Micheli, and Vennin] 15/17
3. [arX1v:2112.05037 Martin, Micheli and Vennin]



Environment destroys quantum correlations

—1/2 -1
- Uiscord In presence of _ £ ,—172 ~1/2 py '~ cosh (Zi’k) T Dk
decoherengez’3 2 zk _flpk cosh Qrk)] -2 (p ") +f

pi % cosh (Zrk) + 1

Take Home Message 2

Presence or absence of quantum

(¥ @) yques

correlations is the result of a competition

between correlation build up and interaction
erasing quantum features.3

0.0 0.2 0.4 0.6 0.8 1.0
Squeezing parameter tanh(ry)

2. [arX1v:2211.10114 Martin, Micheli, and Vennin] 15/17
3. [arX1v:2112.05037 Martin, Micheli and Vennin]
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Future directions

+ Isthere some quantum correlations left? Get/use realistic estimations of the
level of decoherence to see where we are in the previous plot?.

4. [arX1v:2211.11046 Burgess et al.]
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. Get/use realistic estimations of the
level of decoherence to see where we are in the previous plot?.

* Observability: So far To evade
that problem would require, either to have , OF go
5 or consider °,

4. [arX1v:2211.11046 Burgess et al.]

. [arXiv:2001.09149 Green and Porto] 17/17
6. [arX1v:1508.01082 Maldacena]

W)




Thank you for your attention!
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Limit Wigner to a Dirac delta



Cosmological perturbations: Inflation leads to

kl/Qv;i

2
] 11 hlkl (71' _ A2 kV)

» Can decompose the Wigner functionas W°(v, ) = P(v)\/

kﬂh
AN (A
where P(v) = | —— e "
e ge s 71'7”?}/11 0 (71'— mkv)
probability distribution for v /11
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Cosmological perturbations: Inflation leads to

kl/Qv;i

. /11 —%(n—”—zk\f>2
» Can decompose the Wigner functionas W°(v,x) = P (v) !

kﬂh I
1/2 2
kv

k
where P(v) = | —— e "
e ge s 71'7”?}/11 0 (71'— mkv)
probability distribution for v /11
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Sub-fluctuant mode




Environment destroys quantum correlations

+ Semi-minor axis pk_me_’"k can remove sub-fluctuant direction.

squeezed state

Take Home Message 5

Large quantum Discord and non-

separability for cosmological perturbations
require existence of a sub-fluctuant
direction.>

3. [Martin, Micheli and Vennin, 2022 (to be published)]
5. [arX1v:2112.05037 Martin, Micheli and Vennin, 2021]
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Environment destroys quantum correlations

+ Semi-minor axis pk_me_’"k can remove sub-fluctuant direction.

squeezed state

n R
=8

&Y

~_
|

=2

Take Home Message 5

Large quantum Discord and non-

separability for cosmological perturbations
require existence of a sub-fluctuant
direction.>

3. [Martin, Micheli and Vennin, 2022 (to be published)]
5. [arX1v:2112.05037 Martin, Micheli and Vennin, 2021]

Semi-minor axis b

2.00 -

1.75 -

1.50 -

1.25 -

1.00 7

0.75 -

0.90 -

0.25 -1

Separable

6 8 10
Semi-major axis a

12

14

(@)ques

24/17



Quantum Discord



Quantum Discord - |

26/15



Quantum Discord - |

I(S,8)=S(S8))+S(5,) —S(5.5,)

26/15



Quantum Discord - |

I(S,8)=S(S8))+S(5,) —S(5.5,)

J(S,8)=S(8) =S (51S,)

26/15



Quantum Discord - |

I(S,8)=S(S8))+S(5,) —S(5.5,)

J(S,8)=S(8) =S (51S,)

26/15



Quantum Discord - |

I(S,8)=S(S8))+S(5,) —S(5.5,)

J(S,8)=S(8) =S (51S,)

26/15



Quantum Discord - |

S(S)
I(S,8)=S(S8))+S(5,) —S(5.5,)

J(S,8)=S(8) =S (51S,)

26/15



Quantum Discord - |

S ($1) S (>)

I(S,8)=S(S8))+S(5,) —S(5.5,)

J(S,8)=S(8) =S (51S,)

26/15



Quantum Discord - |

S ($1) S (>)

I(S,8)=S(S8))+S(5,) —S(5.5,)

J(S,8)=S(8) =S (51S,)

26/15



Quantum Discord - |

I(S,8)=S(S8))+S(5,) —S(5.5,)

J(S,8)=S(8) =S (51S,)

26/15



S ($1) S (55)

I(S$),8)=5(8)+S(S,) —S(S1,S»)
S(S118,) (S, 85) S (S,18)

J(S,8)=S(8) =S (51S,)

S(S,8,)

Classically, Bayes' theorem p(&, &,) = p (51 N cS’Z)/p (cS’z) implies
J(CSDI, 0532) — I(CSDI, 0532)
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- Idea: Two different expressions /, J of mutual information between &’ .

S(oS’l) 5(52)

I(S,8)=S(8)+S(8,) —S(S8,,)
S(S118,) (S, 85) S (S,18)

J(S,8)=8(8) =8 (S815,)

S(S,8,)

Classically, Bayes' theorem p(&, &,) = p (51 N cS’Z)/p (cS’z) implies
J(CSDI, 0532) — I(CSDI, 0532)

26/15



Quantum Discord - i

27/15



Quantum Discord - Il

(182 {17} ) =5 (8)) - 581162 {7}
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Quantum Discord - Il

. 119> D

Define J(osjl, 0572; {ﬁ;%}) =39 (0531) -3 (0531 | 0532; {ﬁfz})

and
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Quantum Discord - Il

S92 ) = D
5(51\52» {Hj }) = 2P0 (pé’l\{ﬁfz})

Define J(osjl, 0532; {ﬁ;%}) =39 (0531) -3 (0531 | 0532; {ﬁfz})

and 0 (é’l, 52) =I1(&,d,) — max J (oS’l, S5, {ﬁ§2}) > ()
(1172} ’
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. Quantum counterpart of § (51 | cS’z) requires to specify set of {ﬁ&}
applied to ‘learn’ the state of &,

S (05’1 | & {ﬁfz}) = PP (ﬁé’ﬂ{ﬁﬁﬂ

and
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- Von Neumann entropy $ (05),) = p;log (ﬁz)

. Quantum counterpart of § (51 | cS’z) requires to specify set of {ﬁ&}
applied to ‘learn’ the state of &,

S (05’1 | & {ﬁfz}) = PP (ﬁé’ﬂ{ﬁﬁﬂ

Define /(81,85 {172} ) = 5(8,) =5 (16, {115}

and
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