

Coherent analysis of CMB primary and secondary anisotropies

Marian Douspis

Adélie Gorce (McGill), Stéphane Ilić (IJCLab), Laura Salvati (IAS)

"Improved constraints on reionisation from CMB observations: A parameterisation of the kSZ effect", *Gorce, Ilic, Douspis, Aubert, Langer, A&A 2020, arXiv:2004.06616*

"Retrieving cosmological information from small-scale CMB foregrounds I. The thermal Sunyaev Zel'dovich effect", *Douspis, Salvati, Gorce, Aghanim, A&A 2022, arXiv:2109.03272*

000 for all document

"Retrieving cosmological information from small-scale CMB foregrounds II. The kinetic Sunyaev Zel'dovich effect", *Gorce, Douspis, Salvati, A&A 2022, arXiv:2202.08698*

Balkenhol et al. 2023

Balkenhol et al. 2023

10

- Thermal Sunyaev Zeld'ovich effect : tSZ
- Kinetic Sunyaev Zeld'ovich effect : kSZ
- Cosmic Infrared Background : CIB
- tSZ x CIB
- Infrared point sources
- Radio point sources

MARIAN DOUSPIS - GDR - 2023

SPT/Planck/ACT analysis uses templates for tSZ and kSZ

$$C_{\ell}^{tSZ} = A^{tSZ} \times C_{\ell}^{template}$$

Then marginalize over AtSZ and A^{kSZ} to retrieve Θ

CURRENT HIGH ELL ANALYSES LIMITATIONS

1

SECONDARY ANISOTROPIES

Hu & Seljak, Taburet et al., Planck 2013 , Bolliet et al., Salvati et al.

● Kinetic Sunyaev Zeld'ovich effect : kSZ ⊖, reio

Sunyaev & Zel'dovich, Mc Quin et al., Mesinger et al., Zahn et al., Planck 2016, Gorce et al. 2020

Cosmic Infrared Background : CIB O, galprop

Puget et al., Lagache et al., Knox et al., Maniya et al.

• $tSZ \times CIB \quad \Theta, galprop$

Addison et al. , Hurier et al.

- Infrared point sources
- Radio point sources

● Thermal Sunyaev Zeld'ovich effect : tSZ ⊖

Known spectral signature Spatial: Halo model, simulations Scaling relation, P profile

Known spectral signature Spatial: semi-analytical, simulations

Reion history

Approximated spectral signature

Spatial: halo model, simulations

Gal emissivity

• $tSZ \times CIB \quad \Theta, galprop$

Approximated spectral signature Spatial: halo model+, approximation, simulations

Infrared point sources

Mask dependent

Radio point sources

Mask dependent

SECONDARY ANISOTROPIES

Thermal Sunyaev Zeld'ovich effect : tSZ \ominus

Spatial: Halo model, simulations Scaling relation, P profile Known spectral signature

Known spectral signature Spatial: semi-analytical, simulations **Reion** history

Cosmic Infrared Background : CIB Θ, galprop

Approximated spectral signature

Spatial: halo model, simulations

Gal emissivity

• $tSZ \times CIB \quad \Theta, galprop$

Approximated spectral signature Spatial: halo model+, approximation, simulations

Infrared point sources Mask dependent

Radio point sources

Mask dependent

THE SUNYAEV ZEL'DOVICH EFFECTS

TSZ POWER SPECTRUM FROM HALO MODEL

Mass function

Number of halos in bins of mass and redshift. From numerical simulations, known 10% scatter between teams [Tinker et al., Watson et al., Despali et al.]

$$\frac{dN(M_{500}, z)}{dM_{500}} = f(\sigma) \frac{\rho_m(z=0)}{M_{500}} \frac{d\ln\sigma^{-1}}{dM_{500}}$$
$$f(\sigma) = A \left[1 + \left(\frac{\sigma}{b}\right)^{-a} \right] \exp\left(-\frac{c}{\sigma^2}\right)$$
$$\sigma \ needs \ \int P(k)$$

Profile

Describes the spatial distribution of the hot gas. Assume Universal pressure profile, the GNFW [Nagai et al., Arnaud et al., Planck 2014]

Scaling Relation

Needed to relate the observable (flux, size) to the mass and redshift. Given by comparison HM with simulations or WL measurements [Planck 2013., Nagai et al.,...]

$$E^{-\beta}(z) \left[\frac{D_A^2(z) Y_{500}}{10^{-4} \,\mathrm{Mpc}^2} \right] = \mathbf{Y}^{\star} \left[\frac{h}{0.7} \right]^{-2+\alpha} \left[\frac{(1-b) M_{500}}{6 \cdot 10^{14} M_{\odot}} \right]^{\boldsymbol{\alpha}}$$

Cosmology Θ

SZ power spectrum as geometrical and growth probe

DERIVING THE KSZ POWER SPECTRUM

THE KSZ POWER SPECTRUM INFORMATION

Information on reionisation history

Information on reionisation morphology

Gorce+2020, see also McQuinn+2005; Iliev+2007; Battaglia+2013; Mesinger+2012, Park+2013, Chen+2022...

NEW HIGH-L ANALYSES

There is information about cosmology and reionisation in the tSZ and kSZ spectra...

... but it is not used in current analyses, resulting in imprecise constraints

- Proposed solution:
 - Replace templates by analytic derivations of the SZ spectra to retrieve the cosmological information enclosed in the foregrounds (*Douspis, Aghanim, Langer 2006*)
 - For the tSZ spectrum \rightarrow *Douspis, Salvati, Gorce & Aghanim 2022*
 - For the kSZ spectrum \rightarrow *Gorce, Douspis & Salvati 2022*
- But the computation is expensive (one min per I...)

Emulating tkSZ power spectra

- Better Accuracy and Max Assissment of Max Assissment of
- Training Random forest with random values of ~10 params on 25 I-values of the CIs (I=100 to I=10500) [scikit-learn]
 - 5 cosmo + 2 Reio + 2 kSZ + 3 tSZ
- Training 50000 models (test on 20%)
- RF Score of 99%

100 to 1000 times faster

- Reconstruction error < 5%
 -) (<1% late time) —> error < 0.02 μ K² vs Obs err. ~ 0.4 μ K²

MARIAN DOUSPIS - GDR - 2023

New Analysis of SPT: cosmological parameters

Effect of cosmological information of tSZ

New Analysis of SPT and SPT+Planck

Adding more information

Adding Planck tSZ spectrum shifts parameters to more usual values of (Ω_M, σ_8) But do not improve drastically the error bars

Adding Planck tSZ spectrum and prior on the mass bias reduces by factor 2 error bars

CCCP: Hoekstra et al.

Douspis et al. 2022

New Analysis of SPT: fixed cosmo

- Results on tkSZ amplitudes:
 - Clean and consistent measurement of the tSZ and kSZ amplitudes
 - Breaks the degeneracy

Results on SPT data: Fixed cosmology

- Results on tkSZ amplitudes:
 - Clean and consistent measurement of the tSZ and kSZ amplitudes
 - Breaks the degeneracy
- But constraints on EoR depend on cosmology

New Analysis of SPT: Free cosmology

- Planck 2018 priors on $\Omega_b h^2$, $\Omega_c h^2$, θ_{MC} , ns
- Flat priors on other parameters (A_s, reion)

9 and 5σ measurements of tSZ and kSZ resp. Separate components: Late-time contributes to 85% D_{pkSZ} < 1.6 µK2 (95%)

Gorce, Douspis, Salvati 2022

Results on SPT data: Free cosmology

Results on EoR

SPT data favour a different cosmology than Planck, including earlier reionisation: $\tau = 0.062 \pm 0.012 (1\sigma)$ zre = 7.9 ± 1.1 (1 σ)

Gorce, Douspis, Salvati 2022

CONCLUSIONS

- There is potential in the small-scale CMB, even at the 2-point level
 - Already with SPT, leveraging the cosmological information in secondaries leads to :
 - Improved cosmological parameter constraints
 - e cleaner measurements
 - Self-consistent constraints on reionisation:

$$D_{kSZ} = 3.4 \pm 0.5 \ \mu K2, 1\sigma$$
 $z_{re} = 7.9 \pm 1.1 \ (1\sigma)$

 $D_{pkSZ} < 1.59 \ \mu K2 \ (95\% \ C.L.)$ $\tau = 0.062 \pm 0.012$

PERSPECTIVES

- Improve modelling of other foregrounds, and emulators
- Onsistent analysis with small/large-scale data:
 - Using Planck, SPT high-ell/3G, ACT
 - Improve Reionisation information to tackle neutrino mass (BATMAN ANR)
 - Joint constraints of CMB with other reionisation probes
 - Waiting for SO and S4…
- tSZ & kSZ emulators are public and available:

https://szdb.osups.universite-paris-saclay.fr

