Learning about cosmic nucleosynthesis from gamma-ray observations

Roland Diehl

Max Planck Institut für extraterrestrische Physik Technical University Munich Excellence Cluster "Origins" Garching, Germany

Beihang University, Beijing, China

About measurements of cosmic γ-rays and their interpretations

with work from (a.o.)

Martin Krause, Karsten Kretschmer, Moritz Pleintinger, Thomas Siegert, Rasmus Voss, Wei Wang, Christoph Weinberger

Contents:

- 1. Introduction
- 2. Tools of gamma-ray astronomy
- 3. Supernovae and gamma rays
- 4. Gamma-rays and the matter cycle

Atomic-nuclei composition evolving over the cosmic history

On-going Enrichments from Nucleosynthesis Sources

Modeling Compositional Evolution

☆ Changes in the forms of cosmic matter:

stars and gas flows:

 $m = m_{\rm gas} + m_{\rm stars} + m_{\rm infall} + m_{\rm outflow}$

 $\frac{dm_G}{dt} = -\Psi + E + [f - o]$

 $\Psi(t)$ is the Star Formation Rate (SFR) and E(t) the *Rate of mass ejection* gas which is ejected from stars: when?

$$E(t) = \int_{M_t}^{M_U} (M - C_M) \, \Psi(t - \tau_M) \, \Phi(M) \, dM$$

rewly-contributed ashes from nucleosynthesis: what?

The mass of element/isotope i in the gas is $m_i = m_G X_i$

$$\frac{d(m_G X_i)}{dt} = -\Psi X_i + E_i + [f X_{i,f} - o X_{i,o}]$$
$$E_i(t) = \int_{M_t}^{M_U} Y_i(M) \Psi(t - \tau_M) \Phi(M) dM$$

Modeling Compositional Evolution

Liptic Part of Register Rectine years of the Part of Register Rectine years of the Part of Recting and Recting and

☆ Changes in the forms of cosmic matter:

stars and gas flows:

 $m = m_{\rm gas} + m_{\rm stars} + m_{\rm infall} + m_{\rm outflow}$

 $\frac{dm_G}{dt} = -\Psi + E + [f - o]$

 $\Psi(t)$ is the Star Formation Rate (SFR) and E(t) the *Rate of mass ejection* gas which is ejected from stars: when?

$$E(t) = \int_{M_t}^{M_U} (M - C_M) \, \Psi(t - \tau_M) \, \Phi(M) \, dM$$

rewly-contributed ashes from nucleosynthesis: what?

The mass of element/isotope i in the gas is $m_i = m_G X_i$

$$\frac{d(m_G X_i)}{dt} = -\Psi X_i + E_i + [f X_{i,f} - o X_{i,o}]$$
$$E_i(t) = \int_{M_i}^{M_U} Y_i(M) \Psi(t - \tau_M) \Phi(M) dM$$

(ngredients:

Sources: How fast do they evolve to return (new) gas? the star of mass M, created at the time $t - \tau_M$, dies at time t

Sources: How much of species i do they eject (and/or bury)?

 $Y_i(M)$ the mass ejected in the form of that element by the star of mass M

… (locations and environments of star formation, gas flows, …)

IJCLab Seminar, Orsay (F), 14 Nov 2022

Roland Diehl

Nuclear reactions in cosmic environments

major challenge:

108

10⁸

107

10

107

Y

Temperature

- right plasma in the Universe is very different from the conditions in terrestrial laboratory experiments
- 🛠 quantum tunnelling dominates in cosmic-environment reactions

Density

[g/ccm]

Cosmic origins of the variety of nuclides

Associating different "processes" with nuclide groups – that's what we teach...

Chemical Evolution: ...there are issues ...

1.0

0.8

0.6

0.2

0.0 -0.2

[Eu/Fe] 0.4

☆ model description fails for several elements

even for elements from same source type...

☆ inconsistencies with modeled vs observed nucleosynthesis event rates

~350 radio+X SNR (~10000y) vs. ccSN rate 1/70y

☆ unclear impacts from rare sources with rich specific contributions

- neutron star mergers?
- jet supernovae?
- hypernovae?

rixing with stars & gas from galaxy collisions in the past ☆ early evolution: very massive stars & ccSNe ☆ but also something else (binaries!)... IJCLab Seminar, Orsay (F), 14 Nov 2022

Different Complementing Observing Methods

Radio-Isotopes with ~My lifetimes: ²⁶Al , ⁶⁰Fe

IJCLab Seminar, Orsay (F), 14 Nov 2022

Gamma-Ray Lines from Cosmic Radioactivity

Radioactive trace isotopes are by-products of nucleosynthesis reactions Released into circum-source ISM, we can observe gamma-ray afterglows:

Isotope	Mean Decay Time	Decay Chain	γ -Ray Energy [keV]	Detected Source	Source Type
⁷ Be	77 d	$^{7}\text{Be} \rightarrow ^{7}\text{Li}^{*}$	478	(none)	Novae
⁵⁶ Ni	8.8 d; 111 d	⁵⁶ Ni → ⁵⁶ Co* → ⁵⁶ Fe*+ <mark>e</mark> *	158, 812; 847, 1238	SN2014J; SN1987A, SN1991T(?)	Supernovae
⁵⁷ Ni	390 d	⁵⁷ Co→ ⁵⁷ Fe*	122	SN1987A	Supernovae
²² Na	3.8 y	$^{22}Na \rightarrow ^{22}Ne^{*} + e^{+}$	1275	(none)	Novae
⁴⁴ Ti	85 y	⁴⁴ Ti→ ⁴⁴ Sc*→ ⁴⁴ Ca*+e ⁺	78, 68; 1157	SNR Cas A	Supernovae
^{229/230} Th	~1.0 10 ⁵ y	^{229/230} Th →→ ²⁰⁶ Pb	352 6092615	(none)	Neutron Star Mergers, SNe
¹²⁶ Sn	3.3 10 ⁵ y	$^{126}Sn \rightarrow ^{126}Sb^* \rightarrow ^{126}Te$	666; 695; 87; 64	(none)	Neutron Star Mergers, SNe
²⁶ AI	1.04 10 ⁶ y	$^{26}\text{AI} \rightarrow ^{26}\text{Mg}^* + \text{e}^*$	1809	Massive-Star Groups Cyg, Ori	Stars, Novae Supernovae
⁶⁰ Fe	3.5 10 ⁶ y	${}^{60}\text{Fe} \rightarrow {}^{60}\text{Co}^* \rightarrow {}^{60}\text{Ni}^*$	59, 1173, 1332	Galaxy (?)	Supernovae, Stars
e*	10 ⁵ 10 ⁷ y	$e^++e^- \rightarrow Ps \rightarrow \gamma\gamma$	511, <511	Galactic Bulge, Disk	Supernovae, Novae, Pulsars, Microquasars

Only the most-plausible candidates per source type are listed

(abundance; decay time (weeks<τ<10⁸y) long enough to survive ejection/not too long to be bright)

MeV Range Gamma-Ray Telescope Imaging Principles

Compton Telescopes and Coded-Mask Telescopes

Achievable Sensitivity: ~10⁻⁵ ph cm⁻² s⁻¹, Angular Resolution \geq deg

Current Nuclear Gamma-Ray Line Telescopes

INTEGRAL

2002-(2023+..2029)

ESA

high E resolution Ge detectors

15-8000 keV

NuSTAR (only <80 keV!)

2012-(2022+) ... NASA

hard X ray imaging <80 keV

Fig. 1. NuSTAR telescopes in deployed configuration

INTEGRAL Cosmic Photon Measurements: The SPI Ge γ-Spectrometer

Coded-Mask Telescope Energy Range 15-8000 keV Energy Resolution ~2.2 keV @ 662 keV Spatial Precision 2.6° / ~2 arcmin Field-of-View 16x16°

INTEGRAL: Dominance of instrumental background

SPI Ge detector spectra

INTEGRAL/SPI Performance Monitoring

Spectral Resolution in Detail: regular annealings are essential

IJCLab Seminar, Orsay (F), 14 Nov 2022

17

Discriminating Background and Sky Signals in SPI Data

Tracking the relative count rate ratios among detectors

Characteristic signatures from celestial sources withcoded mask, and from background events

Gamma ray spectroscopy with SPI

Lessons from radioactive isotopes

☆Trace the flows of cosmic matter

☆Understand the sources of new nuclei

⁵⁶Ni radioactivity $\rightarrow \gamma$ -Rays, e⁺ \rightarrow leakage/deposit evolution

IJCLab Seminar, Orsay (F), 14 Nov 2022

SN2014J light evolution in the 847 keV ⁵⁶Co line

SN2014J data Jan – Jun 2014: ⁵⁶Co lines

🛠 Split into 4 time bins

☆ Doppler broadened √

- Coarse & fine spectral binning
- → Observe a structured and evolving spectrum
- expected:
 gradual appearance
 of broadened ⁵⁶Co lines
 ^{CP} Diehl et al., A&A (2015)
- note: normally, we do not see such fluctuations in 'empty-source' spectra!

SNIa and SN2014J: Early ⁵⁶Ni (τ~8.8d)

Spectra from the SN at ~20 days after explosion

Clear detections of the two strongest lines expected from ⁵⁶Ni (should be embedded!)

⁵⁶Ni mass estimate (backscaled to explosion): ~0.06 M_☉ (~10%)

i.e.: not the single-degenerate M_{chandrasekhar} model, but 2 WDs (double-degenerate) to observer

 \rightarrow SN Ia are a variety

44Ti from SN1987A

44Ti radioactivity in Cas A: Locating the inner Ejecta

NuSTAR Imaging in hard X-rays (3-79 keV; ⁴⁴Ti lines at 68,78 keV) →

first mapping of radioactivity in a SNR

- Both ⁴⁴Ti lines detected clearly
- redshift ~0.5 keV \rightarrow 2000 km/s asymmetry
- ⁴⁴Ti flux consistent with earlier measurements
- Doppler broadening: (5350 \pm 1610) km s⁻¹
- Image differs from Fe!!

⁴⁴Ti → TRUE locations of ejecta from the inner supernova
Fe-line X-rays are biased from ionization of shocked plasma

⁴⁴Ti in Cas A: INTEGRAL/SPI contributions

IJCLab Seminar, Orsay (F), 14 Nov 2022

Weinberger+ 2021

Roland Diehl

NuSTAR update ⁴⁴Ti in Cas A

Lessons from radioactive isotopes

☆Trace the flows of cosmic matter

☆Understand the sources of new nuclei

²⁶Al γ-rays from the Galaxy

Hints from Presolar Grains

Massive stars and ²⁶Al radioactivity

IJCLab Seminar, Orsay (F), 14 Nov 2022

Roland Diehl

The Al Isotope Ratio ²⁶Al/²⁷Al

²⁷Al is enriched with Galactic Evolution, i.e. ~time
²⁶Al decays, so from current/recent nucleosynthesis only

Early solar system meteorites measure ESS environment (\rightarrow ²⁶Al enriched?) Pre-solar grains measure nucleosynthesis in dust-producing sources (\rightarrow much larger)

350 30 Solar System ISM now (from gamma rays Interstellar Grains 'canonical' value 300 25 for ESS of $\sim 5 \ 10^{-5}$ (McPhersson+1995) 250 ر number of grains 200 'supra-canonical' up to 6.5 10⁻⁵ ?? 150 (Krot+2012, Makide+ 2013 ...) 10 100 **Consolidated FSS** $(5.23 \pm 0.13) 10^{-5}$ 5 50 (Jacobsen+2013) 0,00 5,00 2.00 100 1,00 6.00 4.00 3.00 log (isotopic ratio ²⁶Al / ²⁷Al)

²⁶Al γ -rays and the galaxy-wide massive star census

Radioactivities from massive stars: ⁶⁰Fe, ²⁶Al

\rightarrow Messengers from Massive-Star Interiors!

...complementing neutrinos and asteroseismology!

Processes:

- ☆ Hydrostatic fusion
- ☆ WR wind release
- ☆ Late Shell burning
- ☆ Explosive fusion
- ☆ Explosive release

²⁶Al Yields versus mass, for massive stars and their SNe 10^{-2} 10^{-4} ²⁶Al Yield [M_o] 10-6 10-8 Chieffi & Limongi (2013) total Limongi & Chieffi (2018) total Ekström et al. (2012) wind Limongi & Chieffi (2018) wind 10^{-10} Nomoto et al. (2013) total — Meynet et al. (1997) total Limongi & Chieffi (2006) total Woosley & Heger (2007) total Limongi & Chieffi (2006) wind Woosley & Heger (2007) wind 10^{-12} 20 40 60 80 120 100 $M_{ZAMS} [M_{\odot}]$

ccSNe dominate for lower-mass range,

winds dominate over explosive ejecta for more-massive stars

Massive-Star Groups: Population Synthesis

E_{kin} power og(dE/dt) [erg/s] We model the "outputs" Full range 80-120 Mso 35. 40-80 Msol of massive stars and their 20-40 Mso 8-20 Msol supernovae from theory ²⁶AI [Msol] Ejecta (²⁶Al) 10 Winds and Explosions 5×10⁻ – Nucleosynthesis Ejecta Ionizing Radiation ⁶⁰Fe Ejecta (60Fe) ^{s0}Fe [Msol] 10 5×10⁻⁶ We get observational constraints from 20 **Star Counts** JV [log(photons/s)] ionizing **ISM** Cavities light **Free-Electron Emission** 46 Radioactive Ejecta 0 5 10 20 Time [Myr time (My)

Voss R., et al., 2009

Population synthesis: impact of different inputs on groups

variation of explodability (i.e.: not all stars of high mass make a SN!)

Contributions from early (i.e. most-massive-stars') SNe eliminated if non-exploding

Diffuse radioactivity throughout the Galaxy

Galactic Population Synthesis Modelling versus observations

Pleintinger 2020 Siegert+ 2022

PSYCO 30000 sample optimisation

 → 4-arm spiral 700 pc, LC06 yields, SN explosions up to 25 M_☉
 © observed full sky flux:
 (1.84 ± 0.03) 10⁻³ ph cm⁻² s⁻¹

 ™ model-predicted ²⁶Al:
 → ≈ x 10⁻⁴ ph cm⁻² s⁻¹ → too low

 Best-fit details (yield, explodability) depend on superbubble modelling (here: sphere only)

Massive Star Groups in our Galaxy: ²⁶Al γ-rays

How massive-star ejecta are spread out...

200 radial velocity [km s⁻¹] Superbubbles extended away 100 0 from massive-star groups -100 -200 -300 40 20 0 -20 .40 Galactic longitude [deg] **OB** association \bigcirc HI shell Krause & Diehl, ApJ (2014) X-ray bubble Blow-out ²⁶Al ejecta Galactic Galactic centre centre Observer Plane Galactic Galactic rotation rotation Illustration by M. Pleintinger (2020) Observer

Orion-Eridanus: A superbubble blown by stars & supernovae

ISM is driven by stars and supernovae \rightarrow Ejecta commonly in (super-)bubbles

IJCLab Seminar, Orsay (F), 14 Nov 2022

Krause+ 2013ff

Stars, structures, & shells

ISM is driven by stars and supernovae

 \rightarrow Use stellar census for estimation of driving energy & nucleosynthesis (²⁶Al)

Diffuse gamma-ray emission from ⁶⁰Fe in the Galaxy

²⁶Al and ⁶⁰Fe analysis with same INTEGRAL dataset (15+ years) and models

Ejecta in star-forming regions

• The composition will vary locally, near newly-ejected ashes

major dependencies on assumptions about GMC morphology (> 'feedback'?!!)

- Newly ejected ashes could be incorporated into 2nd gen stars
- The Galaxy at large has ⁶⁰Fe/²⁶Al ~ 0.5, the ESS had ~0.002 – can we get more & different viewpoints?

⁶⁰Fe and ²⁴⁴Pu from nearby nucleosynthesis found on Earth

Knie+ 2004, Fimiani+ 2016, Ludwig+ 2016, Koll+ 2019,

+ lunar material probes; + antarctic snow

What are its sources? How did these traces of nucleosynthesis get here?

⁶⁰Fe on Earth from recent nearby supernovae?

The Sun is located inside a hot cavity (Local Bubble & Loop-1) SN explosions within LB \rightarrow ejecta flows reach the Solar System

²⁶Al Radioactivity: Special Messengers

- Radioactivity provides a clock
- ²⁶Al radioactivity gamma rays trace nucleosynthesis ejecta over ~few Myrs
- Radioactive emission is independent of density, ionisation states, ...

electrons in the ISM gen i da ser a desta de se a (free free radio emission) (WMAP, Bennett+2003) starlight (2 µm IR emission) 2MASS, Skrutskie+2006) positrons in the ISM (511 keV y-ray emission) INTEGRAL/SPI, Siegert+2015) nucleosynthesis ejecta in the ISM (1809 keV ²⁶Al y-ray emission) (CGRO/COMPTEL, Diehl+1995) cosmic rays exciting ISM

the first sector and the sector of the secto

(GeV gamma-ray emission) (Fermi-LAT, Selig+2014/Acero+2015)

Nucleosynthesis & Gamma-Ray Spectroscopy - Summary

☆ Supernova explosions are not entirely spherically symmetric

- ⁵⁶Ni and how it reveals its radiation in SN2014J
 - \rightarrow SN Ia diversity; sub-Chandra models?

⁴⁴Ti image and line redshift in CasA; SN87A

→ ccSupernovae are fundamentally 3D/asymmetric

☆ Cycling of cosmic gas through sources and ISM is a challenge
 [∞] ²⁶Al preferentially appears in superbubbles
 → massive-star ingestions rarely due to single WR stars or SNe
 [∞] the current Galactic SN rate is ~1/70 years
 [∞] ⁶⁰Fe is a SN/wind ejecta diagnostic (SBs older than for ²⁶Al)

Varied messengers complement each other with essential diagnostics

Radioactivity provides a unique and different view on cosmic isotopes (via gamma rays, stardust, CRs, sediments)

A next gamma-ray telescope (light-weight Compton telescope) is a dream 2040+; INTEGRAL ends 2029; COSI is a step (2027)...

Astrophysics with Radioactive sotopes

a new brochure on nuclear astrophysics (by ChETEC/COST)

THE NUCLEI

cose vou'd like brochure: 1 PDF of this brochure: 1 PDF of this prochure: 2 PDF of this prochure: 2 PDF of this prochure: 2 COSMIC ORIGINS

How scientists explore the creation of all the elements that we find on Earth and across the Universe

THE ELEMENTS AND THEIR ISOTOPES: MADE BY NUCLEAR REACTIONS

In atomic nuclei, protons and neu trons are bound together by the strong nuclear force against the tatic repulsion of the electric charge of protons. A nucleus is very ompact, and ten thousand time smaller than the electron cloud that nes the size of the atom. The charge of the electron cloud deter es the characteristic che coperties of each element. The rent number of neutrons that can be bound to the same oumbe of protons make up the variety o topes, and these determine the characteristics of nuclear reactions hese reactions re-arrange the mix of protons and neutrons, thus cre ting new isotopes from existing ones. In cosmic environments, nu lear reactions often invol ble and rare isotopes. Thus, from the primordial elements hydrogen and helium, elements such as carbon oxygen, iron, and gold, and all their

Pu Am Cm

IJCLab Seminar, Orsay (F), 14 Nov 2022

WHY DOES THE SUN SHINE?

Sun is an ordinary middle-sped orer of 100 bittlen starsmin arbund ty of hydrogen is aucleus make protoin) and helium tiwo prower instruction. These the light were instruction. These the light thements, are, thought to have made in protoid processe devenue

If y 14 billion years ago. Such rendial gas gradually containsed uph gravity into massive incantent balls of gam- the first stars, lars, tremendoys pressure and other the intrian theirs and the internet the internet theirs of the the internet the internet.

arb, interminutes preserve and an arbitrary batter drive the investment for produce. Within the superfrorts, viole helium, say will a carbon, cars, a c programs between tran and coher nuclei, with the re- otic nuclei lead to the say of head sums, and garagy - micro at the inportant elem nuclear binding elengy, we see schape our (ife ("publicity)

ety offelements the fron in our blood and rare and gen we breather, precious elements such as gold be basis of life as platinum or uranium.

When the Intel of indicate fusion to by this calastrophic and of a starhier cores runhout starf like our Sun cools and contensis into new stars, internative blow off their outer enver-perhaps with accempanying plants begins and their cores and against indicate outer blows that could be contensisted and the contensisted in the contensisted and and questionst white dwards. Stars deal the children of stardout!

other hand, deentably outprespinder. Nocjaar, astronghysichtis investigader heinr own grisving hand sind them. The processies undergring the creargoload sis a slapinoux, hindwing out, and then of the elements and them follow rece on broader cosmidphenjemmens within the speechfora, violent nucle, evolution.

Signifiers thesis of an argument. This proves the profession function emits that an in-property of a more the advances or (2001) theoretics of constraints of the advances of the other califolium took 2005, minimum the brack may argument theoretics of the advances o

land Diehl

He

A three-dimensional periodic table