Injection time for the collider rings

K. Oide (UNIGE/CERN)

Nov. 24, 2022 @1FCC-ee Injector Studies Mini-Workshop

Many thanks to P. Craievich, T. Raubenheimer, F. Zimmermann, and all FCC-ee/FCCIS colleagues

Work supported by the FCC Feasibility Study (FCC-GOV-CC-0004, EDMS 1390795 v.2.0).

The 4 IP layout

- The new layout "31" series has been presented by J. Gutleber in the last optics meeting.
 - 8 surface sites, 4 IP.
 - complete period-4 + mirror symmetries.
- Let us choose "PA31-1.0" for the baseline, for the time being.
 - The adaptation to other variants, if necessary, will be minor.
 - other changes.

• An update "PA31-2.0" has been proposed with a change in the length of IP straights. The optics will adapt it soon with several

PA31-1.1 & 1.6 fallback alternatives

J. Gutleber

	PA31-1.0	PA31-1.1	PA31-1.6
urface sites	8 (potential additional at sites v	small access shafts at CERN or for ventilation vith long access tunnels, e.g. PF)	
rc cells		42	
th		213.04636573 m	
, PD, PG, PJ)	1400 m	1400 m	1410 m
(PB, PF, PH, PL)	2160 m	2100 m	2110 m
PA (0 = East)	-10.75°	-10.45°	-10.2°
engths		76 932.686 m	
	91 172.686 m	90 932.686 m	91 052.686 m

K. Oide, Nov. 24, 2022

2

"latest" (Nov. 24, 2022) parameters

Beam energy	[GeV]	45.6	80	120	182.5
Layout		PA31-1.0			
# of IPs		4			
Circumference	$[\mathrm{km}]$		90.83	6848	
Bending radius of arc dipole	$[\mathrm{km}]$	9.937			
Energy loss / turn	[GeV]	0.0391	0.370	1.869	10.0
SR power / beam	[MW]	50			
Beam current	[mA]	1280	135	26.7	5.00
Bunches / beam		10000	880	248	40
Bunch population	$[10^{11}]$	2.43	2.91	2.04	2.37
Horizontal emittance ε_x	[nm]	0.71	2.16	0.64	1.49
Vertical emittance ε_y	[pm]	1.42	4.32	1.29	2.98
Arc cell		Long 90/90 90/90		/90	
Momentum compaction α_p	$[10^{-6}]$	28.5 7.33		33	
Arc sextupole families		75 146		46	
$eta_{x/y}^*$	[mm]	100 / 0.8	200 / 1.0	300 / 1.0	1000 / 1.6
Transverse tunes/IP $Q_{x/y}$		53.563 /	53.600	100.565	/ 98.595
Energy spread (SR/BS) σ_{δ}	[%]	$0.038 \ / \ 0.132$	$0.069 \ / \ 0.154$	$0.103 \ / \ 0.185$	$0.157 \ / \ 0.221$
Bunch length (SR/BS) σ_z	[mm]	4.38 / 15.4	$3.55 \ / \ 8.01$	$3.34 \ / \ 6.00$	$1.94 \ / \ 2.74$
m RF voltage $400/800~ m MHz$	[GV]	0.120 / 0	1.0 / 0	2.08 / 0	$2.1 \ / \ 9.2$
Harmonic number for 400 MHz		121648			
RF freuquency (400 MHz)	MHz	400.793257			
Synchrotron tune Q_s		0.0370	0.0801	0.0328	0.0826
Long. damping time	[turns]	1168	217	64.5	18.5
RF acceptance	[%]	1.6	3.4	1.9	3.0
Energy acceptance (DA)	[%]	± 1.3	± 1.3	± 1.7	-2.8 + 2.5
Beam-beam $\xi_x/\xi_y{}^a$		$0.0023 \ / \ 0.135$	$0.011 \ / \ 0.125$	$0.014 \ / \ 0.131$	$0.093 \ / \ 0.140$
Luminosity / IP	$[10^{34}/{\rm cm^2 s}]$	182	19.4	7.26	1.25
Lifetime $(q + BS + lattice)$	[sec]	840		< 1065	< 4062
Lifetime (lum)	[sec]	1129	1070	596	741

^{*a*}incl. hourglass.

- 4 IP
- Reduced circumference
- further change of circumference is expected according to the placement study.

Injection time for each specie (20 GeV Linac, 4 IP)

- Bunch charge does not change from the linac through BR. It is accumulated only in * the collider.
- Booster has a copy of collider bunch pattern, and injects all bunches to the collider * in one turn.
- The booster operates alternatively on e+ & e-. *
- For the injection from scratch, collider can accumulate the maximum bunch charge * from linac up to 50% of the collision bunch charge.
- Beyond 50%, the injected bunch charge is limited by the flip-flop condition (6 10% * of the collision bunch charge).
- Once the collision starts, the necessary bunch charge injected each time will be all * different for each bunch, with 0 - 100% variation.

Injection

- From scratch:
 - "Bootstrap" (D. Shatilov) is necessary to maintain the balance between bunch charges of two beam.
 - Charge imbalance by $\pm 5\%$ (Z) $\pm 3\%$ (others) is allowed between *four* colliding bunches.
- Top-up:
 - Maintain the charge imbalance within the allowed range.
 - Thus the amount of injected charge must be different bunch by bunch, with 0 to 100% deviation, since the lifetime can be different for each bunch.
- Pilot bunches:
 - Esp. at Z and W, non-colliding pilot bunches have special rolls:
 - At the beginning of each fill, first the polarizing wigglers are turned on. Then pilot bunches are injected.
 - Wait for ≥ 1 hour to polarize pilot bunches.
 - Turn off wigglers
 - Start filling colliding bunches with the bootstrapping.
- Once one beam is aborted, it is not possible to maintain the other beam. The other beam must be aborted ASAP.

Injection time for each specie (20 GeV Linac, 4 IP)

Collider energy [GeV] Collider & BR bunches / ring **Collider particles / bunch** N_b [10¹⁰] Allowable charge imbalance Δ [±%] **Injector particles / bunch** N_{max} **[10**¹⁰**]** Bootstrap particles / bunch $[10^{10}] = 2N_b\Delta$ # of BR ramps (up to 1/2 stored current, with N_{max}) # of BR ramps (bootstrap with $2N_b\Delta$) BR ramp time (up + down) t_{ramp} [s] Linac bunches / pulse Linac pulses needed $n_{\rm p}$ Linac repetition frequency [Hz] *f*_{rep} **Collider filling time from scratch [s]** Collider filling time for top-up $[s] = n_p/f_{rep} + t_{ramp}$ Lum. lifetime (2 IP) [s] BS lifetime (2 IP) [s] Lattice lifetime (2 IP) [s] Collider lifetime (2 IP) τ_2 [s] Collider top-up interval (between e+ and e-)(2 IP) [s] = $\tau_2 \Delta$ Lum. lifetime (4 IP) [s] BS lifetime (4 IP) [s] Lattice lifetime (4 IP) [s] Collider lifetime (4 IP) τ₄ [s] Collider top-up interval (between e+ and e-)(4 IP) [s] = $\tau_4 \Delta$

Ζ	WW	ZH	tt		
45.6	80	120	182.5		
10000	880	248	40		
24.3	29.1	20.4	23.7		
5	3				
	≤ 3.0 *				
2.43	1.746	1.224	1.422		
3	3	3	4		
6	8	6	7		
0.6	1.5	2.5	4.1		
2					
5000	440	124	20		
200	50				
230.4	113.3	44.82	49.5		
25.6	10.3	4.98	4.5		
2258					
100000	100000	2130	8124		
1260	2400	3000	3600		
802.2	2140	465.7	885.7		
40.1	64.2	13.971	26.571		
1129	1070	596	741		
100000	100000	1065	4062		
840	1600	2000	2400		
479.3	1070	382.1	542.8		
24.0	32.1	11.463	16.284		

Injection time for each specie (w/ PBR, 4 IP)

Collider energy [GeV] **Collider & BR bunches / ring** Collider particles / bunch [10¹⁰] N_b **Injector particles / bunch [10¹⁰] Bootstrap particles / bunch [10¹⁰] #** of BR ramps (up to 1/2 stored current) # of BR ramps (bootstrap) BR ramp time (up + down) [s] **# of PBR cycles** PBR ramp time (up + flat top + down) [s] PBR bunches / ring Linac bunches / pulse Linac pulses Linac repetition frequency [Hz] **PBR** injection time [s] Collider filling time from scratch [s] Collider filling time for top-up [s] Allowable charge imbalance Δ [±%] Lum. lifetime (2 IP) [s] BS lifetime (2 IP) [s] Lattice lifetime (2 IP) [s] Collider lifetime (2 IP) [s] Collider top-up interval (between e+ and e-)(2 IP) [s] Lum. lifetime (4 IP) [s] BS lifetime (4 IP) [s] Lattice lifetime (4 IP) [s] Collider lifetime (4 IP) [s] Collider top-up interval (between e+ and e-)(4 IP) [s]

Ζ	WW	ZH	tt		
45.6	80	120	182.5		
10000	880	248	40		
24.3	29.1	20.4	23.7		
	≦ 3.0				
2.43	1.746	1.224	1.422		
3	3	3	4		
6	8	6	7		
0.6	1.5	2.5	4.1		
	14	7			
0.5					
715	63	18	6		
2					
358	32	9	3		
200					
1.79	0.64	0.18	0.06		
293.94	192.06	108.18	88.22		
32.66	17.46	12.02	8.02		
5	3				
2258					
100000	100000	2130	8124		
1260	2400	3000	3600		
802.2	2140	465.7	885.7		
40.1	64.2	13.971	26.571		
1129	1070	596	744		
100000	100000	1065	4062		
840	1600	2000	2400		
479.3	1070	382.1	542.8		
24.0	32.1	11.463	16.284		