

Radiation Load Studies for the FCC-ee Positron Source: AMD and Positron Linac

Barbara Humann (SY-STI-BMI) Supervisor: Anton Lechner FCCee Injector Studies Mini-Workshop (25/11/2022)

Acknowledgments to I. Chaikovska, P. Craievich, M. Schär, Y. Zhao,...

1. Geometry

2. Beam Parameters

3. AMD

4. Positron Linac

5. Outlook & Conclusion

Geometry

Geometry – Adiabatic Matching Device (AMD)

Part	Material	Radial Coil Position	6.1cm	
Target	Tungsten	Shielding thickness	1.9cm	
Coils	HTS (YBCO)	Target radial size	1.5cm	
Cryostat	Stainless steel	Target position in z	1.75cm	
Shielding	Tungsten	AMD exit in z	10cm	
Support	Aluminum (grey)	New:		
Support	Copper (brown)	- Target and shielding are made from pure tungsten an		
		 Thicker shieldin → Facilitates cooling 	g → sma g, better s	

Corrected magnetic field -

Geometry – Positron Linac

- Constant magnetic field of 0.5T in cavities
- Aperture: 3cm, up to r=7cm
- Solenoids: 13cm aperture \rightarrow what will be in-between cavities and solenoids?
- Concept of one long solenoid, 3 shorter ones
- Copper with density taking in account the water cooling channels

Parameters for the FCC-ee positron target

Electron drive beam	6GeV	Old	Filling time of collider:			
Beam size 0.5mm RMS		(FCC-Week 2022)	97.6% at top-up_with 10% bunch charge			
Repetition rate	200Hz					
Bunches per pulse	2					
Bunch intensity (filling)	3.47E10 (5.56nC)					
Bunch intensity (top up)	3.47E9	New	100% filling with full bunch charge			
Beam Power	13.34kW					
Target length	5X ₀ =17.5mm					

Current time scheme: needed for reliable dose and DPA values (no difference between filling and top-up)

2bunches*200Hz*3600s*24h*185days*0.804(duty factor)*3.47E10e-/bunch*0.5

🛕 e- on target per year: 8.9E19e-/year 🛕

Measured quantities

- Instantaneous effects
 - Total deposited power (in W): Determines the heat load on the elements
 - Power density (in mW/cm³): Quenching of SC if it is too high
- Long term radiation effects
 - Dose (in MGy): Deterioration of (organic) materials
 - Displacement per atom (DPA): Structural damage of inorganic materials; Dimensionless number proportional to the number of Frenkel pairs

Adiabatic Matching Device Target

Power on different AMD elements

Close up on the target

25/11/2022

Power density on coils

Values ~3x higher than in old design due to 4x higher beam power.

25/11/2022

Power density does <u>not scale directly</u>, due to **thicker shielding** protecting the coils better and a **targe**t position further **downstream**.

FCC-ee Injector Studies Mini-Workshop

Long-term radiation effects per year of Z operation on coils

Remarks:

- long term radiation effects (dose, DPA) are given for one year of Z operation.
- Conservative assumption is that values will be ~10x higher for operational time of FCC-ee.

25/11/2022

Positron Linac

Geometry reminder

Power loss on aperture in positron linac

Histogram Full RF Structure

Thanks to **Y. Zhao** for the RF Track values

As soon as particle leaves vacuum and touches a cavity/VC it is dumped, and its properties are stored

30 5 **RF** Track photons RF Track positrons -RF Track positrons RF Track electrons 4.5 RF Track electrons FLUKA positrons 25 FLUKA photons FLUKA electrons FLUKA positrons 4 FLUKA electrons Energy in MeV/primary 3.5 Energy in MeV/primary 20 3 15 2.5 2 10 1.5 1 5 0.5 0 0 200 400 600 800 1000 1200 1400 1600 0 50 100 150 200 250 300 0 z in cm z in cm

Good agreement in data means that FLUKA simulations should be sufficient for energy deposition studies, even with only a constant magnetic field of 0.5T and no electrical field.

Histogram Cell 1

Power loss on aperture in positron linac

	Electrons		Positrons		Photons		TOTAL	
	RF Track	Fluka	RF Track	Fluka	RF Track	Fluka	RF Track	Fluka
Total	1154W	1126W	1037W	1061W	4830W	4822W	7021W	7015W
Cell 1	1015W	1026W	913W	967W	3722W	3721W	5650W	5721W
Cell 2	85W	71W	79.5W	62.8W	631W	607W	796W	741W
Cell 3	24W	16W	23.5W	19.7W	265W	261W	313W	297W
Cell 4	21.2W	9.1W	12.8W	6.6W	140W	148W	174W	163W
Cell 5	8.8W	3.4W	7.9W	4.1W	71W	83W	88W	90W

Values are generally in good agreement Thanks to Y. Zhao for the RF Track values!

Impact on the aperture \neq energy deposition

Power **deposition** on different elements of the positron linac

FUTURE CIRCULAR

COLLIDER

CÉRN

	13.34kW		
Shield RF	1049W		
Flange AMD/RF	132W		
Flanges cells	43W-3.6W		
SOL short	68W*-3.6W		
SOL long	607W-12.66W		
SOL connect	53W-4.3W		

* Highest value in first short solenoid of cell 2

First cell most impacted: up to **170W(!)** absorbed by cavity

1000

100

10

0.1

0.001

in mW/cm

- Cell 2 up to 20W per cavity
- Shielding protects positron linac solenoids, but not the cavities
- If cavities need more protection, elaborate shielding scheme must

Close up to first cell

FLUKA

Summary

• AMD & Target:

- Coils: power density is below critical values, DPA and dose must be understood if they are acceptable
- Target: 13.34kW beam power leads to critically high heat load and DPA → solution pending

Positron Linac:

Power loss: FLUKA results align well with RFTrack

25/11/2022

- Cavities: highly impacted by particles from the inside, so shielding is not possible.
- Solenoids: Protected by large tungsten shielding in front of positron linac. In case of organic material and/or SC solenoid, dose values are too high.
- What power deposition values and DPA levels can the cavities withstand?

Any questions?

