FCC-ee positron capture V0 simulation

Yongke Zhao, CERN

On behalf of the team

FCC-ee Pre-injector Mini-workshop

25/11/2022, Orsay

Overview

• FCC-ee e⁺ source V0 layout: conventional target + HTS solenoid matching device

• Simulation tools: Geant4, RF-Track

- Reruirements for e⁺:
 - e^- bunch charge × DR accepted e^+ yield = e^+ bunch charge ≥ **5.6 nC * 2** ≈ 7.0×10¹⁰ e^+ / bunch
 - ✓ A safety margin of 2 is applied

To be scaled to 4 nC (latest)

- **DR acceptance** considered by applying longitudinal **window cuts** on e⁺ at DR entrance:
 - ✓ Energy window: 1540 ± 58.5 MeV (±3.8% @ 1.54 GeV)
 - ✓ Time window: **16.7 mm/c** (~40° RF @ 2 GHz) in total (to be discussed)

Beam parameters for e⁻

Primary e ⁻ parameters	Values	Units
Beam energy	6	GeV
Spot size (rms)	0.5	mm
Bunch length (rms)	1	mm
Energy spread (rms)	0.1	%
Normalised trans. emittance (rms)	15	mm∙mrad
No. of bunches per pulse	2	
Repetition rate	200	Hz
Normalised beam power	26.8 / η _e +	kW
Normalised beam fluence	$9.9 imes10^{11}$ / η_{e^+}	cm ⁻²
For $\eta_{e^+} = 6.8$		
Normalised beam power	3.9	kW
Normalised beam fluence	1.5×10^{11}	cm ⁻²

Target for e⁺ production

e⁻

Hybrid target

Study in progress

Conventional target

✓ Used in V0 simulation

Advantages:

- Promising results (more in the <u>talk of L. Bandiera</u> or their paper: <u>arXiv:2203.07541</u>)
 - ✓ Lower deposited power (~30%) and PEDD

(~60%), assuming same final e+ yield, etc.

- Benchmarking with Geant4 needed?
- Final e+ yield (DR accepted) to be estimated, etc.

Advantages:

- Simple layout and placement in HTS matching device
- Higher e+ yield expected (due to smaller e+ spot size)
- PEDD no more a concern (given high

yield and only 2 bunches per pulse)

Matching device

• FC option

• Study in progress

Flux Concentrator (FC) designed by P. Martyshkin (BINP)

- Lower peak field (5-7 T, ~1.5-3 T at target exit)
- Smaller entrance aperture (Φ = 8-16 mm)
- Fixed target position (2-5 mm upstream)
- Therefore, lower e+ yield
- Designed for 100 Hz rep. rate? To be reoptimised for 200 Hz?

HTS solenoid option

✓ Used in V0 simulation

High-Temperature Superconducting (HTS) solenoid designed by J. Kosse, B. Auchmann and M. Duda (PSI)

- \circ $\;$ Higher peak field (~15 T, ~12 T at target exit)
- Larger aperture (Φ = ~30 mm, minimised for the shielding)
- Flexible target position
- Therefore, higher e+ yield (a factor of > 2 than using FC)

Matching device

• Ideals to reduce PEDD in target and radiation in HTS solenoid

- CLIC plot primary e- spot size scan
- PEDD (normalised) increased
 dramatically with smaller spot size
- Need to study this for FCC-ee (now fixed at 0.5 mm)?

- Old plot (needs updates)
- Currently R=15 mm for target
- Possible to be further reduced?
 (compromise between yield and radiation)

25/11/2022

FCC-ee Pre-injector Mini-workshop

• Linac used in VO

○ Large aperture L-band (N = 5)

"F3" structure *designed by H. Pommerenke and A. Grudiev (CERN)*

- Solenoid used in VO
 - \circ Type-2 layout used in V0 (**B** = 0.5 T)

	"Type-2" layout
	designed by M. Schaer and R. Zennaro and (PSI)
Extra sol	enoid

Frequency	2.0 GHz
Constant aperture	30 mm = 0.2 λ
Phase advance	9π/10
Length	3.0 m = 44 cells
Entr., exit iris thickness	14.3 mm, 20.0 mm
Transverse wake at 17.5 ns	0.13 V/pC/mm/m
Filling time	447 ns
Min. group velocity	1.9 % c
Largest cell radius	61 mm
SLED coupling	17
Eff. shunt impedance	39 MΩ/m
Average gradient	15 MV/m
E _{max} (instant.)	58 MV/m
S _{c,max} (instant.)	329 mW/μm²
Klystron pulse length	5 µs
Klystron power per structure	17 MW

• Yield losses in capture system:

FCC-ee Pre-injector Mini-workshop

Transverse phase spaces

9

 Normalised RMS transverse emittance as a function of cut on beam radius (R)

All positrons

Positrons accepted by DR E & time cut window

 Normalised RMS transverse emittance as a function of DR cut window

(16.7 mm/c time cut applied)

 $(\pm 3.8\%$ E acceptance applied)

These are just analytic results. Need to check with Mattia (who showed realistic simulations yesterday the \checkmark emittance seems to be sensitive to E acceptance)

• Longitudinal phase spaces

250 MeV/c

Peak time (±20 mm/c)

• Longitudinal phase spaces (at the end of capture linac)

All positrons

e+ accepted by DR E & time cut window

Positron linac

• Simulated **longitudinally** with an **analytic** formula:

 $\Delta E = (1.54 \,\text{GeV} - E_{\text{ref}}) \cdot \cos[\omega \cdot (t - t_{\text{ref}})]$

- Reference energy: ~185 MeV (a bit optimised)
- Reference time: scanned for max. e+ yield
- RF frequency: 2 GHz (same with capture linac)

• Longitudinal phase space:

See <u>*M. Schaer*</u>'s talk for more realistic simulations of e+ linac

Accepted e+ yield: 6.81

Only E cut: 84.4% e+ selected Only time cut: 85.4% e+ selected E & time cut: 83.0% e+ selected

Summary

- Simulation of capture system ("V0") presented
- Conventional W target is used
- HTS solenoid used as matching device
- New large aperture (R = 30 mm) **TW L-band** (2 GHz) used as capture linac
- Realistic 0.5 T NC solenoid field used, with layout optimised to improve the field (close to the constant field)
- **Positron linac** (200 MeV -- 1.54 GeV) longitudinally simulated using analytic formula (assuming the same 2 GHz L-band to be used)
- Effective e+ yield accepted by DR: 6.81

BACKUP

Positron linac

• Some comments to Mattia's talk yesterday:

Analytic (longitudinally) calculation

Full simulation by Mattia

- > A possible reason for the difference: I'm actually not doing exactly on-crest acceleration:
 - ✓ reference energy in the formula (not the reference particle energy): E_ref = 184.3 MeV (instead of exactly 200 MeV), which requires ~1.2% higher energy gain or gradient than using 200 MeV
 - ✓ Reference time (same with reference particle time): 16467 mm/c, which gives +9.6° offset in phase (assuming peak time at 16463 mm/c)

Positron linac

Still analytic results, but using different reference energies and times

 $\Delta E = (1.54 \,\text{GeV} - E_{\text{ref}}) \cdot \cos[\omega \cdot (t - t_{\text{ref}})]$

25/11/2022

FCC-ee Pre-injector Mini-workshop

(a bit optimised)

- RF phase optimisation (final iteration of scan)
 - Constant (instead of realistic) solenoid field of 0.5 T assumed

