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Introduction Models for QDETs Model 1 Model 2 Discussion

Classical objectivity from quantum mechanics
Consider a system S and its environment E. E has objective
knowledge of S only if many small fractions F ⊂ E are correlated
with S. [Zurek et al ]

[illustration by a 4 y.o.]
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The Quantum Darwinism (QD) plateau

A strong indication of the emergence of objectivity is the “QD
plateau” of the mutual information I(S, F ) between the system
and a fraction of the environment. When S is a single qubit, we
have:
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A perfect QD plateau (black) and some approximate ones (dashed green).
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Reminder: mutual information
The mutual information between A and B is defined as

I(A,B) := H(A) +H(B) −H(AB)

where H(X) := −Tr[ρX log2 ρX ] is the von Neumann entropy of
the reduced density matrix to X (in unit of bits).

• Without correlation (ρAB = ρA ⊗ ρB), I(A,B) = 0.
• If A and B are classically correlated bits, I(A,B) = 1.
• If A and B are maximally entangled qubits, I(A,B) = 2.
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Basic example
The GHZ state

|GHZ⟩ = (|0⟩S |00 . . . 0⟩E + |1⟩S |11 . . . 1⟩E) /
√

2

has a perfect Darwinism plateau:

I(S, F ⊂ E) =


0 f = 0
1 0 < f < 1
2 f = 1

(f = |F |/|E|)
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Opposite of objectivity: encoding

A random state in the Hilbert space HSE does not have a plateau.
Instead, it exhibits encoding:
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A small subsystem (f < 1/2) knows nothing of S! (This is a
consequence of the Page curve.)
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Question

Are QD and encoding “phases of information”, separated by some
sharp transition(s)?
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Since generic chaotic unitary dynamics leads to encoding, such a
transition would have a similar flavor to MBL and measurement-induced
transitions.
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In this talk

We consider two models with Quantum Darwinism-encoding
transitions (QDETs).

• Both are “mean-field” models, defined on an expanding tree
(equivalent to all-to-all interaction).

• Model 1 is a simple random Clifford model [2305.03694].
• Model 2 is deterministic and non-Clifford [to appear].
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Models for QDET: general setup
• Start with an entangled pair RA and N − 1 environment

qubits (“recruits”) in a factorized state.
• A and the recruits undergo a unitary evolution U depending

on a parameter p.
• Pick a subset F of the output qubits; f = |F |/N .

Figure of merit: I(F,R) as a function of f and p
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Models on a expanding tree

We now further specify the geometry:

R A

=
R A

= .

Here, a branching duplicates the in-going bit (in the Z basis)

= =
∑

s=±1
|s⟩|s⟩⟨s| ,

and is a one-site unitary depending on the parameter p.
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The QD limit (p = 0)

In both models, = I when p = 0. So

= (p = 0) ,

generates a GHZ state on R and the N output bits. Then

I(F,R) = 1 , (0 < |F | < N)

The information on R is perfectly broadcast.
When p > 0, the ’s will tend to “scramble ” the information, and
drive transitions towards encoding.
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Model 1: definition

• Each u = is a random one-site Clifford1 with probability p,
and identity otherwise.

• The fraction F is chosen randomly: every leaf ∈ F with
probability f .

1By definition, O 7→ u†Ou permutes randomly the Pauli operators.
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Model 1: exact phase diagram
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Two transitions and a mixed phase (stochastic mixture).
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Model 2: non-Clifford and deterministic
- The scramblers are deterministic and identical

u = = exp(iθY ) =
(

cos θ − sin θ
sin θ cos θ

)
, θ = pπ

4

up=0 = I, up=1 swaps Z and X.
- F is deterministic, with f = 1/2k (k > 1).

(Example of f = 1/4)
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Model 2: phase diagram
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• An encoding phase at p > pc = 1
2 (exact prediction).

• A mixed phase at pd < p < pc and a QD phase at p < pd for
some pd ≈ 0.33 (inset).
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Coarse-grained measure
What can we learn about R by measuring only the total spin
M =

∑
j∈F Zj? Or the total spin in the two half trees (ML,MR),

etc? Almost everything!
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All info

Useful for observing the transitions in practice.
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Summary
Unitary dynamics can exhibit both Quantum Darwinism and
encoding phases, separated by transitions. The phases are
characterized by how information dissipates. Questions for future
work include:

• Universal critical properties in finite dimensions (in an
expanding spacetime?).

• Relevance of statistical physics for foundational questions,
e.g., Wigner’s friend paradox.
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Quantities of interest
• Mutual information I(F,R).
• Conditional entropy: does F know about R? Or, can

measuring F (in a basis of your choice) disentangle R?

J(R;F ) = H(R) − min
basis

⟨H(R)⟩measure

In general J(R;F ) ≤ I(F,R). I(F,R) − J(R;F ) is called the
“quantum discord’.
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Defining the order parameter (Model 2)

Consider measuring Z’s on F . To each outcome m⃗ = (mj)j∈F is
associated an operator on A:

Qm⃗ = V †

∏
j∈F

1 +mjZj

2

V = pm⃗(I + um⃗Z + vm⃗X) .

where V |ψ⟩ = U |ψ⟩|0N−1⟩. pm⃗ is the probability of the outcome.
(um⃗, vm⃗) is the information on R revealed by the measure.
The order parameter is a distribution of (u, v) (in the unit disk)

P (u, v) =
∑
m⃗

pm⃗δ(um⃗ − u)δ(vm⃗ − v)
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Order parameter: properties

P (u, v) =
∑
m⃗

pm⃗δ(um⃗ − u)δ(vm⃗ − v)

“Distribution of knowledge of F on R” (no longer discrete).
• It determines both conditional entropy and mutual

information (f ≤ 1/2)

J(F ;R) = I(F,R) = 1 +
∫

(λ+ log2 λ+ + λ− log2 λ−)P (u, v)

where λ± = (1 ±
√
u2 + v2)/2 (no discord).

• It satisfies a backward recursion relation (harder to solve).

P ′(u, v) =
∫

(1+u1u2)δ(u− u1 + u2

1 + u1u2
)δ(v− v1v2

1 + u1u2
)P (u1, v1)P (u2, v2)
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Order parameter distribution

Plots of log10 P (u, v) (f = 1/8, N = 64):
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• In the QD phase, P (u, v) is concentrated on the unit circle.
• In the encoding phase, P (u, v) is concentrated on (0, 0).
• Nontrivial in the mixed phase.
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The order parameter (Model 1)

Consider a product of Pauli’s (Pauli string) P on F . U †PU then a
acting on A and N − 1 recruits. Contracting the recruits gives an
operator on A:

QA[P ] := ⟨0N−1|U †PU |0N−1⟩ ∈ {I,X, Y, Z, 0}

It is not hard to show that

s := {QA[P ] : P Pauli string on F} ∩ {I,X, Y, Z}

is a subgroup of {I,X, Y, Z} ≃ Z2
2, i.e. s ∈ {n, z,x,y,a} where

n = {I}, z = {I, Z},x = {I,X},y = {I, Y },a = {I, Z,X, Y }.
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The order parameter
The subgroup

s := {QA[P ] : P Pauli string on F} ∩ {I,X, Y, Z}

tells us what F knows about R (since AR form an EPR pair):
• s = n: F and R are uncorrelated, I(F,R) = 0.
• s = z: some operator on F is perfectly correlated with ZR:
I(F,R) = J(R;F ) = 1.

• s = a: we can distill from F a qubit that is maximally
entangled with R: I(F,R) = 2 (J = 1).

The order parameter is the probability distribution of s,

π := (πn, πz, πx, πy, πa)

where πn = Prob(s = n) etc.
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Calculation on a tree by example

Let’s compute QA[P ] where P =
∏

i∈F Zi in a fixed realization.
We contract with the recruit at each branching. The calculation is
a “backward recursion” (from top to bottom) and follows the table
at each branching:

z z Z

Z Z Z
Z

Y

X Y
Y

X

I Z X Y 0
I I Z 0 0 0
Z Z I 0 0 0
X 0 0 X Y 0
Y 0 0 Y X 0
0 0 0 0 0 0

.
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Calculation on a tree by example

We can compute s in a fixed realization by a similar backward
recursion (n is omitted in the figure):

n z x y a
n n z n n z
z z z z z z
x n z x y a
y n z y x a
a z z a a a

.

Note: a 1-site Clifford permutes z,x,y and leaves a and n
invariant.
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Recursion of order parameter

We can easily turn these rules to a recursion relation between π of
a t+ 1-generation tree and that of a t-generation one:

π(t+ 1) = M(π(t))

M : R5 → R5 is a nonlinear (quadratic) map that depends on p.
(See paper for explicit expression.) Initial condition depends on
f = |F |/N :

π(t = 0) = (1 − f, 0, 0, 0, f) .

At this point, solving the model amounts to analyzing the
asymptotic (t → ∞) behavior of the “flow” generated by M .
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Phase diagram
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π(t → ∞) is explicitly predicted everywhere (see paper).
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More plots with finite size numerics
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Flow and symmetries

(QD) (mixed) (encoding)

• Z2: swapping n ↔ a, or f → 1 − f . Explicitly broken by the
initial condition (f ̸= 1/2). Spontaneously broken in the
encoding and mixed phase, restored in the QD phase.

• S3: permuting z,x,y. Explicitly broken by the branching
isometry. Broken in the QD and mixed phase (πz > πx = πy),
restored in the encoding phase.



Model 2 details Model 1 details

Annealed mutual information (replica trick)

I(2)(F,R) := log2 Tr
[
ρ2

F R

]
− log2 Tr

[
ρ2

F

]
+ 1 ,
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Mixed phase: joint order parameter

Two fractions F ⊂ G, |F | = fN, |G| = gN . Joint distribution of
order parameter Πst:
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QDET vs measurement-induced phase transitions (MIPT)

QD

encoding

mixed

(a,b) QDET (Model 1). (c,d) MIPT: a sharp transition requires full access to
the environment (measurement ancillas).
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