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Classical objectivity from quantum mechanics

with S. [Zurek et al]

Consider a system S and its environment . F has objective
knowledge of S only if many small fractions /' C E are correlated

[illustration by a 4 y.0.]
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The Quantum Darwinism (QD) plateau

A strong indication of the emergence of objectivity is the "QD
plateau” of the mutual information I(S, F') between the system
and a fraction of the environment. When S is a single qubit, we

have:
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A perfect QD plateau (black) and some approximate ones (dashed green).



Introduction
00®0000

Reminder: mutual information
The mutual information between A and B is defined as

I(A,B) := H(A) + H(B) — H(AB)

where H(X) := —Tr[px logy px] is the von Neumann entropy of
the reduced density matrix to X (in unit of bits).

® Without correlation (pap = pa ® pB), I1(A,B) = 0.
e If A and B are classically correlated bits, I(A, B) = 1.
® If A and B are maximally entangled qubits, I(A, B) = 2.
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Basic example
The GHZ state

IGHZ) = (]0)5|00...0) g + [1)5|11... 1)) /V2

has a perfect Darwinism plateau:
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Opposite of objectivity: encoding

A random state in the Hilbert space Hgr does not have a plateau.
Instead, it exhibits encoding:
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A small subsystem (f < 1/2) knows nothing of S! (This is a
consequence of the Page curve.)
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Question

Are QD and encoding “phases of information”, separated by some
sharp transition(s)?
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Since generic chaotic unitary dynamics leads to encoding, such a
transition would have a similar flavor to MBL and measurement-induced
transitions.



Introduction
000000@

In this talk

We consider two models with Quantum Darwinism-encoding
transitions (QDETs).

® Both are “mean-field” models, defined on an expanding tree
(equivalent to all-to-all interaction).

® Model 1 is a simple random Clifford model [2305.03694].

® Model 2 is deterministic and non-Clifford [to appear].
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Models for QDET: general setup

e Start with an entangled pair RA and N — 1 environment
qubits (“recruits”) in a factorized state.

® A and the recruits undergo a unitary evolution U depending
on a parameter p.

® Pick a subset F' of the output qubits; f = |F|/N.

Figure of merit: I(F, R) as a function of f and p
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Models on a expanding tree

We now further specify the geometry:
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Here, a branching duplicates the in-going bit (in the Z basis)

N =% = 3 s)s)sl,

10) s==1

and e is a one-site unitary depending on the parameter p.
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The QD limit (p = 0)

In both models, @ = I when p = 0. So

A 4 A
generates a GHZ state on R and the N output bits. Then
I(F,R)=1,(0<|F|<N)

The information on R is perfectly broadcast.
When p > 0, the o's will tend to “scramble " the information, and
drive transitions towards encoding.
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Model 1: definition

® Each u = e is a random one-site Clifford! with probability p,
and identity otherwise.

® The fraction F' is chosen randomly: every leaf € I with
probability f.

A

7
W random
Clifford

Pl) =p

1By definition, O — u'Ou permutes randomly the Pauli operators.
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Model 1: exact phase diagram
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Two transitions and a mixed phase (stochastic mixture).
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Model 2: non-Clifford and deterministic

- The scramblers are deterministic and identical

sin@ cosf 4

w=o = exp(ifY) = <cos9 —51n6> 7 pT

Up—o = I, up—1 swaps Z and X.
- Fis deterministic, with f = 1/2% (k > 1).

F
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(Example of f =1/4)
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Model 2: phase diagram

1.0

® An encoding phase at p > p. = % (exact prediction).

® A mixed phase at pg < p < p. and a QD phase at p < py for
some pg ~ 0.33 (inset).
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Coarse-grained measure

What can we learn about R by measuring only the total spin
M =37 cr Z;? Or the total spin in the two half trees (M, MRg),
etc? Almost everything!
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Useful for observing the transitions in practice.
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Summary
Unitary dynamics can exhibit both Quantum Darwinism and
encoding phases, separated by transitions. The phases are
characterized by how information dissipates. Questions for future
work include:
e Universal critical properties in finite dimensions (in an
expanding spacetime?).
® Relevance of statistical physics for foundational questions,
e.g., Wigner's friend paradox.
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Quantities of interest

® Mutual information I(F, R).
e Conditional entropy: does F' know about R? Or, can
measuring F' (in a basis of your choice) disentangle R?

J(R; F) = H(R) — min (H(R))

measure

In general J(R; F) < I(F,R). I(F,R) — J(R; F) is called the
“quantum discord’.
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Defining the order parameter (Model 2)

Consider measuring Z's on F. To each outcome 11 = (m;)jcF is
associated an operator on A:

H 1+77’Lij

5 V=pall+upZ+v3X).

Qi =V1

Jjer

where V|¢) = U|)|0V 1), pyy is the probability of the outcome.
(s, vy7) is the information on R revealed by the measure.
The order parameter is a distribution of (u, v) (in the unit disk)

P(u,v) = meé(um —u)d(vz — )
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Order parameter: properties

P(u,v) = meé(um —u)d(vz —v)

“Distribution of knowledge of F' on R" (no longer discrete).

® |t determines both conditional entropy and mutual
information (f < 1/2)

J(F;R)=I(F,R)=1+ /(A+ logy A + A_logy A_) P(u,v)

where Ay = (1 £ vu? + v?)/2 (no discord).
e |t satisfies a backward recursion relation (harder to solve).

u1 + u2 » V1V2
14+ uius 1+ ujus

P'(u,v) = /(1+u1u2)5(u )P (u1,v1)P(uz2,v2)
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Order parameter distribution

Plots of log,, P(u,v) (f =1/8, N = 64):

® In the QD phase, P(u,v) is concentrated on the unit circle.
® In the encoding phase, P(u,v) is concentrated on (0,0).

® Nontrivial in the mixed phase.
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The order parameter (Model 1)

Consider a product of Pauli's (Pauli string) P on F. UTPU then a
acting on A and N — 1 recruits. Contracting the recruits gives an
operator on A:

Qu[P] = ON Y UTPUON Y e {I,X,Y, Z,0}
It is not hard to show that
s := {Qa[P] : P Pauli stringon F}N{I[,X,Y, Z}
is a subgroup of {I,X,Y,Z} ~ 72, i.e. s € {n,z,x,y,a} where

n={l},z={,Z},x={[,X},y={I,Y},a={I,Z,X,Y}.
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The order parameter
The subgroup
s:={Qa[P]: P Pauli stringon F} N{I,X,Y, Z}

tells us what F' knows about R (since AR form an EPR pair):
® s=n: F and R are uncorrelated, I(F, R) = 0.

® s = z: some operator on F' is perfectly correlated with Zp:
I(F,R)=J(R;F) = 1.
® s = a: we can distill from F' a qubit that is maximally
entangled with R: I(F,R) =2 (J = 1).
The order parameter is the probability distribution of s,

™= (ﬂ-n? Tz, Tx; 7Ty, 7Ta)

where 1, = Prob(s = n) etc.
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Calculation on a tree by example

Let's compute Q4[P] where P = [[;cr Z; in a fixed realization.
We contract with the recruit at each branching. The calculation is
a “backward recursion” (from top to bottom) and follows the table
at each branching:

/F\ I Z X Y 0
Z z [T Z 0 0 0
Z|zZ 1 0 0 0

> X|0 0 X Y 0

R Y0 0 Y X 0
X 0/0 0 0 00
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Calculation on a tree by example

We can compute s in a fixed realization by a similar backward
recursion (n is omitted in the figure):

a/ g\

N N N N N[N

O < X N B

N B B N BB
< KN BN
M X < N B
O PO N NP

Note: a 1-site Clifford permutes z,x,y and leaves a and n
invariant.
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Recursion of order parameter

We can easily turn these rules to a recursion relation between 7 of
a t + 1-generation tree and that of a t-generation one:

7t +1) = M(x(t))

M :R> — RS is a nonlinear (quadratic) map that depends on p.
(See paper for explicit expression.) Initial condition depends on
f=IF|/N:

Tr(t:O) = (1 _f7070707f)'

At this point, solving the model amounts to analyzing the
asymptotic (t — o) behavior of the “flow” generated by M.
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Phase diagram
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More plots with finite size numerics
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Flow and symmetries

p <% (QD) 3 <p< 2 (mixed) p >3 (encoding)

AN N AN

A

Ko <1 f>1 ™™ Hm, f<i f>L7F\
® 75 swapping n <> a, or f — 1 — f. Explicitly broken by the

initial condition (f # 1/2). Spontaneously broken in the

encoding and mixed phase, restored in the QD phase.

e Ss: permuting z,x,y. Explicitly broken by the branching
isometry. Broken in the QD and mixed phase (7, > mx = 7y),
restored in the encoding phase.
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Annealed mutual information (replica trick)

I®(F, R) = log, Tr [@} —log, Tr [@] 11,
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Mixed phase: joint order parameter

Two fractions F' C G, |F| = fN,|G| = gN . Joint distribution of
order parameter Ilg¢:

t t t
n z X y a n z X y a n z x y a
0.4 44].. 0.4 0.4
n n n
z 03 2 03 2 0.3
S x 02 Sx 02 Sx 0.2
Y 01 Y 01 Y 0.1
a a a
0.0 0.0 0.0

f=01,g=04 f=03,9=07 f=06,g=038
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QDET vs measurement-induced phase transitions (MIPT)

(a) (b)
P({M} knows of R)

.. # M 1
i i L FmiAa <2

7 mixed
random

Clifford encoding P
PO =p 0 3 3

(©) (d) ot
t 1 —P({IM} knows of R)

___#m
f=sd+m

re=0.13...
(a,b) QDET (Model 1). (c,d) MIPT: a sharp transition requires full access to

the environment (measurement ancillas).
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