About me

- Education: Faculty of Physics, department of General and Theoretical Physics, Samara State University (Samara, Russia): 2007 – 2012
- PhD in SSU: "Hard processes in the Parton Reggeization Approach", defended in BLTP (Dubna) in 2016. Thesis adviser: Prof. Vladimir A. Saleev
- ► Postdocs:
 - 1. **2018 2020**: A. von Humboldt fellow in Uni. Hamburg (Germany) in the group of Prof. Bernd A. Kniehl
 - 2. **2022**: Postdoctoral position in the NCBJ (National Center for Nuclear Research) in Warsaw, Poland in the group of *Jakub Wagner*
 - 3. **2023 2024**: Marie Skłodowska-Curie fellow in IJClab in the group of Jean-Philippe Lansberg.

My previous activity

- ▶ During the PhD thesis: Development of "Parton Reggeization Approach (PRA)" at LO in α_s . PRA=(GI amplitudes with off-shell "Reggeized" incoming partons from Lipatov's EFT) + (KMRW formula for the unintegrated PDFs). Processes:
 - Quarkonium hadro-production
 - ▶ Dijet production, $\Delta \phi$ de-correlations
 - ▶ Photon+jet photoproduction at HERA, including $\gamma + R(\mathbf{q}_T) \rightarrow \gamma + g$ one-loop "quark-box" subprocess
 - ▶ Diphoton hadroproduction at the LHC in the incomplete-NLO approximation of PRA and including $R(\mathbf{q}_{T1}) + R(\mathbf{q}_{T2}) \rightarrow \gamma + \gamma$ one-loop "quark-box" subprocess
- During my postdoc in Hamburg:
 - Double J/ψ hadroproduction in the LO of PRA including BFKL resummation effects at $\Delta Y \gg 1$, together with *Zhi-Guo He*
 - One-loop corrections to the scattering vertices with two scales in Lipatov's EFT: $\gamma^*(Q^2) + Q(\mathbf{q}_T) \to q$, $H^*(Q^2) + R(\mathbf{q}_T) \to g$
 - ▶ Complete NLO computation for Higgs-DIS $(H^*(Q^2) + p \rightarrow X)$ in PRA and an attempt to resolve its perturbative instability
- During my postdoc in Warsaw:
 - Matching calculation between LL HEF and NLO of CF for $\sigma(\sqrt{s_{pp}})$ of $p + p \rightarrow \eta_c + X$
 - ▶ Matching calculation between LL HEF and NLO of CF for $\sigma(\sqrt{s_{\gamma p}})$ of $\gamma + p \rightarrow J/\psi + X$
 - Continuation of development of HEF at NLL
 - ▶ Full NLO CF computation for $\gamma + p \rightarrow J/\psi + X$ is reproduced using Catani-Seymour dipole subtraction method

Perturbative instability of quarkonium total cross sections Inclusive η_c -hadroproduction (CSM):

High-Energy Factorization

The LLA $(\sum \alpha_s^n \ln^{n-1}(1+\eta))$ formalism is due to [Collins, Ellis, 91'; Catani,

Ciafaloni, Hautmann, 91',94']

Physical picture in the **LLA** for photoproduction:

$$\hat{\sigma}_{ ext{HEF}}(\eta) \propto \int_{0}^{1+\eta} \frac{dy}{y} \int_{0}^{\infty} d\mathbf{q}_{T1}^2 \mathcal{C}\left(rac{y}{1+\eta}, \mathbf{q}_{T1}^2, \mu_F, \mu_R
ight)
onumber \ imes \mathcal{H}(y, \mathbf{q}_{T1}^2) + ext{NLLA} + O(1/\eta).$$

- *H* ► The resummation factor *C* is the solution of the LL BFKL equation with collinear divergences subtracted,
 - ► The coefficient function *H* can be calculated at LO and NLO (needed for NLLA),
 - For consistency with fixed-order **DGLAP** evolution the anomalous dimension γ_{gg} in C should be truncated:

$$\gamma_{gg}(N,\alpha_s) = \underbrace{\frac{\hat{\alpha}_s}{N}}_{\text{DLA}} + 2\zeta(3)\frac{\hat{\alpha}_s^4}{N^4} + 2\zeta(5)\frac{\hat{\alpha}_s^6}{N^6} + \dots$$

Expansion of $\hat{\sigma}_{\text{HEF}}(\eta)$ in α_s correctly reproduces $\hat{\sigma}_{\text{NLO}}(\eta \gg 1)$ and predicts the $\hat{\sigma}_{\text{NNLO}}(\eta \gg 1)$.

Matching with NLO

The HEF is valid in the **leading-power** in M^2/\hat{s} , so for $\hat{s} \sim M^2$ we match it with NLO CF by the *Inverse-Error Weighting Method* [Echevarria, et.al., 2018].

5/5