



## Ab initio description of nuclear-breakup and decay reactions in light nuclei

#### Osama YAGHI supervisor: Guillaume HUPIN

PhD financed by "fellowship de deux infinis" IJCLab, CNRS/IN2P3 & Université Paris-Saclay, Orsay, France



UNIVERSITE PARIS-SACLAY



Laboratoire de Physique des 2 Infinis

presentation



#### **MY Journey**





- I am from Syria.
- Academic Track:
  - Bachelor's degree: Applied physics.
  - Master's degree: Erasmus Mundus Nuclear Physics program (NUPHYS).
- Past research:
  - Internship: modeling of atmospheric muon flux for the KM3NET experiment.
  - Thesis: radiative capture reaction rates of interest for the rp-process nucleosynthesis, in a three body module.







We want to develop a unique tool applicable to both nuclear structure and reactions, to enhance our understanding of the strong force at low energy.

Enabling calculation of complex charged nuclear decay.

**Motivations** 



Enabling us to study nuclear breakup reactions.



Universite Université

## Method

- Configuration Interaction (CI):
  - ➤ Eigen-value problem → Matrix diagonalization
- No Core Shell Model (NCSM):
  - ➢ HO wavefunctions.
  - Single particle basis.
  - Jacobi basis.
- NCSM with continuum (NCSMC):
  - ➢ For reaction calculation.





### **Complex Scaling**



• Resonances are associated with complex poles of the S matrix.

- The wave solution associated with resonances diverges.
- Complex scaling makes these solutions square integrable.

$$\phi(r \to \infty) = A(k)e^{-ikr} + B(k)e^{+ikr}$$
  

$$\simeq e^{-ikr} + S(k)e^{+ikr}$$

$$\phi_n^{\text{res}}(r \to \infty) = B(k_n) e^{+i|k_n|e^{-ie_{\alpha}r}}$$
$$= B(k_n) e^{ia_n r} e^{+b_n r} \to \infty$$

$$(\hat{S}\hat{H}\hat{S}^{-1})(\hat{S}\phi_n^{\mathrm{res}}) = (\varepsilon_n - (i/2)\Gamma_n)(\hat{S}\phi_n^{\mathrm{res}})$$

$$\hat{S}\phi_n^{\mathrm{res}} \to 0 \text{ as } r \to \infty$$

$$\hat{S}f(r) = f(re^{i\theta})$$



## More about myself



My Hobbies:

- Table tennis.
- Swimming and jogging.
- Playing PC games.
- Chess.

#### My Hometown:





#### Food











# Merci pour votre attention

01/02/2023

7