

Higgs Property Measurements

Introduction

- Measurements of Higgs boson properties are one of our most promising windows into new physics
 - mass
 - width
 - CP
- Property measurements require clean signatures
 - o H→ZZ→4ℓ

background low or precisely modelled

- ∘ H→γγ
- ttH associated production decaying to bb
- ∨BF H→WW→evµv
- Sensitivity can be greatly enhanced by combining results

g 00000

g 000000

Chapter 1: Mass

Measuring the Higgs mass with $H \rightarrow 4\ell$

U technische universität dortmund

doi.org/10.1016/j.physletb.2023.137880

Systematic Uncertainty

Muon momentum scale

Electron energy scale

Contribution [MeV]

 ± 28

 ± 19

Measuring the Higgs mass with $H \rightarrow \gamma \gamma$

- event selection based on cross-section measurement [2207.00348]
 - refined energy photon calibration \rightarrow leading uncertainty!
 - reduction of E_{τ} -dependent systematic

Source	Impact [MeV]
Photon energy scale	83
$Z \to e^+ e^-$ calibration	59
$E_{\rm T}$ -dependent electron energy scale	44
$e^{\pm} \rightarrow \gamma \text{ extrapolation}$	30
Conversion modelling	24
Signal–background interference	26
Resolution	15
Background model	14
Selection of the diphoton production vertex	5
Signal model	1
Total	90

 Improved event categorization for mass measurement, precision increased by 17%

technische universität

dortmund

e/y calib: CERN-EP-2023-128

Category	$\sigma_{68}^{\gamma\gamma} [GeV]$
U, Central-barrel, high $p_{Tt}^{\gamma\gamma}$	1.10
U, Central-barrel, medium $p_{Tt}^{\gamma\gamma}$	1.38
U, Central-barrel, low $p_{Tt}^{\gamma\gamma}$	1.47
U, Outer-barrel, high $p_{Tt}^{\gamma\gamma}$	1.24
U, Outer-barrel, medium $p_{Tt}^{\gamma\gamma}$	1.52
U, Outer-barrel, low $p_{Tt}^{\gamma\gamma}$	1.75
U, Endcap	1.90
C, Central-barrel, high $p_{Tt}^{\gamma\gamma}$	1.17
C, Central-barrel, medium $p_{Tt}^{\gamma\gamma}$	1.51
C, Central-barrel, low $p_{Tt}^{\gamma\gamma}$	1.68
C, Outer-barrel, high $p_{Tt}^{\gamma\gamma}$	1.44
C, Outer-barrel, medium $p_{Tt}^{\gamma\gamma}$	1.82
C, Outer-barrel, low $p_{Tt}^{\gamma\gamma}$	2.10
C, Endcap	2.23
Inclusive	1.82

new

5

Measuring the Higgs mass with $H \rightarrow \gamma \gamma$

- signal modelled using double-sided CrystalBall shape fixed from simulation & parametric in m
- background model chosen empirically between exponential, power law, and exponentiated 2nd-order polynomial through $\chi^2 > 1\%$
 - shape parameters fit directly to data

better than ATLAS+CMS Run 1 combination!

arXiv:2308.07216

Combined mass measurement

Source	Systematic uncertainty on m_H [MeV]
$e/\gamma E_{\rm T}$ -independent $Z \rightarrow ee$ calibration	44 ≅as in Run 1
$e/\gamma E_{\rm T}$ -dependent electron energy scale	28 ≅30% better
$H \rightarrow \gamma \gamma$ interference bias	17
e/γ photon lateral shower shape	16 ≅3x better
e/γ photon conversion reconstruction	15 ≅3x better
e/γ energy resolution	11 ≅2x better
$H \rightarrow \gamma \gamma$ background modelling	10 ≅4x better
Muon momentum scale	8 ≅20% better
All other systematic uncertainties	7 > 5x better

technische universität dortmund

arXiv:2308.04775

Chapter 2: Width

cross-section for on-shell Higgs boson production scales with width Γ_H
 the same is not true for off-shell

 $\sigma_{gg \to H \to ZZ}^{\text{on-shell}} \sim \frac{g_{ggH}^2 g_{HZZ}^2}{m_H \Gamma_H} \quad \text{VS.} \quad \sigma_{gg \to H \to ZZ}^{\text{off-shell}} \sim \frac{g_{ggH}^2 g_{HZZ}^2}{m_{ZZ}^2}$

- measure on- and off-shell signal to infer width
- decompose cross-section in off-shell SR into signal and background

$$\sigma = \sigma_{\rm bkg} + \mu_{\rm off}\sigma_{\rm sig} + \sqrt{\mu_{\rm off}\sigma_{\rm int}}$$

technische universität

ortmund

in practice, interference is negative contribution on total $gg \rightarrow ZZ$

- combined with on-shell for measurement of µ_{on} and µ_{off}
 - use $H \rightarrow 4l$ and $H \rightarrow 2l2v$ events for enhanced sensitivity

tortmund technische universität

arxiv:1808.01191

- Direct measurement of off-shell-higgs
 - 95% CL upper limit at μ = 2.4 (exp. 2.6)
 - significance observed 3.3 (exp. 2.2)
- Combination with on-shell analysis
 - correlate experimental uncertainties
 - decorrelate theory uncertainties between on- and off-shell
- measured $\Gamma_{\rm H}$ = 4.5 ^{+3.3} _{-2.5} MeV
 - 95% C.L. interval 0.5
 expected 0.1
 Γ_H<10.9 MeV,
 - \sim 1/2 σ intervals determined with toys
 - asymptotic approximation not valid
- all findings compatible with SM

arxiv:1808.01191

Chapter 3: CP

Previous ATLAS results on Higgs CP from LHC Run 2

- Plethora of CP measurements already available
 - top-yukawa coupling: $ttH \rightarrow yy$, ggF H $\rightarrow WW$
 - HW coupling: VBF $H \rightarrow \gamma \gamma$
 - HT coupling: H→TT
- new highlights:

μË

- VBF $H \rightarrow WW$ (EFT)
- $H \rightarrow ZZ \rightarrow 4\ell$ (CP)

 $\kappa_{gg} \cos(\alpha)$

ATLAS

√s=13 TeV, 36,1 fb

 $H \rightarrow WW^* \rightarrow ev\mu v$

¹⁰ LL NL

 \triangleleft

ς I

13

SM prediction

★ best fit

- 68% CL

VBF H→WW

- leptonic W decays (trigger), select 1 DF OS pair
- 2 BDTs to enhance s/b: select VBF, reject top+VV

do^{fid}/d∆φ_{jj} [fb/rad]

^ored. / Data

- exploit VBF topology using m_{ii} and Δy_{ii}
- bin SRs^{*}in both classifier outputs
- independent ggF CR using third BDT
- profile LH unfolding to 13 observables
 - signed $\Delta \phi_{ii}$ sensitive to CP
- measure 3 CP-odd Wilson coefficients
 - no deviation found

new

2 3 Parameter value

14

technische universität dortmund

arXiv:2304.03053

Η

Exp. lin.+guad

H→ZZ→4ℓ CP measurement

• Optimal observable based on matrix elements

$$OO = \frac{2\Re \left(\mathcal{M}_{SM}^{*}\mathcal{M}_{BSM}\right)}{\left|\mathcal{M}_{SM}\right|^{2}}$$

- EFT-approach, targeting various CP-odd operators
 - only interference sensitive to CP

technische universität

dortmund

one OO constructed for each operator

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{c_i}{\Lambda^2} O_i^{(6)}$$

Operator	Structure	Coupling
	Warsaw Basis	
$O_{\Phi ilde W}$	$\Phi^{\dagger}\Phi ilde{W}^{I}_{\mu u}W^{\mu u I}$	$c_{H\widetilde{W}}$
$O_{\Phi \tilde{W} B}$	$\Phi^{\dagger} au^{I} \Phi ilde{W}^{I}_{\mu u} B^{\mu u}$	$C_{H\widetilde{W}B}$
$O_{\Phi ilde{B}}$	$\Phi^{\dagger}\Phi ilde{B}_{\mu u}B^{\mu u}$	$C_{H\widetilde{B}}$
	Higgs Basis	
$O_{hZ\tilde{Z}}$	$h Z_{\mu u} ilde{Z}^{\mu u}$	\widetilde{c}_{zz}
$O_{hZ ilde{A}}$	$h Z_{\mu u} \tilde{A}^{\mu u}$	$\widetilde{c}_{z\gamma}$
$O_{hA ilde{A}}$	$hA_{\mu u} ilde{A}^{\mu u}$	$\widetilde{c}_{\gamma\gamma}$

H→ZZ→4ℓ CP measurement

- Main background ZZ* (~30%)
 - normalized from data outside m₄, window
- ≥2 jet: 3-class NN to distinguish VBF, VH and ggF
 - 2 regions high in ggF, 2 high in VBF
- Searching for CP violation in
 - production only using SR1-4
 - decay only using inclusive SR
 - production + decay using SR1-4 + depleted

new

technische universität dortmund

arxiv:2304.09612

$H \rightarrow ZZ \rightarrow 4\ell CP$

- results from combined fit
 compatible with SM
- competitive with H→γγ & H→ττ, STXS, CMS

all measured CP-odd coefficients

technische universität dortmund

17

arxiv:2304.09612

t(t)H→bb CP measurement

- multi-jet with b-tags
- many MVAs at work
 - NN: boosted Higgs
 - BDT: associate jets
 - Higgs vs. top
 - BDT: sig/bkg classes
 - SR vs. CR
- regions w. high/low true b-jet fractions through tight/loose tagging
- define CP-sensitive observable per region
- infer $\mathbf{v} \mathbf{p}_{\mathsf{T}}$ from $\mathsf{E}_{\mathsf{T}}^{\mathsf{miss}}$

18

arxiv:2303.05974

$t(t)H \rightarrow bb CP$ measurement

• boosted NN score, $\Delta \eta_{\ell \ell}$ as well as b_2 and b_4 constructed as CP-sensitive observables

$$b_2 = \frac{(\vec{p}_1 \times \hat{z}) \cdot (\vec{p}_2 \times \hat{z})}{|\vec{p}_1||\vec{p}_2|} \quad b_4 = \frac{(\vec{p}_1 \cdot \hat{z})(\vec{p}_2 \cdot \hat{z})}{|\vec{p}_1||\vec{p}_2|}$$

new

tu technische universität dortmund

arxiv:2303.05974

$t(t)H \rightarrow bb CP$ measurement

- extracted via combined fit
 - coupling strength $\kappa_t = 0.84^{+0.3}$ mixing angle $\alpha = 11^{\circ+52^{\circ}}_{-73^{\circ}}$ 0 -0.46
 - 0
- compatible with SM (κ_t =1, α =0)
 - compatibility with cross-section 0 measurement tested within 1σ

Conclusions

- ATLAS has produced a wide range of property measurements in LHC Run 2
 - mass: $H \rightarrow ZZ \rightarrow 4\ell$ and $H \rightarrow \gamma\gamma$
 - width: extension of $H \rightarrow ZZ$ to 2 $\ell 2v$ final states & into off-shell regime
 - CP: wide variety of channels, new: $H \rightarrow ZZ \rightarrow 4\ell$, t(t)t $H \rightarrow bb$, VBF $H \rightarrow WW$
- So far, no deviations from SM expectations observed
 - is it just a "boring old Higgs" after all?
 - o don't despair, many other interesting talks ahead
- Many great opportunities still untapped
 - off-shell measurements in other channels (e.g. $H \rightarrow WW$, last done in Run 1)
 - combined CP interpretation, maybe with our colleagues from CMS
 - powerful new analyses including Run 3 data

Backup

Why measure the mass?

- Higgs boson mass is free parameter of the theory
 - only unitarity constraints based on the WW cross-section
- several of the open questions of particle physics are intimately linked to the Higgs boson mass
 - quantum stability of the vacuum
 - hierarchy / fine tuning problem: how large are radiative corrections?

art 2012

Production cross-sections and decay branching ratios depend on the mass

Where we are coming from

- Extensive efforts during LHC Run 1 from both ATLAS and CMS
- Most precise measurements of the Higgs boson mass up to that point

technische universität dortmund

- allow for separate signal strengths for EW and ggF
- assume equality for width measurement

measure	ment			
Process	ggF SR	Mixed SR	EW SR	
$gg \rightarrow (H^* \rightarrow)ZZ$	341 ± 117	42.5 ± 14.9	11.8 ± 4.3	
$gg \to H^* \to ZZ$	32.6 ± 9.07	3.68 ± 1.03	1.58 ± 0.47	
$gg \rightarrow ZZ$	345 ± 119	43.0 ± 15.2	11.9 ± 4.4	
$qq \rightarrow (H^* \rightarrow) ZZ + 2j$	23.2 ± 1.0	2.03 ± 0.16	9.89 ± 0.96	
$qq \rightarrow ZZ$	1878 ± 151	135 ± 23	22.0 ± 8.3	
Other backgrounds	50.6 ± 2.5	1.79 ± 0.16	1.65 ± 0.16	
Total expected (SM)	2293 ± 209	181 ± 29	45.3 ± 10.0	
Observed	2327	178	50	

μ^{EW} off-shell

