

Higgs boson coupling measurements

Tina Ojeda, on behalf of the ATLAS collaboration

> Higgs Hunting September 11th, 2023

Introduction

- LHC's third run recently started, most analyses with Run 2 data closing
- Full Run-2 dataset contains about 30 times more Higgs Bosons than its Run-1 counterpart
 - Precise measurement of Higgs production cross-sections and decay rates
 - Observation of all main LHC production processes: ggF, VBF, WH, ZH, $t\bar{t}H + tH$
 - Increased precision on $H \to \gamma \gamma$, ZZ, $W^{\pm}W^{\mp}$, $\tau^{+}\tau^{-}$, observation of $H \to b\bar{b}$, $\geq 2\sigma$ on $H \to \mu\mu$, > 3σ on $H \to Z\gamma$
 - Interpretation of results in terms of couplings to SM particles (*k* framework) including self-coupling
 - Study of kinematic properties of Higgs production processes (STXS framework) differential cross-sections not included today
- In most cases results improved by much more than expected from increase in luminosity between Run
 1 and Run 2!
 - Improvements in all areas: objects, analysis design, machine learning, theory predictions, ...
- Most results can be found in <u>Nature 607, 52-59 (2022)</u>, unless specified
 - Note: auxiliary plots and more details (NLL scans, correlation matrices, exact values, etc.) made available on <u>HEPData</u>

Input analyses/method

Almost all measurements updated with full	$H \rightarrow \gamma \gamma$	ggF, VBF, WH , ZH , $t\bar{t}H$, tH	139
	$H \rightarrow ZZ$	ggF, VBF, $WH + ZH$, $t\bar{t}H + tH$	139
Run-2 dataset		$t\bar{t}H + tH$ (multilepton)	36.
A few measurements excluded from some	$H \rightarrow WW$	ggF, VBF	139
		WH, ZH	36.
results due to their limited sensitivity		$t\bar{t}H + tH$ (multilepton)	36.
• $H \rightarrow b\bar{b}$ boosted only in STXS	$H \rightarrow Z\gamma$	inclusive	139
• $V(H \rightarrow W^{\pm}W^{\mp})$ $t\bar{t}(H \rightarrow multilepton)$	$H \rightarrow b \bar{b}$	WH, ZH	139
$(11 \times 10^{\circ}), tt(11 \times 11000000),$		VBF	126
$H \rightarrow \mu\mu$, $Z\gamma$ in all but STXS		$t\overline{t}H + tH$	139
		inclusive	139
• $H \rightarrow \text{inv}$ only in κ with $B_{\text{inv.}}, B_{\text{u.}}$	$H \rightarrow \tau \tau$	ggF, VBF, $WH + ZH$, $t\bar{t}H + tH$	139
• $H \rightarrow c\bar{c}$ only in κ_c measurement		$t\bar{t}H + tH$ (multilepton)	36.
	$H \rightarrow \mu \mu$	$ggF + t\bar{t}H + tH$, VBF + WH + ZH	139
	$H \rightarrow c \bar{c}$	WH + ZH	139
	$H \rightarrow \text{invisible}$	VBF	139
			100

Decay mode

Targeted production processes

 \mathcal{L} [fb⁻¹]

139 36.1

ZH 139

36.1

36.1

36.1

Combination of results at likelihood level

- Systematic uncertainties correlated where possible
- Overlap between analysis regions is either negligible or has been shown to have a very limited impact on the results

Higgs signal strength

- Considering all production and decay modes together:
 - $\mu = \frac{\sigma_{H, \text{ obs}}}{\sigma_{H, \text{ SM}}} = 1.05 \pm 0.06 = 1.05 \pm 0.03 \text{ (stat.)} \pm 0.03 \text{ (exp.)} \pm 0.04 \text{ (sig.th.)} \pm 0.02 \text{ (bkg.th.)}$
 - Experimental and theory uncertainties reduced by a factor of ≈ 2 wrt Run 1 result
 - Precision: 6%

Production cross sections

Production cross sections:

Branching ratios are assumed to be SM-like when combining processes/measurements

- Updated measurements:
 - ggF now at precision of 7%
 - VBF now at precision of 12%
- New milestones in Run 2:
 - WH, ZH, ttH + tH now observed with 5.8σ (5.1σ), 5.0σ (5.5σ),
 6.4σ (6.6σ)
- Rare production mode:
 - Upper limit on *tH* of 15(7) × SM at 95% CL
 - Strong correlation with $t\bar{t}H$

measurement

STXS framework

- Split phase space of Higgs production processes into 36 kinematic regions
 - Defined by kinematics of Higgs Boson and of associated jets, W, Z bosons where relevant
 - Branching ratios and kinematics of Higgs Boson decays are assumed to be SM-like
 - All values available on HEPData

Decay branching ratios

Branching ratios:

- Production cross sections are assumed to be SM-like when combining processes/measurements
- Updated measurements:
 - $H \rightarrow \gamma \gamma, ZZ, W^{\pm}W^{\mp}, \tau^{+}\tau^{-}$ now all at precisions between 10% and 12%
- New milestones in Run 2:
 - $H \rightarrow b\bar{b}$ now observed with 7.0 σ (7.7 σ)
- Rare decay modes:
 - $H \rightarrow \mu\mu$, $Z\gamma$ with significances of 2.0 σ (1.7 σ), 2.3 σ (1.1 σ)

$H \rightarrow Z\gamma$

ATLAS-CONF-2023-025; CMS-PAS-HIG-23-002

- New (preliminary) results from a combination of ATLAS and CMS
 - Signal strength $\mu_{H \to Z\gamma} = \frac{\sigma_{obs}}{\sigma_{SM}} (H \to Z\gamma) = 2.2 \pm 0.7$, or branching ratio of $(3.4 \pm 1.1) \times 10^{-3}$
 - Observed significance of 3.4σ
 - SM compatibility (*p*-value) 6%

- Simultaneous fit of many individual measurements
 - Cross section and branching ratio measurements re-parametrised
 - κ modifiers: affect strength Higgs Boson couplings (not structure), also included in Higgs width calculation
 - Set $\kappa_s = \kappa_b$, SM values assumed for firstgeneration fermions
 - Different setups with varying levels of model assumptions:
 - κ_V VS κ_F
 - $\kappa_W, \kappa_Z, \kappa_t, \kappa_b, \kappa_c, \kappa_\tau, \kappa_\mu$
 - $\kappa_W, \kappa_Z, \kappa_t, \kappa_b, \kappa_c, \kappa_\tau, \kappa_\mu, \kappa_g, \kappa_\gamma, \kappa_{Z\gamma}$ (+ with $B_{\text{inv.}}, B_{\text{u.}}$)

Production	Loops	Interference	Effective	Resolved modifier
(ggF)	.(t_h		$1.04 v^2 + 0.002 v^2 - 0.04 v_1 v_1$
$\sigma(\text{ygr})$	v	1-0	∧ _g	$1.04 \kappa_t + 0.002 \kappa_b = 0.04 \kappa_t \kappa_b$
$O(\mathbf{v}\mathbf{D}\mathbf{I})$	-	-	-	$0.73 k_W + 0.27 k_Z$
$o(qq/qg \rightarrow ZH)$	-	-	-	\mathbf{k}_{Z}
$\sigma(gg \rightarrow ZH)$	\checkmark	t–Z	K(ggZH)	$2.46 \kappa_Z^2 + 0.46 \kappa_t^2 - 1.90 \kappa_Z \kappa_t$
$\sigma(WH)$	-	-	-	κ_W^2
$\sigma(t\bar{t}H)$	-	-	-	κ_t^2
$\sigma(tHW)$	-	t-W	-	$2.91 \kappa_t^2 + 2.31 \kappa_W^2 - 4.22 \kappa_t \kappa_W$
$\sigma(tHq)$	-	t-W	-	$2.63 \kappa_t^2 + 3.58 \kappa_W^2 - 5.21 \kappa_t \kappa_W$
$\sigma(b\bar{b}H)$	-	-	-	κ_b^2
Partial decay width	ı			
Γ^{bb}	-	-	-	κ_{h}^{2}
Γ^{WW}	-	-	-	κ_W^2
Γ^{gg}	\checkmark	t-b	κ_g^2	$1.11 \kappa_t^2 + 0.01 \kappa_b^2 - 0.12 \kappa_t \kappa_b$
$\Gamma^{\tau\tau}$	-	-	-	κ_{τ}^2
Γ^{ZZ}	-	-	-	κ_Z^2
Γ^{cc}	-	-	-	$\kappa_c^2 (= \kappa_t^2)$
$\Gamma^{\gamma\gamma}$	\checkmark	t-W	κ_{γ}^2	$1.59 \kappa_W^2 + 0.07 \kappa_t^2 - 0.67 \kappa_W \kappa_t$
$\Gamma^{Z\gamma}$	\checkmark	t-W	$\kappa^2_{(Z\gamma)}$	$1.12 \kappa_W^2 - 0.12 \kappa_W \kappa_t$
Γ^{ss}	-	-	-	$\kappa_s^2 (= \kappa_b^2)$
$\Gamma^{\mu\mu}$	-	-	-	κ_{μ}^2
Total width ($B_{inv} =$	$B_{undet} =$	0)		
				$0.58 \kappa_b^2 + 0.22 \kappa_W^2$
				$+0.08 \kappa_g^2 + 0.06 \kappa_\tau^2$
Γ_H	\checkmark	-	κ_H^2	$+0.03 \kappa_Z^2 + 0.03 \kappa_c^2$
				$+0.0023 \kappa_{\gamma}^2 + 0.0015 \kappa_{(Z\gamma)}^2$
				$+0.0004 \kappa_s^2 + 0.00022 \kappa_\mu^2$

- κ_V vs κ_F : one scale factor for vector bosons and one for fermions
 - Loop processes resolved according to the SM particles that contribute to them
 - SM compatibility (p-value): 14%

- $\kappa_W, \kappa_Z, \kappa_t, \kappa_b, \kappa_c, \kappa_\tau, \kappa_\mu$:
 - All κ modifiers assumed to be positive
 - Only SM particles in loop processes
 - No invisible or undetected non-SM Higgs decays
 - Two setups: with and without κ_c to cope with low sensitivity
 - Upper limit on κ_c of 5.7(7.6) \times SM at 95% CL
 - <u>Coupling measurements:</u>
 - Fermions (t, b, τ): precision between 7% and 12%
 - Muon: precision of 37%
 - Vector bosons (W, Z): precision of 5-6%

- Another new (preliminary) result
- VBF WH production process provides sensitivity to the sign between κ_W and κ_Z
 - Two main processes interfere constructively (destructively) if κ_W and κ_Z have opposite (same) signs
 - Cross section increases by ~6x for opposite sign contributions

- Another new (preliminary) result
- VBF WH production process provides sensitivity to the sign between κ_W and κ_Z
 - Recall that in previous result, all coupling modifiers are *assumed* to be positive!
 - Opposite sign coupling excluded with significance $> 8.0\sigma$

- $\kappa_W, \kappa_Z, \kappa_t, \kappa_b, \kappa_c, \kappa_\tau, \kappa_\mu, \kappa_g, \kappa_\gamma, \kappa_{Z\gamma}$ (+ with $B_{\text{inv.}}, B_{\text{u.}}$):
 - Similar to previous setup with this time allowing for non-SM particles in loop processes
 - Effective coupling strengths for κ_g , κ_γ , $\kappa_{Z\gamma}$
 - Does not include combined $H \to Z\gamma$ result or the κ_W/κ_Z relative sign result
 - κ_t allowed to be negative
 - Two setups: with and without invisible and undetected non-SM Higgs decays
 - Impacts the width
 - Upper limits on B_{inv.} and B_{u.} of 0.13 (0.08) and 0.12 (0.21) at 95% CL
 - Limit of 0.107 (0.077) on B_{inv.} from updated results in combination of dedicated searches [arXiv:2301.10731]

Couplings: self-coupling

- More information about *HH* in a dedicated talk
 - Combination of H and HH results allows to relax assumptions in the constraints on κ_λ (e.g. about the strength of κ_t)

Combination assumption	Obs. 95% CL	Exp. 95% CL	Obs. value $^{+1\sigma}_{-1\sigma}$
HH combination	$-0.6 < \kappa_{\lambda} < 6.6$	$-2.1 < \kappa_{\lambda} < 7.8$	$\kappa_{\lambda} = 3.1^{+1.9}_{-2.0}$
Single-H combination	$-4.0 < \kappa_{\lambda} < 10.3$	$-5.2 < \kappa_{\lambda} < 11.5$	$\kappa_{\lambda} = 2.5^{+4.6}_{-3.9}$
HH+H combination	$-0.4 < \kappa_{\lambda} < 6.3$	$-1.9 < \kappa_{\lambda} < 7.6$	$\kappa_{\lambda} = 3.0^{+1.8}_{-1.9}$
<i>HH</i> + <i>H</i> combination, κ_t floating	$-0.4 < \kappa_{\lambda} < 6.3$	$-1.9 < \kappa_{\lambda} < 7.6$	$\kappa_{\lambda} = 3.0^{+1.8}_{-1.9}$
<i>HH</i> + <i>H</i> combination, κ_t , κ_V , κ_b , κ_τ floating	$-1.4 < \kappa_{\lambda} < 6.1$	$-2.2 < \kappa_{\lambda} < 7.7$	$\kappa_{\lambda} = 2.3^{+2.1}_{-2.0}$

Conclusion (Run 2)

- A lot of measurements have been performed by the ATLAS collaboration, with confirmation that the (coupling) properties of the Higgs Boson show excellent agreement with the SM predictions
 - All main production modes have been observed
 - Hints of rare Higgs decays have been seen
 - New results in combination from CMS shows evidence for the $H \rightarrow Z\gamma$ decay
 - Couplings to vector bosons and heavy fermions have been measured with precisions of 5% and 7-12% respectively
 - Opposite sign of coupling to W and Z bosons excluded with $> 8.0\sigma$
 - Higgs self-coupling constraints from combined H + HH results, with less assumptions
 - Kinematic dependence of production cross sections has been studied across a wide range of phase space and across several orders of magnitude (STXS)
 - Differential measurements also available in a combination of $H \rightarrow ZZ^* \rightarrow 4\ell$ and $H \rightarrow \gamma\gamma$ [arXiv:2207.08615] and in $H \rightarrow WW^*$ [arXiv:2304.03053, arXiv:2301.06822] — not shown here

Conclusion (Run 3)

- First measurement(s) in Run 3 already available, more to come!
 - Dedicated talk later today

Backup

Production & decay

Cross sections x branching ratios:

- Measurements for all available cross sections and branching ratios
- Assumptions from previous measurements relaxed

Kappa ratios

